

7th Workshop on Theory, Phenomenology and Experiments in Flavor Physics — Anacapri, 8 June 2018

Effective Field Theory after a New Physics Discovery

Matthias Neubert Mainz Institute for Theoretical Physics Johannes Gutenberg University

(based on 1806.01278 with Stefan Alte and Matthias König)

Imagine we feel like in paradise ...

... after the discovery of a new particle

What will happen?

We will see a tsunami of theoretical papers describing this particle's properties in an EFT

For the example of a spin-0 singlet S

* Most general effective Lagrangian at D=5:

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= -M\lambda_1 \, S \, \phi^{\dagger} \phi - \frac{\lambda_2}{2} \, S^2 \, \phi^{\dagger} \phi - \frac{\lambda_3}{6M} \, S^3 \, \phi^{\dagger} \phi - \frac{\lambda_4}{M} \, S \left(\phi^{\dagger} \phi \right)^2 \\ &+ \frac{c_{GG}}{M} \, \frac{\alpha_s}{4\pi} \, S \, G^a_{\mu\nu} G^{\mu\nu,a} + \frac{c_{WW}}{M} \, \frac{\alpha}{4\pi s_w^2} \, S \, W^a_{\mu\nu} W^{\mu\nu,a} + \frac{c_{BB}}{M} \, \frac{\alpha}{4\pi c_w^2} \, S B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{\tilde{c}_{GG}}{M} \, \frac{\alpha_s}{4\pi} \, S \, G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + \frac{\tilde{c}_{WW}}{M} \, \frac{\alpha}{4\pi s_w^2} \, S \, W^a_{\mu\nu} \tilde{W}^{\mu\nu,a} + \frac{\tilde{c}_{BB}}{M} \, \frac{\alpha}{4\pi c_w^2} \, S B_{\mu\nu} \tilde{B}^{\mu\nu} \\ &- \frac{1}{M} \left(S \, \bar{Q}_L \, \hat{\mathbf{Y}}_u \, \tilde{\phi} \, u_R + S \, \bar{Q}_L \, \hat{\mathbf{Y}}_d \, \phi \, d_R + S \, \bar{L}_L \, \hat{\mathbf{Y}}_e \, \phi \, e_R + \text{h.c.} \right) + \mathcal{O} \left(\frac{1}{M^2} \right) \end{aligned}$$

 Can describe the production and decay rates of S in terms of a hand full of parameters

What's wrong about it?

 $\frac{M}{M_{C}}$

U

- An EFT is used to separate the physics on different (length or mass/energy) scales
- * Goal: separate new-physics scale *M* from the electroweak scale *v*
- * But the EFT **contains the heavy resonance** *S* **as a field**, so it's scales are *v* (masses of SM particles) and *M*_S
- * Widely different scales $M_S \gg v$ are not separated by the EFT (no control over large logs)
- * For $M \sim M_S$, an **infinite tower** of higher-dimensional operators gives rise to unsuppressed contributions

Is there a way out?

Is there a way out?

Soft-collinear effective theory (SCET)

- * SCET is the proper effective field theory to describe the properties of highly energetic light particles produced in the decay of a heavy particle: Bauer, Fleming, Pirjol, Stewart 2001; Bauer, Pirjol, Stewart 2002 Beneke, Chapovsky, Diehl, Feldmann 2002
 - systematic scale separation between M_S and v,
 including resummation of large logarithms
 - * case where $M \sim M_S$ can be dealt with naturally
- Effective Lagrangian is process dependent: will consider
 2-body decays of a heavy, spin-0 resonance S which is a singlet under the SM

Outline of the construction

- At the new-physics scale M ~ M_S the full theory is matched onto SCET_{BSM}, giving rise to Wilson coefficient functions
- The SCET operators are evolved from *M_S* down to the scale *v* using RGEs and anomalous dimensions derived in the effective theory
- * At the scale *v* a matching onto a theory with massive SM fields is performed
- If desired, the operators can be evolved down further when very light SM particles are involved

see also: Chiu, Golf, Kelley, Manohar 2007

- * Intrinsic complication consists of fact that large mass M_S enters low-energy theory as a parameter characterizing the large energies $E_i \sim M_S$ of the light final-state particles
- Gives rise to non-local operators in the effective Lagrangian, with fields separated along the light-like directions in which these particles travel

