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Imagine we feel like in paradise …



… after the discovery of a new particle
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p-valuesp-values

Largest excess observed at m
X 
= 750GeV and for narrow width.

Local signi5cance: 3.4s

Taking into account mass range 500-3500GeV (and all signal hypotheses),

“global” signi5cance becomes 1.6s

Spin-0 Spin-2
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Breaking-down the contributions Breaking-down the contributions 

Excess at 760GeV comes mostly from EBEB categories.

Driven by 3.8T category.
(where the observed excess is ~unchanged w.r.t. the previous results).

Observed one event in the 0T dataset compatible with 3.8T excess.

What will happen?



We will see a tsunami of theoretical papers describing 
this particle’s properties in an EFT



For the example of a spin-0 singlet S
❖ Most general effective Lagrangian at D=5:

❖ Can describe the production and decay rates of S in 
terms of a hand full of parameters 

7 Conclusions

In future work we will illustrate our results in the context of a particular UV completion,
consisting an an extension of the SM by heavy, vector-like fermions.

A Decay amplitudes in conventional EFT

Since the mass of the gauge-singlet, spin-0 resonance S is much larger than the electroweak
scale, its interactions can be described in terms of operators in the unbroken phase of the
electroweak gauge symmetry. We include all possible interactions up to dimension 5. We use
the equations of motion for the SM fields and for the field S to eliminate redundant operators,
such as S �†

D
2
�, (@µS) (�†

iDµ�+h.c.), (@µS)  ̄�µ , and (⇤S)�†
�. We write the most general

Lagrangian in the form4
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Here G
a
µ⌫ , W

a
µ⌫ and Bµ⌫ are the field strength tensors of SU(3)c, SU(2)L and U(1)Y , � is

the scalar Higgs doublet, and sw = sin ✓w and cw = cos ✓w are functions of the weak mixing
angle. [Define dual field strengths!] The quantities Ŷf with f = u, d, e are arbitrary complex
matrices in generation space. We have indicated the suppression of the dimension-5 operators
with the new-physics scale M . Note that the coupling M�1 of the Higgs-portal operator S �†

�

is dimensionful and naturally of order M . Our operator basis agrees with the one obtained in
[15], where a complete operator basis was constructed up to dimension 7. Compared with [?
] [Include reference!], we have eliminated the redundant operator S (@µS)(@µS).

It is straightforward to calculate the tree-level contributions to the S ! hh, S ! ��,
S ! gg, S ! W

+
W

�, S ! ZZ, S ! Z�, and S ! f1f̄2 decay amplitudes from the above
e↵ective Lagrangian and to reproduce the scaling relations shown in (1). The only non-trivial
case concerns the S ! Zh decay amplitude, for which the leading dimension-5 contribution
arises at one-loop order and was calculated in [13]. The result can be written in the form
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, (A.2)

4
The authors of [12] have used the equation of motion for the scalar Higgs doublet to eliminate the portal

interaction S�†� instead of the operator S (Dµ�)†(Dµ�), which we have eliminated. This is not a suitable

choice, because the portal interaction is a dimension-3 operator, whose contribution is enhanced by two powers

of the cuto↵ scale relative to the dimension-5 operators in the e↵ective Lagrangian.
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What’s wrong about it?
❖ An EFT is used to separate the physics on different 

(length or mass/energy) scales

❖ Goal: separate new-physics scale M from the 
electroweak scale v

❖ But the EFT contains the heavy resonance S as a field, 
so it’s scales are v (masses of SM particles) and MS

❖ Widely different scales MS     v are not separated by the 
EFT (no control over large logs)

❖ For M ~ MS , an infinite tower of higher-dimensional 
operators gives rise to unsuppressed contributions

M
MS

v

µ

�



Is there a way out?

M
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Is there a way out?
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Soft-collinear effective theory (SCET)
❖ SCET is the proper effective field theory to describe the 

properties of highly energetic light particles produced in 
the decay of a heavy particle: 
❖ systematic scale separation between MS and v, 

including resummation of large logarithms
❖ case where M ~ MS can be dealt with naturally

❖ Effective Lagrangian is process dependent: will consider 
2-body decays of a heavy, spin-0 resonance S which is a 
singlet under the SM

Bauer, Fleming, Pirjol, Stewart 2001; 
Bauer, Pirjol, Stewart 2002

Beneke, Chapovsky, Diehl, Feldmann 2002



Outline of the construction
❖ At the new-physics scale M ~ MS the full 

theory is matched onto SCETBSM, giving 
rise to Wilson coefficient functions

❖ The SCET operators are evolved from 
MS down to the scale v using RGEs and 
anomalous dimensions derived in the 
effective theory

❖ At the scale v a matching onto a theory 
with massive SM fields is performed

❖ If desired, the operators can be evolved 
down further when very light SM 
particles are involved

µ

UV theory

µ ⇠ M ⇠ MS

SU(3)c ⇥ SU(2)L ⇥ U(1)Y
SM particles massless

µ ⇠ v

SU(3)c ⇥ U(1)em
SM particles massive

see also: Chiu, Golf, Kelley, Manohar 2007

SC
ET

BSM
SC

ET-2
BSM



Basic elements of SCET



Basic elements of SCET
❖ Intrinsic complication consists of fact that large mass MS 

enters low-energy theory as a parameter characterizing 
the large energies Ei ~ MS of the light final-state particles

❖ Gives rise to non-local operators in the effective 
Lagrangian, with fields separated along the light-like 
directions in which these particles travel

❖ After Fourier transformation, this introduces a 
dependence of the Wilson coefficients on MS

Bauer, Fleming, Pirjol, Stewart 2001; Bauer, Pirjol, Stewart 2002
Beneke, Chapovsky, Diehl, Feldmann 2002



Basic elements of SCET
❖ In a given decay process of S, final state contains jets 

defining directions                     of large energy flow 

❖ Each jet consists of one or more ni-collinear particles, 
which carry energies much larger than their rest mass

❖ Define light-like reference vectors                      and          
d                     with                    ; then:

2 Basic elements of SCET

Our goal is this work is to develop a consistent EFT for the analysis of the decays of a
hypothetical new, heavy spin-0 boson S (with mass MS � v) into SM particles. For simplicity
we assume that S is a singlet under the SM gauge group. We also allow for the existence of
other heavy particles with similar masses M ⇠ MS, which have not yet been discovered. They
are integrated out and thus do not appear as degrees of freedom in the e↵ective Lagrangian.
As we will show, the appropriate EFTBSM is intrinsically non-local and consists of operators
defined in SCET. Nevertheless, the theory is well defined and can be constructed following
a set of simple rules. As our desire is elucidate the main ideas of our proposal and present
the construction of the EFTBSM Lagrangian in the most simple and transparent way, we
will relegate various technicalities, which are familiar to SCET practitioners but may look
intimidating to others, to Appendix B. Interested readers can find more details in the original
papers [6–8] and in the reviews [14] [more refs].

The intrinsic complication in constructing an EFT for the decays of a heavy particle S

into light (or massless) particles is that the large mass MS enters the low-energy theory as
a parameter characterizing the large energies Ei ⇠ MS of the light particles in the final
state. This is di↵erent from conventional EFTs of the Wilsonian type, in which short-distance
fluctuations of heavy virtual particles are integrated out from the generating functional of
low-energy Green’s functions. In SCET, the large energies carried by the light particles give
rise to non-localities along the nearly light-like directions in which these particles travel.

In a given decay process of the heavy particle S, the final state contains jets defining
directions {n1, . . . ,nk} of large energy flow. Each jet may consist of one or more collinear
particles, which have energies much larger than their rest masses. For each jet direction ni,
we define two light-like reference vectors nµ

i = (1,ni) and n̄
µ
i = (1,�ni), with ni · n̄i = 2. The

4-momentum p of a particle in the jet can then be written as

p
µ = n̄i · p

n
µ
i

2
+ ni · p

n̄
µ
i

2
+ p

µ
? , (3)

where n̄i · p = O(MS) is much larger than ni · p = O(m2
/MS). The di↵erent components scale

as
(ni · p, n̄i · p, p?) ⇠ MS (�

2
, 1,�) , (4)

where � = v/MS is the expansion parameter of the e↵ective theory, and we assume that the
masses of the light particles are set by the electroweak scale v. Particles whose momenta scale
in this way are referred to as “ni-collinear particles”. The particles inside a given jet can
interact with each other according to the Feynman rules of SCET, which are equivalent to the
usual Feynman rules of the SM [? ]. However, an ni-collinear particle cannot interact directly
with an nj-collinear particle contained in another jet.1

In SCET, ni-collinear particles are described by e↵ective fields referred to as “collinear
building blocks”. They are composite fields invariant under so-called “ni-collinear gauge trans-
formations”, which preserve the scaling of the particle momenta shown in (4). The building

1
Such interactions can however be mediated by the exchange of (ultra-)soft gauge bosons; see Appendix B

for details.
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Basic elements of SCET
❖ Particles inside a jet can interact with each other, but 

only soft particles can mediate between different jets   

❖ In SCET, particles are described by gauge-invariant 
collinear building blocks defined using Wilson lines:
❖ scalar doublet:

❖ fermions:

❖ gauge bosons:

blocks are defined with the help of ni-collinear Wilson lines [? ] built out of the various gauge
bosons associated with the SM gauge group. We define