Bauer, Fleming, Pirjol, Stewart 2001; Bauer, Pirjol, Stewart 2002 Beneke, Chapovsky, Diehl, Feldmann 2002

* After Fourier transformation, this introduces a dependence of the Wilson coefficients on *M*_S

- * In a given decay process of *S*, final state contains jets defining directions $\{n_1, \ldots, n_k\}$ of large energy flow
- Each jet consists of one or more *n_i*-collinear particles,
 which carry energies much larger than their rest mass
- * Define light-like reference vectors $n_i^{\mu} = (1, \mathbf{n}_i)$ and $\bar{n}_i^{\mu} = (1, -\mathbf{n}_i)$ with $n_i \cdot \bar{n}_i = 2$; then:

$$p^{\mu} = \bar{n}_i \cdot p \, \frac{n_i^{\mu}}{2} + n_i \cdot p \, \frac{\bar{n}_i^{\mu}}{2} + p_{\perp}^{\mu}$$
$$(n_i \cdot p, \bar{n}_i \cdot p, p_{\perp}) \sim M_S \, (\lambda^2, 1, \lambda)$$

expansion parameter

- Particles inside a jet can interact with each other, but only soft particles can mediate between different jets
- * In SCET, particles are described by gauge-invariant collinear building blocks defined using Wilson lines:
 - * scalar doublet: $\Phi_{n_i}(x) = W_{n_i}^{\dagger}(x) \phi(x)$

$$\mathfrak{X}_{n_i}(x) = \frac{\not{n_i} \vec{\not{n}_i}}{4} W_{n_i}^{\dagger}(x) \psi(x)$$

* gauge bosons:

* fermions:

$$\mathcal{A}_{n_{i}}^{\mu}(x) = W_{n_{i}}^{(A)\dagger}(x) \left[i D_{n_{i}}^{\mu} W_{n_{i}}^{(A)}(x) \right]$$

= $g_{A} \int_{-\infty}^{0} ds \, \bar{n}_{i\alpha} \left[W_{n_{i}}^{(A)\dagger} A_{n_{i}}^{\alpha\mu} W_{n_{i}}^{(A)} \right] (x + s \bar{n}_{i})$
Bauer Piriol Stewart 2002

Bauer, Pirjol, Stewart 200 Hill, MN 2002

SCET_{BSM} for 2-body decays of a heavy spin-0 resonance *S*

* Power counting rules:

 $\Phi_{n_i} \sim \lambda$, $\mathfrak{X}_{n_i} \sim \lambda$, $\mathcal{A}_{n_i\perp}^{\mu} \sim \lambda$, $n_i \cdot \mathcal{A}_{n_i} \sim \lambda^2$ imply that adding fields gives rise to power suppression

* Because of EWSB, the effective theory also contains scalar fields carrying no 4-momentum:

$$\Phi_0 \stackrel{\text{EWSB}}{\to} \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v \end{pmatrix} \sim \lambda$$

- For 2-body decays, operators need to contain collinear fields in two opposite directions
- * Obtain Lagrangian by constructing gauge-invariant operators built out of these fields, starting at $O(\lambda^2)$

Effective Lagrangian at $O(\lambda^2)$

* Most general expression:

 $\mathcal{L}_{\text{eff}}^{(2)} = M C_{\phi\phi}(M_S, M, \mu) O_{\phi\phi}(\mu) + M \sum_{A=G, W, B} \left[C_{AA}(M_S, M, \mu) O_{AA}(\mu) + \widetilde{C}_{AA}(M_S, M, \mu) \widetilde{O}_{AA}(\mu) \right]$

with:

$$O_{\phi\phi} = S \left(\Phi_{n_1}^{\dagger} \Phi_{n_2} + \Phi_{n_2}^{\dagger} \Phi_{n_1} \right)$$
$$O_{AA} = S g_{\mu\nu}^{\perp} \mathcal{A}_{n_1}^{\mu,a} \mathcal{A}_{n_2}^{\nu,a}$$
$$\widetilde{O}_{AA} = S \epsilon_{\mu\nu}^{\perp} \mathcal{A}_{n_1}^{\mu,a} \mathcal{A}_{n_2}^{\nu,a}$$

 Model-independent predictions for all diboson decay rates in terms of 7 Wilson coefficient functions!