W
(G)
ni

(x) = P exp


igs

Z 0

�1
ds n̄i ·Gni(x+ sn̄i)

�
,

W
(W )
ni

(x) = P exp


ig

Z 0

�1
ds n̄i ·Wni(x+ sn̄i)

�
,

W
(B)
ni

(x) = P exp


ig

0
Y

Z 0

�1
ds n̄i · Bni(x+ sn̄i)

�
,

(5)

where gs, g and g
0 denote the gauge couplings of SU(3)c, SU(2)L and U(1)Y , while G

µ
ni
(x) ⌘

G
µ,a
ni

(x) ta, W µ
ni
(x) ⌘

P
a W

µ,a
ni

(x) ⌧a and Bni(x) denote the corresponding ni-collinear gauge
fields. They are defined such that their Fourier transforms only contain particle modes whose
momenta satisfy the scaling in (4). The path-ordering symbol “P” is defined such that the
gauge fields are ordered from left to right in order of decreasing s values. For a given SM
field, the corresponding collinear Wilson line is obtained by the appropriate product of the
objects defined in (5), where the hypercharge generator Y in the definition of W (B)

ni is replaced
the hypercharge of the respective field. For example, the collinear Wilson lines for the scalar
Higgs doublet and a right-handed up-quark field are

Wni(x) = W
(W )
ni

(x)W (B)
ni

(x) , Wni(x) = W
(G)
ni

(x)W (B)
ni

(x) , (6)

where Y takes the values 1
2 and 2

3 , respectively.
The ni-collinear building blocks for the scalar Higgs doublet and the SM fermions are

defined as [? ]
�ni(x) = W

†
ni
(x)�(x) ,

Xni(x) =
/ni /̄ni

4
W

†
ni
(x) (x) ⌘ PniW

†
ni
(x) (x) ,

(7)

where the projection operator Pni , which is defined such that /niPni = 0 and P
2
ni

= Pni ,
projects out the two large components of the Dirac spinor for a highly energetic fermion. The
ni-collinear building blocks for the gauge bosons are defined as [20? ] (for A = G,W,B)

Aµ
ni
(x) = W

(A)†
ni

(x)
⇥
iD

µ
ni
W
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Z 0
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W
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W
(A)
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(x+ sn̄i) , (8)

where iD
µ
ni

= i@
µ + gAA

µ
ni

denotes the collinear covariant derivative, gA is the appropriate
gauge coupling, and A

↵µ
ni

is the field-strength tensor associated with the collinear gauge field
A

µ
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in (8), and hence one finds
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The building blocks for the collinear fermion and gauge fields satisfy the constraints
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SCETBSM for 2-body decays of 
a heavy spin-0 resonance S



Basic elements of SCET
❖ Power counting rules:

imply that adding fields gives rise to power suppression

❖ Because of EWSB, the effective theory also contains scalar fields 
carrying no 4-momentum:

❖ For 2-body decays, operators need to contain collinear fields in 
two opposite directions 

❖ Obtain Lagrangian by constructing gauge-invariant operators 
built out of these fields, starting at O(λ2)

The Wilson lines contain the longitudinal components n̄i · Ani of the gauge fields, while the
gauge-invariant collinear fields Aµ

ni
themselves have no such components. Because of the

presence of the Wilson lines, the SCET fields can create or absorb particles along with an
arbitrary number of (longitudinal) gauge bosons coupling to these particles and traveling in
the same direction. In this sense the e↵ective fields describe “jets” of collinear partons. Note
that a di↵erent set of collinear fields (scalars, fermions and gauge fields) is introduced for each
direction ni of large energy flow.

The collinear building blocks have well-defined scaling properties with the expansion pa-
rameter �. One finds [? ]

�ni ⇠ � , Xni ⇠ � , Aµ
ni? ⇠ � , ni ·Ani ⇠ �

2
. (11)

It follows that operators containing N collinear fields (irrespective of their directions) have
scaling dimension d � N in �, and adding more fields to an operator always increases its scaling
dimension. This is how SCET can be employed to construct a consistent expansion in power
of �. Operators in the e↵ective Lagrangian can also contain derivatives acting on collinear
fields,2 which produce collinear momenta when taking matrix elements of an operator. From
(4) it follows that one can add an arbitrary number of in̄i · @ derivatives acting on ni-collinear
fields, while ini · @ or i@µ

? derivatives gives rise to additional power suppression. The freedom
to introduce in̄i · @ derivatives at will implies that ni-collinear fields can be delocalized along
the n̄i direction, and hence the operators appearing in the SCET Lagrangian are non-local. A
first hint at this non-locality is the presence of the Wilson lines themselves, see (5).

3 EFTBSM for two-body decays of S

We now have the tools to construct an EFT for the decays of a new heavy particle S with
mass MS � v into SM particles. It is convenient to work in the rest frame of the decaying
particle, in which p

µ
S = MSv

µ with v
µ = (1,0). Generically, the light final-state particles carry

large energies Ei = O(MS) in this reference frame.
The basic construction of the EFTBSM is illustrated in Figure ??. At the new-physics scale

µ ⇠ MS ⇠ M , the complete UV theory (which is unknown, of course) is matched onto an
extension of SCET built out of the resonance S and ni-collinear SM fields. Since the mass of
S is much above the electroweak scale, its interactions can be described in terms of operators
in the unbroken phase of the electroweak gauge symmetry, preserving full SU(3)c ⇥SU(2)L ⇥
U(1)Y gauge invariance. The e↵ective operators and their Wilson coe�cients are then evolved
from the high-energy scale µ ⇠ MS to the electroweak scale µ ⇠ v. This is accomplished by
solving the renormalization-group equations (RGEs) of the e↵ective theory. In this process,
the SM particles can be treated as massless. Solving the RGEs resums large logarithms of the
scale ratio MS/v to all orders in perturbation theory. At the electroweak scale the symmetry
is broken to SU(3)c ⇥ U(1)em, and mass e↵ects from SM particles are included in a second
matching step. In Appendix B we describe the procedure underlying the construction of the
EFTBSM in more detail, addressing some relevant technical details omitted here.

2
There is no need to use covariant derivatives, since the building blocks are gauge invariant by themselves.
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3. At the electroweak scale the symmetry is broken to SU(3)c ⇥ U(1)em, and mass e↵ects
from SM particles need to be taken into account. This is accomplished by introducing
mass terms for the ni-collinear fields. In loop calculations, it is also necessary to include
so-called soft mass-mode fields with momentum scaling (�,�,�) [20–22]. This version of
the e↵ective theory is often referred to as SCETII. The presence of mass terms in loop
calculations gives rise to the collinear anomaly [23]. The corresponding loop integrals
require an additional analytic regulator beyond dimensional regularization, which leads
to the appearance of additional large logarithms in the matrix elements of the low-energy
e↵ective theory. It can be shown that these rapidity logarithms do not exponentiate and
hence they do not spoil the resummation accomplished in step 2 [11, 23, 24].

4. If one is interested in processes involving particles much lighter than the weak scale, then
at µ ⇡ v an additional matching step is required, in which the SM particles with weak-
scale masses (the top quark, the Higgs boson, and the W and Z bosons) are integrated
out. This theory is then evolved down to a scale µ characteristic to the process of
interest, where the relevant operator matrix elements are evaluated.

Each ni-collinear field in the SCETBSM Lagrangian carries a collinear momentum in the
corresponding direction ni with a large net energy and thus must produce at least one ni-
collinear particle entering the final state. By momentum conservation, each operator in the
SCETBSM Lagrangian must contain at least two di↵erent types of collinear fields, representing
particles moving in di↵erent directions. Because of electroweak symmetry breaking, the e↵ec-
tive theory also contains scalar fields carrying no 4-momentum. These are represented by a
constant field �0 ⇠ �, which does not transform under collinear gauge transformations. After
electroweak symmetry breaking one replaces

�0
EWSB
!

1
p
2

 
0

v

!
. (14)

In this section we focus on the simplest, but phenomenologically most important case of
two-body decays of the heavy resonance S. Then the vectors n2 = �n1 point in opposite
directions, and therefore n2 = n̄1 and n1 = n̄2 for the light-like reference vectors. Since
the choice of the direction of the reference vectors is arbitrary, all operators in the e↵ective
Lagrangian must be invariant under the exchange n1 $ n2.

3.1 E↵ective Lagrangian at O(�2
)

It is convenient to work in the rest frame of the decaying particle, in which the light final-state
particles carry large energies Ei = O(MS). Since the operators in the e↵ective Lagrangian
must contain at least one n1-collinear and one n2-collinear field, the power-counting rules
in (12) imply that the leading operators have scaling dimension d = 2. While invariance
under ni-collinear gauge transformations is ensured by constructing the e↵ective Lagrangian

matching at an intermediate “hard-collinear” scale µ ⇠
p
vMS [12]. The reason is simply that no such scale

can be formed out of the physical momenta of the particles involved in the decay.
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Effective Lagrangian at O(λ  )
❖ Most general expression:

with:

❖ Model-independent predictions for all diboson decay 
rates in terms of 7 Wilson coefficient functions!

2

fields. In the case of a two-body decay, these are simply the momenta of the two final-state
particles. Using translational invariance, the above expression can be rewritten in the form

Se↵ 3 (2⇡)4 �(4)(MSv � P1 � P2)

⇥ C��(n̄1 · P1, n̄2 · P2,M, µ)S(0)
⇥
�†

n1
(0)�n2(0) + �†

n2
(0)�n1(0)

⇤
,

(14)

where

C��(n̄1 · P1, n̄2 · P2,M, µ) ⌘

Z
ds dt C̄��(s, t,M, µ) eisn̄1·P1 e

itn̄2·P2 (15)

is the Fourier-transformedWilson coe�cient. The dependence of this function on its arguments
is restricted by the fact that the Lagrangian must be invariant under rescalings of the light-
like reference vectors n̄1 and n̄2. It follows that C�� depends on its first two arguments only
through the combination

2 n̄1 · P1 n̄2 · P2

n̄1 · n̄2
' M

2
S . (16)

Introducing the dimensionless ratio

r =
M

2
S

M2
, (17)

and with a slight abuse of notation, we write the corresponding contribution to the e↵ective
Lagrangian in the form

Le↵ 3 M C��(r,M, µ)O��(µ) , with O�� = S
�
�†

n1
�n2 + �†

n2
�n1

�
. (18)

All fields are now evaluated at the same point. We have factored out the new-physics scale
M in the final definition of the Wilson coe�cient to insure that the function C��(r,M, µ) is
dimensionless.

The remaining operators arising at O(�2) contain two transverse gauge fields. Their
Lorentz indices can be contracted with the help of two rank-2 tensors defined in the plane
transverse to the vectors n1 and n2. We define the objects (we use ✏0123 = �1)

g
?
µ⌫ = gµ⌫ �

n1µn2⌫ + n2µn1⌫

n1 · n2
, ✏

?
µ⌫ = ✏µ⌫↵�

n
↵
1 n

�
2

n1 · n2
. (19)

The latter definition is such that ✏
?
12 = 1 if n

µ
1 = (1, 0, 0, 1) and n

µ
2 = (1, 0, 0,�1). The

complete e↵ective Lagrangian can then be written in the form

L
(2)
e↵ = M C��(r,M, µ)O��(µ) +M

X

A=G,W,B

h
CAA(r,M, µ)OAA(µ) + eCAA(r,M, µ) eOAA(µ)

i
,

(20)
where

O�� = S
�
�†

n1
�n2 + �†

n2
�n1

�
,

OAA = S g
?
µ⌫ A

µ,a
n1

A⌫,a
n2

,

eOAA = S ✏
?
µ⌫ A

µ,a
n1

A⌫,a
n2

.

(21)
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C��(MS,M, µ) is dimensionless. Contrary to a conventional EFT, in our approach the short-
distance Wilson coe�cients depend on all the relevant heavy scales in the problem (MS and
the mass scale M of yet undiscovered heavy particles), and this dependence can be arbitrarily
complicated depending on the details of the underlying UV theory. In this way, the SCETBSM

Lagrangian accounts for infinite towers of local operators in the conventional EFT approach.
The remaining operators arising at O(�2) contain two transverse gauge fields. Their

Lorentz indices can be contracted with the help of two rank-2 tensors defined in the plane
transverse to the vectors n1 and n2. We introduce the objects (with ✏0123 = �1)

g
?
µ⌫ = gµ⌫ �

n1µn2⌫ + n2µn1⌫

n1 · n2
, ✏

?
µ⌫ = ✏µ⌫↵�

n
↵
1 n

�
2

n1 · n2
. (20)

The latter definition is such that ✏
?
12 = 1 if n

µ
1 = (1, 0, 0, 1) and n

µ
2 = (1, 0, 0,�1). The

complete e↵ective Lagrangian can then be written in the form

L
(2)
e↵ = M C��(MS,M, µ)O��(µ)+M

X

A=G,W,B

h
CAA(MS,M, µ)OAA(µ)+ eCAA(MS,M, µ) eOAA(µ)

i
,

(21)
where (a summation over the group index a is understood for non-abelian fields)

O�� = S
�
�†

n1
�n2 + �†

n2
�n1

�
,

OAA = S g
?
µ⌫ A

µ,a
n1

A⌫,a
n2

,

eOAA = S ✏
?
µ⌫ A

µ,a
n1

A⌫,a
n2

.

(22)

Note that ✏?µ⌫ changes sign under n1 $ n2, and hence the last operator indeed has the correct
symmetry properties. The first two operators in this list are even under a CP transformation
whereas the third operator is odd (assuming that S does not transform under CP). Here and
below we indicate CP-odd operators and their Wilson coe�cients by a tilde.

The gauge fields contained in the Wilson lines entering the definitions of the gauge-invariant
building blocks in (7) and (8) become important in loop calculations or in applications with
multiple emissions of particles in the same jet direction. An exception is the Wilson line
associated with the scalar doublet in (7), which after electroweak symmetry breaking accounts
for the longitudinal polarization states of the physical W± and Z

0 bosons.
The SCETBSM Lagrangian (21), which is valid for scales µ < MS, is constructed in the

unbroken phase of the electroweak gauge symmetry, in which all particles other than the heavy
resonance S can be treated as massless. As shown in Figure 1, at the electroweak scale µ ⇠ v

this Lagrangian must be matched onto an e↵ective Lagrangian constructed in the broken
phase, where the residual gauge symmetry is SU(3)c ⇥ U(1)em and where the SM particles
acquire masses. While this matching is non-trivial at loop order (see e.g. [11, 12, 20–22]), at
tree level one simply needs to transform the various fields to the mass basis. In particular, after
electroweak symmetry breaking the collinear building block representing the scalar doublet
takes the form

�ni(0) =
1
p
2
W

†
ni
(0)

 
0

v + hni(0)

!
, (23)
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Effective Lagrangian at O(λ  )
❖ After EWSB,        contains both the Higgs boson and the 

longitudinal modes of the electroweak gauge bosons:

with:

❖ Hence: 

2Note that ✏?µ⌫ changes sign under n1 $ n2, and hence the last operator has indeed the correct
symmetry properties. A sum over the group index a is implied; this index is not present in
the case of the U(1)Y gauge field. The gauge fields contained in the Wilson lines entering
the definitions of the gauge-invariant building blocks in (7) and (8) become important in loop
calculations or in applications with multiple emissions of particles in the same jet direction.
An exception is the Wilson line associated with the scalar doublet in (7), which includes the
longitudinal polarization states of the physical W± and Z

0 bosons.
After electroweak symmetry breaking, the collinear building block representing the scalar

doublet is replaced by

�ni(0) =
1
p
2
W

†
ni
(0)

 
0

v + hni(0)

!
, (22)

where

Wni(0) = P exp

"
ig

2

Z 0

�1
ds

 
c2w�s2w

cw
n̄i · Zni + 2sw n̄i · Ani

p
2 n̄i ·W

+
ni

p
2 n̄i ·W

�
ni

�
1
cw

n̄i · Zni

!
(sn̄i)

#
. (23)

We have replaced the gauge fields W µa and B
µ in terms of the mass eigenstates W±, Z and

A. Here cw = cos ✓W and sw = sin ✓W denote the cosine and sine of the weak mixing angle. It
follows that

O�� = S(0)hn1(0)hn2(0) +m
2
Z

Z 0

�1
ds

Z 0

�1
dt S(0) n̄1 · Zn1(sn̄1) n̄2 · Zn2(tn̄2)

+m
2
W

Z 0

�1
ds

Z 0

�1
dt S(0)

⇥
n̄1 ·W

�
n1
(sn̄1) n̄2 ·W

+
n2
(tn̄2) + (+ $ �)

⇤
+ . . . ,

(24)

where the dots represent terms containing more than two collinear fields. Taking into account
that external collinear Higgs bosons and transversely polarized vector bosons have power
counting �

�1, while longitudinally polarized vector bosons have power counting �
0, it follows

from (20) and (24) that

M(S ! hh) = O(�0) , M(S ! V V ) = O(�0) , (25)

in accordance with our findings in (1). Note, however, that whereas in (1) we have restricted
our attention to dimension-5 operators in the conventional EFT Lagrangian, the scaling rela-
tions derived in SCET are exact.

It is straightforward to evaluate the relevant two-body decay amplitudes and decay rates
described by the e↵ective Lagrangian (20). For the di-Higgs decay mode of S, we obtain

M(S ! hh) = M C�� , �(S ! hh) =
M

2

32⇡MS
|C��|

2

s

1�
4m2

h

M2
S

. (26)

where here and below we suppress the arguments of the Wilson coe�cients.
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follows that
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(24)

where the dots represent terms containing more than two collinear fields. Taking into account
that external collinear Higgs bosons and transversely polarized vector bosons have power
counting �

�1, while longitudinally polarized vector bosons have power counting �
0, it follows

from (20) and (24) that

M(S ! hh) = O(�0) , M(S ! V V ) = O(�0) , (25)

in accordance with our findings in (1). Note, however, that whereas in (1) we have restricted
our attention to dimension-5 operators in the conventional EFT Lagrangian, the scaling rela-
tions derived in SCET are exact.