Effective Lagrangian at
$$O(\lambda^2)$$

* After EWSB, Φ_{n_i} contains both the Higgs boson and the longitudinal modes of the electroweak gauge bosons:

$$\Phi_{n_i}(0) = \frac{1}{\sqrt{2}} W_{n_i}^{\dagger}(0) \begin{pmatrix} 0 \\ v + h_{n_i}(0) \end{pmatrix}$$

with:

$$W_{n_{i}}(0) = P \exp\left[\frac{ig}{2} \int_{-\infty}^{0} ds \left(\frac{\frac{c_{w}^{2} - s_{w}^{2}}{c_{w}} \bar{n}_{i} \cdot Z_{n_{i}} + 2s_{w} \bar{n}_{i} \cdot A_{n_{i}}}{\sqrt{2} \bar{n}_{i} \cdot W_{n_{i}}^{-}} - \frac{1}{c_{w}} \bar{n}_{i} \cdot Z_{n_{i}}\right) (s\bar{n}_{i})\right]$$

* Hence:

$$D_{\phi\phi} = S(0) h_{n_1}(0) h_{n_2}(0) + m_Z^2 \int_{-\infty}^0 ds \int_{-\infty}^0 dt \, S(0) \,\bar{n}_1 \cdot Z_{n_1}(s\bar{n}_1) \,\bar{n}_2 \cdot Z_{n_2}(t\bar{n}_2) + m_W^2 \int_{-\infty}^0 ds \int_{-\infty}^0 dt \, S(0) \left[\bar{n}_1 \cdot W_{n_1}^-(s\bar{n}_1) \,\bar{n}_2 \cdot W_{n_2}^+(t\bar{n}_2) + (+\leftrightarrow -) \right] + \dots$$

Diboson decay rates

- * For the $S \to hh$ decay mode we obtain: $\mathcal{M}(S \to hh) = M C_{\phi\phi}$
- * For the $S \rightarrow V_1 V_2$ decay modes we define the form factor decomposition:

$$\mathcal{M}(S \to V_1 V_2) = \mathcal{M}\left[F_{\perp}^{V_1 V_2} \varepsilon_{1\perp}^* \cdot \varepsilon_{2\perp}^* + \widetilde{F}_{\perp}^{V_1 V_2} \epsilon_{\mu\nu}^{\perp} \varepsilon_{1\perp}^{*\mu} \varepsilon_{2\perp}^{*\nu} + F_{\parallel}^{V_1 V_2} \frac{m_1 m_2}{k_1 \cdot k_2} \varepsilon_{1\parallel}^* \cdot \varepsilon_{2\parallel}^*\right]$$

 Both amplitudes scale like λ⁰ and hence are of leading order in power counting

Diboson decay rates

* For the form factors we obtain:

$$\begin{split} F_{\perp}^{gg} &= g_s^2 C_{GG}, \\ F_{\perp}^{\gamma\gamma} &= e^2 \left(C_{WW} + C_{BB} \right), \\ F_{\perp}^{\gamma Z} &= e^2 \left(\frac{c_w}{s_w} C_{WW} - \frac{s_w}{c_w} C_{BB} \right), \\ F_{\perp}^{\gamma Z} &= e^2 \left(\frac{c_w}{s_w} C_{WW} - \frac{s_w}{c_w} C_{BB} \right), \\ F_{\perp}^{ZZ} &= e^2 \left(\frac{c_w^2}{s_w^2} C_{WW} + \frac{s_w^2}{c_w^2} C_{BB} \right), \\ F_{\perp}^{ZZ} &= e^2 \left(\frac{c_w^2}{s_w^2} C_{WW} + \frac{s_w^2}{c_w^2} C_{BB} \right), \\ F_{\perp}^{WW} &= \frac{e^2}{s_w^2} C_{WW}, \\ \end{split}$$

and:

$$F_{\parallel}^{ZZ} = -C_{\phi\phi} , \qquad F_{\parallel}^{WW} = -C_{\phi\phi}$$

→ Goldstone boson equivalence theorem!