It is straightforward to evaluate the relevant two-body decay amplitudes and decay rates
described by the e↵ective Lagrangian (20). For the di-Higgs decay mode of S, we obtain
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symmetry properties. A sum over the group index a is implied; this index is not present in
the case of the U(1)Y gauge field. The gauge fields contained in the Wilson lines entering
the definitions of the gauge-invariant building blocks in (7) and (8) become important in loop
calculations or in applications with multiple emissions of particles in the same jet direction.
An exception is the Wilson line associated with the scalar doublet in (7), which includes the
longitudinal polarization states of the physical W± and Z

0 bosons.
After electroweak symmetry breaking, the collinear building block representing the scalar

doublet is replaced by

�ni(0) =
1
p
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W

†
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(0)
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!
, (22)

where

Wni(0) = P exp
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2
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We have replaced the gauge fields W µa and B
µ in terms of the mass eigenstates W±, Z and

A. Here cw = cos ✓W and sw = sin ✓W denote the cosine and sine of the weak mixing angle. It
follows that

O�� = S(0)hn1(0)hn2(0) +m
2
Z

Z 0

�1
ds

Z 0

�1
dt S(0) n̄1 · Zn1(sn̄1) n̄2 · Zn2(tn̄2)
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2
W

Z 0

�1
ds

Z 0

�1
dt S(0)

⇥
n̄1 ·W

�
n1
(sn̄1) n̄2 ·W

+
n2
(tn̄2) + (+ $ �)

⇤
+ . . . ,

(24)

where the dots represent terms containing more than two collinear fields. Taking into account
that external collinear Higgs bosons and transversely polarized vector bosons have power
counting �

�1, while longitudinally polarized vector bosons have power counting �
0, it follows

from (20) and (24) that

M(S ! hh) = O(�0) , M(S ! V V ) = O(�0) , (25)

in accordance with our findings in (1). Note, however, that whereas in (1) we have restricted
our attention to dimension-5 operators in the conventional EFT Lagrangian, the scaling rela-
tions derived in SCET are exact.

It is straightforward to evaluate the relevant two-body decay amplitudes and decay rates
described by the e↵ective Lagrangian (20). For the di-Higgs decay mode of S, we obtain

M(S ! hh) = M C�� , �(S ! hh) =
M

2

32⇡MS
|C��|

2

s

1�
4m2

h

M2
S

. (26)

where here and below we suppress the arguments of the Wilson coe�cients.
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Diboson decay rates
❖ For the                decay mode we obtain:

❖ For the                    decay modes we define the form 
factor decomposition:

❖ Both amplitudes scale like λ0 and hence are of leading 
order in power counting 

S ! hh

S ! V1V2
The decay amplitudes involving two vector bosons in the final state can be expressed in

terms of the general form-factor decomposition

M(S ! V1V2) = M

h
F

V1V2
? "

⇤
1? · "

⇤
2? + eF V1V2

? ✏
?
µ⌫ "

⇤µ
1? "

⇤⌫
2? + F

V1V2
k

m1m2

k1 · k2
"
⇤
1k · "

⇤
2k

i
, (27)

where k
µ
i are the momenta of the outgoing bosons, mi denote their masses, and "

µ
i ⌘ "

µ
i (ki)

are their polarization vectors. The transverse and longitudinal projections of the polarization
vectors are defined as

"?µ(k) = g
?
µ⌫ "

⌫(k) , "
µ
k(k) = "

µ(k)� "
µ
?(k) . (28)

The fist two terms in (27) correspond to the perpendicular polarization states of the two
bosons, while the third term refers to the longitudinal polarization states. The latter only
arise for the massive vector bosons Z

0 and W
±. The ratio m1m2/(k1 · k2) factored out in

the definition of the longitudinal form factor F
V V
k takes into account that the longitudinal

polarization vectors scale as "
µ
ik(ki) ' k

µ
i /mi = O(��1). Here and below we use the symbol

“'” for equations valid at leading power in �. Our definition ensures that all three form
factors are of the same order in SCET power counting. Note that the result (27) can also be
written in the equivalent form

M(S ! V1V2) = MF
V1V2
?

 
"
⇤
1 · "

⇤
2 �

k2 · "
⇤
1 k1 · "

⇤
2

k1 · k2 �
m2

1 m
2
2

k1·k2

!
+M eF V1V2

?
✏µ⌫↵� k

µ
1 k

⌫
2 "

⇤↵
1 "

⇤�
2⇥

(k1 · k2)2 �m2
1 m

2
2

⇤1/2

+MF
V1V2
k

m1m2 k2 · "
⇤
1 k1 · "

⇤
2

(k1 · k2)2 �m2
1 m

2
2

,

(29)

which is independent of the light-cone reference vectors used in SCET.
To derive the tree-level expressions for the form factors from the e↵ective Lagrangian (20),

we note that the one-boson Feynman rule for the gauge-invariant SCET field Aµ,a
ni? yields

gA "
⇤µ
i?(ki), where gA denotes the appropriate gauge coupling, while the Wilson-line terms in

(24) produce the structure
n̄1 · "

⇤
1

n̄1 · k1

n̄2 · "
⇤
2

n̄2 · k2
=

"
⇤
1k · "

⇤
2k

k1 · k2
. (30)

We thus obtain the transverse form factors

F
gg
? = g

2
s CGG , eF gg

? = g
2
s
eCGG ,

F
��
? = e

2 (CWW + CBB) , eF ��
? = e

2
� eCWW + eCBB

�
,

F
�Z
? = e

2

✓
cw

sw
CWW �

sw

cw
CBB

◆
, eF �Z

? = e
2

✓
cw

sw

eCWW �
sw

cw

eCBB

◆
,

F
ZZ
? = e

2

✓
c
2
w

s2w

CWW +
s
2
w

c2w

CBB

◆
, eFZZ

? = e
2

✓
c
2
w

s2w

eCWW +
s
2
w

c2w

eCBB

◆
,

F
WW
? =

e
2

s2w

CWW , eFWW
? =

e
2

s2w

eCWW ,

(31)

10

where

Wni(0) = P exp

"
ig

2

Z 0

�1
ds

 
c2w�s2w

cw
n̄i · Zni+ 2sw n̄i · Ani

p
2 n̄i ·W

+
ni

p
2 n̄i ·W

�
ni

�
1
cw

n̄i · Zni

!
(sn̄i)

#
. (24)

We have replaced the gauge fields W µ,a and B
µ in terms of the mass eigenstates W±, Z and

A. Here cw = cos ✓W and sw = sin ✓W denote the cosine and sine of the weak mixing angle. It
follows that

O�� = S(0)hn1(0)hn2(0) +m
2
Z

Z 0

�1
ds

Z 0

�1
dt S(0) n̄1 · Zn1(sn̄1) n̄2 · Zn2(tn̄2)

+m
2
W

Z 0

�1
ds

Z 0

�1
dt S(0)

⇥
n̄1 ·W

�
n1
(sn̄1) n̄2 ·W

+
n2
(tn̄2) + (+ $ �)

⇤
+ . . . ,

(25)

where the dots represent terms containing more than two collinear fields. Taking into account
that external collinear Higgs and vector bosons have power counting �

�1, it follows from (21)
that the S ! hh and S ! V V decay amplitudes obey the scaling rules shown in (1). Note,
however, that whereas these rules were obtained by considering dimension-5 operators in the
conventional EFT Lagrangian, the scaling relations derived in SCET are exact.

It is straightforward to evaluate the relevant two-body decay amplitudes and decay rates
described by the e↵ective Lagrangian (21). For the di-Higgs decay mode of S, we obtain

M(S ! hh) = M C�� , �(S ! hh) =
M

2

32⇡MS
|C��|

2

s

1�
4m2

h

M2
S

, (26)

where here and below we suppress the arguments of the Wilson coe�cients.
The decay amplitudes involving two vector bosons in the final state can be expressed in

terms of the general form-factor decomposition

M(S ! V1V2) = M

h
F

V1V2
? "

⇤
1? · "

⇤
2? + eF V1V2

? ✏
?
µ⌫ "

⇤µ
1? "

⇤⌫
2? + F

V1V2
k

m1m2

k1 · k2
"
⇤
1k · "

⇤
2k

i
, (27)

where k
µ
i are the momenta of the outgoing bosons, mi denote their masses, and "

µ
i ⌘ "

µ(ki)
are their polarization vectors. The transverse and longitudinal projections of the polarization
vectors are defined as

"
µ
?(ki) = "

µ(ki)� n̄i · "(ki)
n
µ
i

2
� ni · "(ki)

n̄
µ
i

2
, "

µ
k(ki) = "

µ(ki)� "
µ
?(ki) . (28)

The first two terms in (27) correspond to the perpendicular polarization states of the two
bosons, while the third term refers to the longitudinal polarization states. The latter only
arise for the massive vector bosons Z

0 and W
±. The ratio m1m2/(k1 ·k2) factored out in

the definition of the longitudinal form factor F
V V
k takes into account that the longitudinal

polarization vectors scale as "µik(ki) ' k
µ
i /mi = O(��1). Our definition ensures that all three
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Diboson decay rates
❖ For the form factors we obtain:

and:

The decay amplitudes involving two vector bosons in the final state can be expressed in
terms of the general form-factor decomposition

M(S ! V1V2) = M

h
F

V1V2
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⇤
1? · "

⇤
2? + eF V1V2

? ✏
?
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⇤µ
1? "

⇤⌫
2? + F

V1V2
k

m1m2

k1 · k2
"
⇤
1k · "

⇤
2k

i
, (27)

where k
µ
i are the momenta of the outgoing bosons, mi denote their masses, and "

µ
i ⌘ "

µ
i (ki)

are their polarization vectors. The transverse and longitudinal projections of the polarization
vectors are defined as

"?µ(k) = g
?
µ⌫ "

⌫(k) , "
µ
k(k) = "

µ(k)� "
µ
?(k) . (28)

The fist two terms in (27) correspond to the perpendicular polarization states of the two
bosons, while the third term refers to the longitudinal polarization states. The latter only
arise for the massive vector bosons Z

0 and W
±. The ratio m1m2/(k1 · k2) factored out in

the definition of the longitudinal form factor F
V V
k takes into account that the longitudinal

polarization vectors scale as "
µ
ik(ki) ' k

µ
i /mi = O(��1). Here and below we use the symbol

“'” for equations valid at leading power in �. Our definition ensures that all three form
factors are of the same order in SCET power counting. Note that the result (27) can also be
written in the equivalent form

M(S ! V1V2) = MF
V1V2
?

 
"
⇤
1 · "

⇤
2 �

k2 · "
⇤
1 k1 · "

⇤
2

k1 · k2 �
m2

1 m
2
2

k1·k2

!
+M eF V1V2

?
✏µ⌫↵� k

µ
1 k

⌫
2 "

⇤↵
1 "

⇤�
2⇥

(k1 · k2)2 �m2
1 m

2
2

⇤1/2

+MF
V1V2
k

m1m2 k2 · "
⇤
1 k1 · "

⇤
2

(k1 · k2)2 �m2
1 m

2
2

,

(29)

which is independent of the light-cone reference vectors used in SCET.
To derive the tree-level expressions for the form factors from the e↵ective Lagrangian (20),

we note that the one-boson Feynman rule for the gauge-invariant SCET field Aµ,a
ni? yields

gA "
⇤µ
i?(ki), where gA denotes the appropriate gauge coupling, while the Wilson-line terms in

(24) produce the structure
n̄1 · "

⇤
1

n̄1 · k1

n̄2 · "
⇤
2

n̄2 · k2
=

"
⇤
1k · "

⇤
2k

k1 · k2
. (30)

We thus obtain the transverse form factors

F
gg
? = g

2
s CGG , eF gg

? = g
2
s
eCGG ,

F
��
? = e

2 (CWW + CBB) , eF ��
? = e

2
� eCWW + eCBB

�
,

F
�Z
? = e

2

✓
cw

sw
CWW �

sw

cw
CBB

◆
, eF �Z

? = e
2

✓
cw

sw

eCWW �
sw

cw

eCBB

◆
,

F
ZZ
? = e

2

✓
c
2
w

s2w

CWW +
s
2
w

c2w

CBB

◆
, eFZZ

? = e
2

✓
c
2
w

s2w

eCWW +
s
2
w

c2w

eCBB

◆
,

F
WW
? =

e
2

s2w

CWW , eFWW
? =

e
2

s2w

eCWW ,

(31)

10while the longitudinal form factors are given by

F
ZZ
k = �C�� , F

WW
k = �C�� . (32)

The remaining longitudinal form factors vanish. From (27) we see that the S ! V1V2 decay
amplitudes scale like M and hence are of O(�0) in SCET power counting. In the limit where
there is a hierarchy between the scalesM andMS, we will prove in Section 6 that the transverse
form factors F V1V2

? and eF V1V2
? scale like M

2
S/M

2, whereas the longitudinal form factors F V1V2
k

continue to scale like M . This reproduces the scaling rules shown in (1) in this limit.
The corresponding decay rates can be obtained from the general expression

�(S ! V1V2) = SV1V2

M
2

16⇡MS
�
1/2

✓
m

2
1

M2
S

,
m

2
2

M2
S

◆h
2
⇣
|F

V1V2
? |

2 + | eF V1V2
? |

2
⌘
+ |F

V1V2
k |

2
i
, (33)

where �(x, y) = (1 � x � y)2 � 4xy. The factor SV1V2 takes into account a symmetry factor
1/2 for identical bosons and a color factor (N2

c � 1) = 8 for the digluon rate. By measuring
the polarization of the final-state vector bosons, it would be possible to separately probe the
three form factors characterizing each decay.

3.2 E↵ective Lagrangian at O(�3
)

The operators arising at subleading order in the expansion in � contain fermion bilinears. Be-
cause the gauge-invariant collinear fermion fields Xni(x) are e↵ectively 2-component spinors,
the Dirac algebra simplifies. Dirac matrices appearing in fermion bilinears of the form X̄n1 . . .Xn2

can be decomposed as

�
µ =

/n1

n1 · n2
n
µ
2 +

/n2

n1 · n2
n
µ
1 + �

µ
? , (34)

such that n1µ�
µ
? = n2µ�

µ
? = 0. In constructing the most general operator basis, we use that

adjacent �? matrices can always be avoided [20] (see Appendix B). Pulling out a factor 1/M
in order to make the Wilson coe�cients dimensionless, we find that the resulting e↵ective
Lagrangian can be written in the form

L
(3)
e↵ =

1

M


C

ij
 L ̄R

(r,M, µ)O ij
 L ̄R

(µ) +
X

k=1,2

Z 1

0

duC
(k) ij
 L ̄R�

(u, r,M, µ)O(k) ij
 L ̄R�

(u, µ) + h.c.

�

+
1

M

h
C

ij
 L ̄L

(r,M, µ)O ij
 L ̄L
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Example of a UV completion
❖ Consider for illustration a model containing a doublet 

of heavy, vector-like quarks                    transforming as 
(3, 2, 1/6), with Lagrangian                                and:

❖ We then find the non-trivial matching conditions:

This paper is organized as follows: in Section 2, we discuss the specific UV completion used
to demonstrate the e↵ective theory construction and review the necessary SCET ingredients.
We discuss the decays S ! �� and S ! Zh in conventional EFT in Section 3 and in SCET
in Section 4. We draw our conclusions in Section 5.

2 Theoretical Framework

We consider a model consisting of the SM supplemented by a neutral, parity-odd scalar S and
a doublet  = (T B)T of vector-like quarks. The vector-like quarks transform as (3,2, 1/6)
under the SM gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y . The most general Lagrangian we can
write down for this model is

L = LSM + LS + L , (1)

where LSM is the pure SM Lagrangian and LS and L describe the scalar and the vector-like
quarks, respectively. The relevant terms for the new pieces are

LS =
1

2
(@µS) (@

µ
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m
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S
2
� c1S  ̄ i�5  � ic2S

�
Q̄L �  ̄QL
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�
i /D �M

�
 �

⇣
gt  ̄ �̃ tR + gb  ̄ � bR + h.c.

⌘
. (3)

The couplings gt and gb generate mass-mixing terms between the t and b quarks and their
heavy vector-like partners T and B after electroweak symmetry breaking. In the physical
basis this leads to mixed couplings between heavy quarks, SM quarks and the bosons S, Z
and h as well as power-corrections to the SM vertices starting at O(v2/M2).

In this work we want to consider the decays of the S through the channels S ! �� and
S ! Zh. To properly treat the scale hierarchy in these processes in the case v ⌧ mS . M , we
need SCET [13–16], in which one introduces two light-like reference vectors n and n̄, obeying
the relations

n
2 = n̄

2 = 0 , and n · n̄ = 2 . (4)

The second identity is merely a choice of normalization but is the most common in the litera-
ture. With these reference vectors, every vector can be split up into components collinear to
n and n̄ and a residual vector perpendicular to these,

k
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n̄ · k

2
n
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n · k

2
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µ + k
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? , (5)

and every momentum component can be assigned to a scaling in the parameter � = v
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n̄ · k
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,
n · k
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, k

?
◆

⇠ (�n,�m,�k) . (6)

One separates the fields into collinear, anticollinear and soft modes,  !  c +  c̄ +  s, where
the momenta of the corresponding e↵ective fields scale as follows:

kc ⇠ (�2, 1,�) , kc̄ ⇠ (1,�2,�) , ks ⇠ (�,�,�) . (7)
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Figure 1: Feynman diagrams contributing to the decay S ! �� at one-loop order. The second
diagram is matched onto the tree-level dimension-five operator in the e↵ective theory.

The operators in the first line give rise to tree-level contributions to the decay modes in
question. In the last two lines, we show the operators entering the one-loop matrix elements.
They are obtained by using the equations of motion to remove the vector-like quarks from the
theory. For simplicity, we have dropped analogous e↵ective operators involving the bottom
quark. The Wilson coe�cients at the matching scale expressed through the parameters of the
Lagrangian (1) are:

C
(5) = c2gt , C

(6) = g
2
t
,

C
(7)
1 = c2gt , C

(7)
2 = c1g

2
t
.

(15)

Let us begin with the decay S ! ��. In the full theory, the photon couplings to fermions
remain strictly diagonal after EWSB since they are associated with the unbroken U(1)EM.
Therefore, the only diagrams generating S ! �� in the full theory are the ones shown in
Figure 1. The second diagram is matched on the tree-level dimension-five operator in the
EFT Lagrangian (14) and determines the Wilson coe�cient C��. For the contribution of this
diagram to the decay amplitude, we find

iA
(T )(S ! ��) = �i

c1Q
2
 

M

↵

⇡
✏µ⌫⇢� k

µ
q
⌫
"
⇤⇢(k) "⇤�(q)


4

⇠S
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✓p
⇠S

2

◆�
, (16)

where ⇠S = m
2
S
/M

2. For the Wilson coe�cient C��, we obtain

C�� =
↵Q

2
 
c1

4⇡


4

⇠S
arcsin2

✓p
⇠S

2

◆�
. (17)

The expression in brackets is an analytical function of the expansion parameter mS/M :
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= 2

1X
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✓
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2
S

M2

◆k �2(1 + k)

� (3 + 2k)
. (18)

Under the assumption mS/M ⌧ 1, we may truncate this series after the leading term. How-
ever, for the case mS . M , the diagram corresponds to a tower of operators, and neglecting
dimension-eight and higher dimensional operators is no longer justified. It is now clear that
for the case mS . M , the conventional EFT does not provide a suitable description of these
decays since there are still dynamical fields in the theory with a mass of comparable size.