Example of a UV completion

* Consider for illustration a model containing a doublet of heavy, vector-like quarks $\psi = (T B)^T$ transforming as (3, 2, 1/6), with Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_S + \mathcal{L}_{\psi}$ and:

$$\mathcal{L}_{S} = \frac{1}{2} \left(\partial_{\mu} S \right) \left(\partial^{\mu} S \right) - \frac{M_{S}^{2}}{2} S^{2} - c_{1} S \, \bar{\psi} \psi - c_{2} S \left(\bar{Q}_{L} \psi + \bar{\psi} \, Q_{L} \right)$$
$$\mathcal{L}_{\psi} = \bar{\psi} \left(i \not{D} - M \right) \psi - \left(g_{t} \, \bar{\psi} \, \tilde{\phi} \, t_{R} + g_{b} \, \bar{\psi} \, \phi \, b_{R} + \text{h.c.} \right)$$

* We then find the non-trivial matching conditions:

$$C_{GG} = -\frac{1}{4\pi^2} \operatorname{arcsin}^2 \left(\frac{M_S}{2M}\right)$$
$$S = C_{WW} + C_{BB} = -\frac{5}{6\pi^2} \operatorname{arcsin}^2 \left(\frac{M_S}{2M}\right)$$

Effective Lagrangian at $O(\lambda^3)$

* Most general result (*i*,*j* are generation indices):

$$\mathcal{L}_{\text{eff}}^{(3)} = \frac{1}{M} \left[C_{F_L \bar{f}_R}^{ij}(M_S, M, \mu) O_{F_L \bar{f}_R}^{ij}(\mu) + \sum_{k=1,2} \int_0^1 du \, C_{F_L \bar{f}_R \phi}^{(k) \, ij}(u, M_S, M, \mu) \, O_{F_L \bar{f}_R \phi}^{(k) \, ij}(u, \mu) + \text{h.c.} \right] \\ + \frac{1}{M} \sum_{A=G,W,B} \left[\int_0^1 du \, C_{F_L \bar{F}_L A}^{ij}(u, M_S, M, \mu) \, O_{F_L \bar{F}_L A}^{ij}(u, \mu) + (F_L \to f_R) + \text{h.c.} \right]$$

with:

$$O_{F_L \bar{f}_R}^{ij}(\mu) = S \,\bar{\chi}_{L,n_1}^i \Phi_0 \,\chi_{R,n_2}^j + (n_1 \leftrightarrow n_2)$$

$$O_{F_L \bar{f}_R \phi}^{(1)\,ij}(u,\mu) = S \,\bar{\chi}_{L,n_1}^i \Phi_{n_1}^{(u)} \,\chi_{R,n_2}^j + (n_1 \leftrightarrow n_2)$$

$$O_{F_L \bar{f}_R \phi}^{(2)\,ij}(u,\mu) = S \,\bar{\chi}_{L,n_1}^i \Phi_{n_2}^{(u)} \,\chi_{R,n_2}^j + (n_1 \leftrightarrow n_2)$$

$$O_{F_L \bar{f}_R \phi}^{ij}(u,\mu) = S \,\bar{\chi}_{L,n_1}^i \,\mathcal{A}_{n_1}^{\perp(u)} \,\chi_{L,n_2}^j + (n_1 \leftrightarrow n_2)$$

$$O_{f_L \bar{f}_R \bar{f}_R A}^{ij}(u,\mu) = S \,\bar{\chi}_{R,n_1}^i \,\mathcal{A}_{n_1}^{\perp(u)} \,\chi_{L,n_2}^j + (n_1 \leftrightarrow n_2)$$

Decay rates into fermions

* For the $S \to \psi_1 \overline{\psi}_2$ decay modes, we find: $\mathcal{M}(S \to f_{iL} \overline{f}_{jR}) = \frac{v}{\sqrt{2}} \frac{M_S}{M} C^{ij}_{f_L \overline{f}_R} e^{i\varphi_{ij}},$ $\mathcal{M}(S \to f_{iR} \overline{f}_{jL}) = \frac{v}{\sqrt{2}} \frac{M_S}{M} C^{ji*}_{f_L \overline{f}_R} e^{-i\varphi_{ji}}$

where after rotation to the mass basis:

$$oldsymbol{C}_{F_Lar{f}_R} o oldsymbol{U}_{f_L}^\dagger oldsymbol{C}_{F_Lar{f}_R} oldsymbol{W}_{f_R} \equiv oldsymbol{\mathrm{C}}_{f_Lar{f}_R}$$

* Both amplitudes scale like *λ* and hence are of subleading order in power counting