The decays S ! Zh are of a more complicated nature: since both the Z and the Higgs
boson couplings to fermions receive corrections after EWSB, mixed diagrams exist in the full
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Effective Lagrangian at O(λ  )
❖ Most general result (i,j are generation indices):

with:

3
3.2 E↵ective Lagrangian at O(�3

)

The operators arising at subleading order in the expansion in � contain fermion fields. We
decompose Dirac matrices appearing in bilinears of the form X̄n1 . . .Xn2 as

�
µ =

/n1

n1 · n2
n
µ
2 +

/n2

n1 · n2
n
µ
1 + �

µ
? , (34)

such that n1µ�
µ
? = n2µ�

µ
? = 0. Pulling out a factor 1/M to make the Wilson coe�cients

dimensionless, we find that the most general e↵ective Lagrangian can be written in the form

L
(3)
e↵ =

1

M


C

ij
FLf̄R

(MS,M, µ)O ij
FLf̄R

(µ) +
X

k=1,2

Z 1

0

duC
(k) ij
FLf̄R �

(u,MS,M, µ)O(k) ij
FLf̄R �

(u, µ) + h.c.

�

+
1

M

X

A=G,W,B

 Z 1

0

duC
ij
FLF̄LA

(u,MS,M, µ)O ij
FLF̄LA

(u, µ) + (FL ! fR) + h.c.

�
,

(35)
where we have defined the mixed-chirality operators

O
ij
FLf̄R

(µ) = S X̄ i
L,n1

�0 X
j
R,n2

+ (n1 $ n2) ,

O
(1) ij
FLf̄R �

(u, µ) = S X̄ i
L,n1

�(u)
n1

X j
R,n2

+ (n1 $ n2) ,

O
(2) ij
FLf̄R �

(u, µ) = S X̄ i
L,n1

�(u)
n2

X j
R,n2

+ (n1 $ n2) ,

(36)

and the same-chirality operators

O
ij
FLF̄LA

(u, µ) = S X̄ i
L,n1

/A?(u)
n1

X j
L,n2

+ (n1 $ n2) ,

O
ij
fRf̄RA

(u, µ) = S X̄ i
R,n1

/A?(u)
n1

X j
R,n2

+ (n1 $ n2) .
(37)

In (35) a sum over the flavor indices i, j is implied. We do not show color and SU(2)L
indices. The left-handed fermions FL are SU(2)L doublets, while the right-handed fermions
fR are singlets. If the right-handed fermion field in (36) refers to an up-type quark, the scalar
doublet � needs to be replaced by �̃ with �̃a = ✏ab �⇤

b = (�⇤
2,��

⇤
1)

T to ensure gauge invariance.
Our notation is such that, e.g., the coe�cient C

ij
FLf̄R

multiplies an operator which produces
a left-handed fermion doublet FL with generation index i and a right-handed anti-fermion
f̄R with generation index j. Note that, in general, the Wilson coe�cients can be arbitrary
complex matrices in generation space.

When SCET operators contain two or more collinear fields belonging to the same jet, the
total collinear momentum Pi carried by the jet is shared by the various particles described
by these fields. Each component field carries a positive fraction uj of the large component
n̄i ·Pi, such that

P
j uj = 1. The product of Wilson coe�cients times operators then becomes

generalized to a convolution in these variables. In our discussion above a single variable u

appears, which refers to the longitudinal momentum fraction carried by the boson field. To
see how it arises, consider the first operator in (37) as an example. Its contribution to the
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Decay rates into fermions
❖ For the                    decay modes, we find:

where after rotation to the mass basis:

❖ Both amplitudes scale like λ and hence are of 
subleading order in power counting 

S !  1 ̄2

gauge bosons which couple to the fermion described by XL. Similar relations hold for the
corresponding operators involving right-handed fields. Secondly, in addition to the operators
in (37), one can construct operators in which the indices of the transverse objects Aµ

n1? and �
⌫
?

are contracted using the ✏
?
µ⌫ tensor defined in (20). However, these operators can be reduced

to those in (37) using the identity (with �5 = i�
0
�
1
�
2
�
3)

[�?
µ , �

?
⌫ ] = �i✏

?
µ⌫

[/n1, /n2]

n1 · n2
�5 , (43)

which holds in four spacetime dimensions [29].4 From this relation it follows that

P
†
n1
✏
?
µ⌫ �

⌫
?Pn2 = iP

†
n1
�
?
µ �5 Pn2 . (44)

Finally, we note that at O(�3) there do not appear operators containing two collinear
fermion fields belonging to the same jet. These operators would need to include the bilinears
(modulo L $ R)

X̄ i
L,n1

/̄n1

2
X j

L,n1
= O(�2) or X̄ i

L,n1
�ni

/̄n1

2
�
?
µ X j

R,n1
= O(�3) , (45)

where �
?
µ is now defined with respect to the plane spanned by the vectors n1 and n̄1, and

the subscript ni on the scalar doublet could be 0, n1 or n2. In case of the first operator, the
required n2-collinear field could be n2 ·An2 , �

†
n2
�n2 , (�

†
n2
�n1 + h.c.), or (�†

n2
�0 + h.c.), all of

which are of O(�2). In the second case, the open Lorentz index must be contracted with Aµ
ni?

or @µ
?, both of which count as O(�). Hence, any such operator is at least of O(�4).
The e↵ective Lagrangian (35) describes the two-body decays of S into a pair of SM fermions.

Taking into account that external collinear fermions have power counting �
�1, it follows that

the S ! ff̄ decay amplitudes obey the scaling rule shown in (1). At tree level, only the
operator OFLf̄R and its hermitian conjugate give non-zero contributions. After electroweak
symmetry breaking the fermion fields must be rotated from the weak to the mass basis, and
in the process the Wilson coe�cients in (35), which are matrices in generation space, are
transformed as well. In matrix notation, we have e.g.
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where fL (with a lower case) now refers to one of the two members of the left-handed doublet,
and UfL and WfR with f = u, d, e denote the rotation matrices transforming the left-handed
and right handed fermions from the weak to the mass basis. In order not to clutter our
notation too much, we use the same symbol but with a straight “C” instead of the slanted
“C” for the Wilson coe�cients in the mass basis. We then find the non-zero decay amplitudes
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4In dimensional regularization, so-called “evanescent” operators containing anti-symmetric products of
more than two �

µ
? matrices can appear at loop order. A regularization scheme including the e↵ects of these

operators must be employed for higher-order calculations. This is the two-dimensional analogue, in the space
of transverse directions, of the standard procedure employed in four dimensions [30, 31].
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Effective Lagrangian at O(λ  )
❖ The only decay mode not yet accounted for is                , 

and at tree level a single operator contributes 

❖ We find:

and:

❖ Amplitude scales like λ2 and hence is of subsubleading 
order in power counting 

4

S ! Zh

where i, j are flavor indices. Note that the products of two highly energetic fermion spinors
give rise to the appearance of the hard scale MS in the matrix elements of the SCET operators.
The expressions on the right hold up to some complex phases, which depend on the phase
conventions for the fermion fields. The corresponding decay rates are given by (with xi =
m

2
i /M

2
S)

�(S ! fiL f̄jR) = N
f
c

v
2
MS

32⇡M2
�
1/2(xi, xj)

��C ij
fLf̄R

��2 ,

�(S ! fiR f̄jL) = N
f
c

v
2
MS

32⇡M2
�
1/2(xi, xj)

��C ji
fLf̄R

��2 ,
(48)

where N
f
c is a color factor, which equals 3 for quarks and 1 for leptons. Beyond the Born

approximation, the remaining operators in (35) also contribute to the decay rates. In Section 5
we will study the mixing of these operators under renormalization.

In general, the couplings of S to fermions contain both CP-even and CP-odd terms. Let
us decompose the various complex matrices of Wilson coe�cients in the mass basis into their
real and imaginary components, for example

CfLf̄R ⌘ KfLf̄R + i eKfLf̄R , (49)

and likewise for C(i)
fLf̄R �

and CfLf̄RA. Under a CP transformation the e↵ective Lagrangian (35)
transforms into an analogous expression with all Wilson coe�cients replaced by their complex
conjugates. It follows that the terms involving the real parts of the coe�cients (KfLf̄R etc.)

are CP even, while those involving the imaginary parts (eKfLf̄R etc.) are CP odd.

3.3 E↵ective Lagrangian at O(�4
)

The only two-body decay of the heavy resonance S not yet accounted for is S ! Zh. Operators
mediating this decay arise first at NNLO in the � expansion. At this order a large number of
new operators arise, but only a single operator contributes to the S ! Zh decay amplitude
at tree level. It reads

L
(4)
e↵ 3

eC����(MS,M, µ)

M

h
iS

⇣
�†

n1
�0 � �†

0 �n1

⌘⇣
�†

n2
�0 + �†

0 �n2

⌘
+ (n1 $ n2)

i

=
eC����(MS,M, µ)

M
2iS

⇣
�†

n1
�0 �

†
n2
�0 � �†

0 �n1 �
†
0 �n2

⌘
.

(50)

The tilde on the Wilson coe�cient indicates that this operator is CP odd [14]. The corre-
sponding decay amplitude is given by

M(S ! Zh) = �i eC����
v
2
mZ

M

n̄1 · "
⇤
k(k1)

n̄1 · k1
. (51)

It vanishes unless the Z boson is longitudinally polarized, in which case one finds

M(S ! Zkh) = �i eC����
v
2

M
, (52)
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It vanishes unless the Z boson is longitudinally polarized, in which case one finds

M(S ! Zkh) = �iC����
v
2

M
, (45)

in accordance with (1). To derive this result, we have used the exact representation

"
µ
k(k1) =

k1 · k2

m1

⇥
(k1 · k2)2 �m2

1 m
2
2

⇤1/2

✓
k
µ
1 �

m
2
1

k1 · k2
k
µ
2

◆
(46)

for the longitudinal polarization vector.
The complete list of the operators arising at O(�4) in the e↵ective Lagrangian describing

the two-body decays of the heavy resonance S is rather long. In Appendix C we discuss the
structure of these operators in more detail.

4 EFTBSM for three-body decays of S

The construction of the e↵ective Lagrangian describing three-body decays of the heavy reso-
nance S proceeds in analogy to Section 3. Generically, the three SM particles in the final state
with have momenta aligned with three di↵erent directions ni with i = 1, 2, 3. [The case where

two final-state particles are aligned should be described by the Lagrangian derived in

the previous section. Make this more precise!] The leading SCET operators involving
three ni-collinear fields starts at O(�3) and contain fermion bilinears. The corresponding op-
erators can be constructed as in Section 3.2. Without loss of generality, we choose the outgoing
fermion (anti-fermion) along the direction n1 (n2) and the outgoing boson along the direction
n3. Dirac matrices are still decomposed as shown in (34), where now n1 ·n2 = 1� cos�12 with
�12 = <)(n1,n2) is no longer equal to 2. We find

L
(3)
e↵ = C

ij
 L ̄R �

(r,M, µ)Q ij
 L ̄R �

(µ) + C
ij
 R ̄L �

(r,M, µ)Q ij
 R ̄L �

(µ)

+
X

A=G,W,B

h
C

ij
 L ̄LA

(r,M, µ)Q ij
 L ̄LA

(µ) + (L ! R)
i
,

(47)

where
Q

ij
 L ̄R�

(µ) = S X̄ i
L,n1

�n3 X
j
R,n2

,

Q
ij
 R ̄L�

(µ) = S X̄ i
R,n1

�†
n3
X j

L,n2
,

Q
ij
 L ̄LA

(µ) = S X̄ i
L,n1

/A?
n3
X j

L,n2
.

(48)

Once again we do not show color and SU(2)L indices. Depending on the hypercharge of the
right-handed fields, the scalar doublets �n3 in (50) may have to be replaced by �̃ in order to
ensure gauge invariance. We also do not show flavor indices on the fermion fields. In general,
the Wilson coe�cients C L ̄R �, C R ̄L �, C L ̄LA and C R ̄RA are arbitrary complex matrices
in generation space. [True?] Note that there are no convolution integrals in this case, unlike
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→ resolves a puzzle! 
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Resummation of large logs



Resumming logarithms of MS/v
❖ At the new-physics scale M ~ MS the 

full theory is matched onto SCETBSM, 
giving rise to Wilson coefficient 
functions

❖ The SCET operators are evolved from 
MS down to the scale v using RGEs 
and anomalous dimensions derived in 
the effective theory

❖ At the scale v a matching onto a theory 
with massive SM fields is performed

µ

UV theory

µ ⇠ M ⇠ MS

SU(3)c ⇥ SU(2)L ⇥ U(1)Y
SM particles massless

µ ⇠ v

SU(3)c ⇥ U(1)em
SM particles massive



Resumming logarithms of MS/v
❖ Anomalous dimensions in SCET contain terms 

enhanced by a logarithm                     times the cusp 
anomalous dimension

❖ These are responsible for resuming Sudakov double 
logarithms

❖ Some of the RGEs also contain convolutions over the 
momentum-fraction variable u (à la DGLAP)

❖ We find that a non-trivial operator mixing occurs 
starting at O(λ3), where also other subtleties arise

ln(M2
S/µ

2)

⇠ [↵s ln
2(M2

S/v
2)]n



QCD evolution at O(λ3)
❖ We find, for example:

mixing of O(λ2) operators into O(λ3) operators via 
subleading interactions in the SCET Lagrangian

are related to the coe�cients CGG and eCGG. While at first sight the presence of these poles
appears to give rise to endpoint-divergent integrals of the form

R 1

0 dw
1

1�w in (80), a careful
treatment reveals that the form of the mixing kernel in (81) must be modified in this case. The
dimensionally regularized loop integral produces an extra factor

�
w(1�w)

��✏
, which regularizes

the singularities at w = 1 at the expense of introducing a 1/✏2 pole. Next, for CGG 6= 0 or
eCGG 6= 0 there is an additional contribution arising from the mixing of the operators in the
O(�2) e↵ective Lagrangian (35) into the O(�3) operator OQLq̄R , which happens via subleading
terms in the SCET Lagrangian connecting collinear fields with an ultra-soft quark field. The
relevant diagram is shown on the right-hand side in Figure 3. The two e↵ects conspire to
produce an extra term in the evolution equation (80) proportional to a combination of CGG

and eCGG times a cusp logarithm. Details of this calculation are presented in the Appendix.
The final result for the corrected form of the evolution equation (80) reads

µ
d

dµ
CQLq̄R(µ) = �QLq̄R(µ)CQLq̄R(µ)

+
M

2

M2
S


�
qq̄
cusp

✓
ln

M
2
S

µ2
� i⇡

◆
+ �̃qq̄

�
g
2
s(µ)

⇣
CGG(µ) + i eCGG(µ)

⌘
Yq(µ)

+

Z 1

0

dw �mix(0, w, µ)
h
Yq(µ) C̄qRq̄RG(w, µ) + C̄†

QLQ̄LG
(w, µ)Yq(µ)

i
,

(82)

where

�
qq̄
cusp =

CF↵s(µ)

⇡
+O(↵2

s) , �̃qq̄ =
CF↵s(µ)

⇡
+O(↵2

s) , (83)

and the subtracted coe�cients C̄qq̄G(w, µ) (with q = QL or qR) are obtained from the original
ones by subtracting all terms of order (1 � w)�1 modulo logarithms. At lowest order in
perturbation theory, we show in the Appendix that

C̄QLQ̄LG(u, µ) = CQLQ̄LG(u, µ)�
M

2

M2
S

g
2
s(µ)

1� u

h
CGG(µ)� i eCGG(µ)

i
,

C̄qRq̄RG(u, µ) = CqRq̄RG(u, µ)�
M

2

M2
S

g
2
s(µ)

1� u

h
CGG(µ) + i eCGG(µ)

i
.

(84)

Note that the evolution equations (75) and (79) do not require similar modifications, because
the factor (1�w) in the third line of (76) and the ✓(1� u�w) function in (81) eliminate the
singularities at w = 1.

The cusp anomalous dimension �
qq̄
cusp in (83) is a new object, which arises from the exchange

of an ultra-soft quark between two collinear sectors. This is likely to be a new universal quan-
tity, which arises in SCET applications beyond the leading power in the expansion parameter
�. The calculation of the two-loop coe�cient of this quantity is an interesting open problem,
to which we will return in future work.

5.3 Resummation of large logarithms

To illustrate the results derived above, we now perform the resummation of large logarithms of
the scale ratio MS/v for two representative cases, working consistently at leading logarithmic
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where in the last expression the sum runs over the di↵erent fermion species, and yf denotes
the Yukawa coupling of the fermion f .

5.2 Two-jet operators at O(�3
)

For operators containing more than one ni-collinear field in a given direction, the anomalous
dimensions are more complicated than the simple expressions shown in (67). This concerns, in
particular, the anomalous dimensions governing the scale dependence of the Wilson coe�cients
of the two-jet operators arising at O(�3) in the SCETBSM Lagrangian, which we have defined
in (36) and (37). Since these operators depend on a variable u (the fraction of the total
collinear momentum carried by the boson field), the anomalous dimensions are distribution-
valued functions. Also, there is a non-trivial mixing of these operators under renormalization.
Finally, we will find that some of the convolution integrals appearing in the evolution equations
exhibit endpoint singularities at the boundary of the integration domain, which need to be
treated with care. For simplicity, we will only explore the e↵ects of QCD evolution here,
leaving a more complete treatment to future work. We will thus assume that the fermion
fields in the three-jet operators are quark fields.

The presence of the scalar doublet implies that, as far as QCD evolution is concerned, the
mixed-chirality operators in (36) renormalize like two-jet operators, with anomalous dimen-
sions given by (in this section we keep the dependence on the color factors CF = 4/3 and
CA = 3 explicit)

�QLq̄R = CF �
(3)
cusp

✓
ln

M
2
S

µ2
� i⇡

◆
+ 2�q

,

�(i)
QLq̄R � = CF �

(3)
cusp

✓
ln

(1� u)M2
S

µ2
� i⇡

◆
+ 2�q ; i = 1, 2 ,

(73)

where we have used that �QL = �
qR ⌘ �

q = �3CF↵s/(4⇡) + . . . under QCD evolution. The
same is true for the same-chirality operators for which the gauge field belongs to SU(2)L or
U(1)Y , i.e.

�QLQ̄LB = �qRq̄RB = �QLQ̄LW = �qRq̄RW = CF �
(3)
cusp

✓
ln

(1� u)M2
S
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+ 2�q

. (74)

When only QCD corrections are taken into account, the cusp anomalous dimension [40] and
the anomalous dimension of the quark field [41, 42] are known to three-loop order.

The same-chirality operators containing a gluon field exhibit a more interesting behavior.
Due to the dependence of the operators OQLQ̄LG and OqRq̄RG on the variable u, the anomalous
dimension governing the multiplicative renormalization of these operators is a distribution-
valued function of two variables u and w. We find that the scale dependence of the corre-
sponding Wilson coe�cients is determined by the evolution equation (with q = QL or qR)

µ
d

dµ
Cqq̄G(u,MS,M, µ) =

Z 1

0

dw �qq̄G(u, w,MS, µ)Cqq̄G(w,MS,M, µ) , (75)
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where in the last expression the sum runs over the di↵erent fermion species, and yf denotes
the Yukawa coupling of the fermion f .
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valued function of two variables u and w. We find that the scale dependence of the corre-
sponding Wilson coe�cients is determined by the evolution equation (with q = QL or qR)
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Example: QCD evolution at O(λ3)
❖ Relevant diagrams:
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dashed line represents the heavy scalar resonance S. Solid lines denote collinear quarks, curly lines
with dashes denote collinear gluons, and simple curly lines represent ultra-soft gluons. Collinear
fields moving along the same direction are drawn next to each other.
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The logarithmic terms in the first line are exact to all orders in perturbation theory, whereas
the remaining terms have been computed at one-loop order. The kernel functions Vi, which
are symmetric in their arguments, have been computed first in [29]. At one-loop order one
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where for symmetric functions g(u, w) the plus distribution is defined to act on test functions
f(w) as Z 1

0

dw [g(u, w)]+ f(w) =

Z 1

0

dw g(u, w) [f(w)� f(u)] . (78)
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Figure 3: Left: One-loop diagram responsible for the mixing of the operators OQLQ̄LG and
OqRq̄RG into the three mixed-chirality operators in (36). A dashed line ended by a cross indicates
a zero-momentum scalar field �0, while a dashed line bending to the right shows a collinear scalar
field. Right: Mixing of the O(�2) operators OGG and eOGG into the operator OQLq̄R by means of
subleading interactions in the SCET Lagrangian. The dotted line represents an ultra-soft quark.

Using arguments based on conformal symmetry, it was shown in [29] how the convolution in
(75) can be diagonalized by expanding the Wilson coe�cients in a suitable basis of Jacobi
polynomials. This will be discussed in more detail elsewhere.

Next, we find that the operators OQLQ̄LG and OqRq̄RG mix into the three mixed-chirality
operators in (36). The diagram responsible for this mixing is shown on the left-hand side in
Figure 3. The evolution equations for the Wilson coe�cients of these operators read
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and (only if CGG = eCGG = 0 !)
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+
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i
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where we have defined the mixing kernel

�mix(u, w, µ) =
CF↵s(µ)
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✓(1� u� w)

1� u
+O(↵2

s) . (81)

The anomalous dimensions �(i)
QLq̄R � and �QLq̄R have been given in (73). For simplicity, we have

omitted the dependence of the Wilson coe�cients on the new-physics scales MS and M , as
well as the dependence of the anomalous dimensions on the scale MS.

The evolution equation (80) needs to be modified if the Wilson coe�cients CQLQ̄LG(w, µ)
and CqRq̄RG(w, µ) exhibit non-integrable singularities at the endpoint of the integration region.

As we discuss in the Appendix, this happens whenever CGG 6= 0 or eCGG 6= 0. Hard matching
contributions then produce poles in the Wilson coe�cients located at w = 1,7 whose residues

7In higher orders of perturbation theory, the poles can be multiplied by logarithms of (1� w).
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Example: QCD evolution at O(λ3)
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a zero-momentum scalar field �0, while a dashed line bending to the right shows a collinear scalar
field. Right: Mixing of the O(�2) operators OGG and eOGG into the operator OQLq̄R by means of
subleading interactions in the SCET Lagrangian. The dotted line represents an ultra-soft quark.
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where in the last expression the sum runs over the di↵erent fermion species, and yf denotes
the Yukawa coupling of the fermion f .

5.2 Two-jet operators at O(�3
)

For operators containing more than one ni-collinear field in a given direction, the anomalous
dimensions are more complicated than the simple expressions shown in (67). This concerns, in
particular, the anomalous dimensions governing the scale dependence of the Wilson coe�cients
of the two-jet operators arising at O(�3) in the SCETBSM Lagrangian, which we have defined
in (36) and (37). Since these operators depend on a variable u (the fraction of the total
collinear momentum carried by the boson field), the anomalous dimensions are distribution-
valued functions. Also, there is a non-trivial mixing of these operators under renormalization.
Finally, we will find that some of the convolution integrals appearing in the evolution equations
exhibit endpoint singularities at the boundary of the integration domain, which need to be
treated with care. For simplicity, we will only explore the e↵ects of QCD evolution here,
leaving a more complete treatment to future work. We will thus assume that the fermion
fields in the three-jet operators are quark fields.

The presence of the scalar doublet implies that, as far as QCD evolution is concerned, the
mixed-chirality operators in (36) renormalize like two-jet operators, with anomalous dimen-
sions given by (in this section we keep the dependence on the color factors CF = 4/3 and
CA = 3 explicit)
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(73)

where we have used that �QL = �
qR ⌘ �

q = �3CF↵s/(4⇡) + . . . under QCD evolution. The
same is true for the same-chirality operators for which the gauge field belongs to SU(2)L or
U(1)Y , i.e.

�QLQ̄LB = �qRq̄RB = �QLQ̄LW = �qRq̄RW = CF �
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cusp

✓
ln

(1� u)M2
S

µ2
� i⇡

◆
+ 2�q

. (74)

When only QCD corrections are taken into account, the cusp anomalous dimension [40] and
the anomalous dimension of the quark field [41, 42] are known to three-loop order.

The same-chirality operators containing a gluon field exhibit a more interesting behavior.
Due to the dependence of the operators OQLQ̄LG and OqRq̄RG on the variable u, the anomalous
dimension governing the multiplicative renormalization of these operators is a distribution-
valued function of two variables u and w. We find that the scale dependence of the corre-
sponding Wilson coe�cients is determined by the evolution equation (with q = QL or qR)

µ
d

dµ
Cqq̄G(u,MS,M, µ) =

Z 1

0

dw �qq̄G(u, w,MS, µ)Cqq̄G(w,MS,M, µ) , (75)
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Figure 2: One-loop diagrams contributing to the anomalous dimension �qq̄G in (75). The short
dashed line represents the heavy scalar resonance S. Solid lines denote collinear quarks, curly lines
with dashes denote collinear gluons, and simple curly lines represent ultra-soft gluons. Collinear
fields moving along the same direction are drawn next to each other.

where here and below we use a boldface notation to indicate that the Wilson coe�cients are
matrices in generation space. The anomalous dimension �qq̄G can be calculated in analogy with
the derivation of the anomalous dimensions of the subleading SCET current operators arising
in B-meson physics performed in [29, 43] (see [44] for related recent work). It is convenient to
use the background-field gauge [45] for the external gluon, in which the combination gs G

µ,a is
not renormalized. Evaluating the UV divergences of the one-loop diagrams shown in Figure 2,
supplemented by wave-function renormalization, we obtain (with ū ⌘ 1� u and w̄ ⌘ 1� w)
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(76)

The logarithmic terms in the first line are exact to all orders in perturbation theory, whereas
the remaining terms have been computed at one-loop order. The kernel functions Vi, which
are symmetric in their arguments, have been computed first in [29]. At one-loop order one
finds
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(77)
where for symmetric functions g(u, w) the plus distribution is defined to act on test functions
f(w) as Z 1

0

dw [g(u, w)]+ f(w) =

Z 1

0

dw g(u, w) [f(w)� f(u)] . (78)
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Figure 2: One-loop diagrams contributing to the anomalous dimension �qq̄G in (75). The short
dashed line represents the heavy scalar resonance S. Solid lines denote collinear quarks, curly lines
with dashes denote collinear gluons, and simple curly lines represent ultra-soft gluons. Collinear
fields moving along the same direction are drawn next to each other.
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ū
�

1

w

◆
✓(w � u)

)

+

✓
CF �

CA

2

◆
↵s

⇡

h⇣
2�
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see also: Hill, Becher, Lee, MN 2004



Conclusions
❖ If a new heavy particle — the first of a new sector — is 

discovered at the LHC, its interactions with SM particles 
can be described using an effective field theory

❖ This should be done consistently!

❖ SCETBSM offers the systematic framework for separating 
the scales MS and v and resumming large Sudakov logs 
of this ratio, while correctly treating the dependence on 
the mass ratio M/MS, where M refers to the masses of 
yet undiscovered particles



The end!