Effective Lagrangian at $O(\lambda^4)$

- * The only decay mode not yet accounted for is $S \to Zh$, and at tree level a single operator contributes
- * We find:

$$\mathcal{L}_{\text{eff}}^{(4)} \ni \frac{\widetilde{C}_{\phi\phi\phi\phi}(M_S, M, \mu)}{M} \Big[iS \Big(\Phi_{n_1}^{\dagger} \Phi_0 - \Phi_0^{\dagger} \Phi_{n_1} \Big) \Big(\Phi_{n_2}^{\dagger} \Phi_0 + \Phi_0^{\dagger} \Phi_{n_2} \Big) + (n_1 \leftrightarrow n_2) \Big]$$

and: $\mathcal{M}(S \to Z_{\parallel}h) = -iC_{\phi\phi\phi\phi} \frac{v^2}{M} \longrightarrow \text{resolves a puzzle!}$ Bauer, MN, Thamm 2016

Amplitude scales like λ² and hence is of subsubleading order in power counting

Resummation of large logs

Resuming logarithms of M_S/v

- At the new-physics scale M ~ M_S the full theory is matched onto SCET_{BSM}, giving rise to Wilson coefficient functions
- The SCET operators are evolved from *M_S* down to the scale *v* using RGEs and anomalous dimensions derived in the effective theory
- * At the scale *v* a matching onto a theory with massive SM fields is performed

Resumming logarithms of M_S/v

- * Anomalous dimensions in SCET contain terms enhanced by a logarithm $\ln(M_S^2/\mu^2)$ times the cusp anomalous dimension
- * These are responsible for resuming Sudakov double logarithms $\sim [\alpha_s \ln^2(M_S^2/v^2)]^n$
- * Some of the RGEs also contain convolutions over the momentum-fraction variable *u* (à la DGLAP)
- * We find that a non-trivial operator mixing occurs starting at $O(\lambda^3)$, where also other subtleties arise

QCD evolution at $O(\lambda^3)$

* We find, for example:

 μ

subleading interactions in the SCET Lagrangian

$$\frac{d}{d\mu} \mathbf{C}_{Q_L \bar{q}_R}(\mu) = \Gamma_{Q_L \bar{q}_R}(\mu) \mathbf{C}_{Q_L \bar{q}_R}(\mu) + \frac{M^2}{M_S^2} \left[\gamma_{\text{cusp}}^{q\bar{q}} \left(\ln \frac{M_S^2}{\mu^2} - i\pi \right) + \tilde{\gamma}_{q\bar{q}} \right] g_s^2(\mu) \left(C_{GG}(\mu) + i\tilde{C}_{GG}(\mu) \right) \mathbf{Y}_q(\mu) + \int_0^1 dw \, \Gamma_{\text{mix}}(0, w, \mu) \left[\mathbf{Y}_q(\mu) \, \bar{\mathbf{C}}_{q_R \bar{q}_R G}(w, \mu) + \bar{\mathbf{C}}_{Q_L \bar{Q}_L G}^{\dagger}(w, \mu) \, \mathbf{Y}_q(\mu) \right]$$

mixing of $O(\lambda^2)$ operators into $O(\lambda^3)$ operators via

$$\mu \frac{d}{d\mu} \boldsymbol{C}_{q\bar{q}G}(u, M_S, M, \mu) = \int_0^1 dw \, \Gamma_{q\bar{q}G}(u, w, M_S, \mu) \, \boldsymbol{C}_{q\bar{q}G}(w, M_S, M, \mu) \qquad \text{with } q = Q_L \text{ or } q_R$$

Example: QCD evolution at $O(\lambda^3)$

Relevant diagrams:

mixing of $O(\lambda^2)$ operators into $O(\lambda^3)$ operators via subleading interactions in the SCET Lagrangian

Example: QCD evolution at $O(\lambda^3)$

and a second

80800

with: $\Gamma_{Q_L\bar{q}_R} = C_F \gamma_{cusp}^{(3)} \left(\ln \frac{M_S^2}{\mu^2} - i\pi \right) + 2\gamma^q$ $\Gamma_{mix}(u, w, \mu) = \frac{C_F \alpha_s(\mu)}{\pi} \frac{\theta(1 - u - w)}{1 - u} + \mathcal{O}(\alpha_s^2)$ $\Gamma_{q\bar{q}G}(u, w, M_S, \mu) = \left[C_F \left(\ln \frac{\bar{u}M_S^2}{\mu^2} - i\pi - \frac{3}{2} \right) + \frac{C_A}{2} \left(\ln \frac{u}{\bar{u}} + 1 \right) \right] \gamma_{cusp}^{(3)} \delta(u - w)$ $- \bar{w} \left[V_1(\bar{u}, \bar{w}) + V_2(\bar{u}, \bar{w}) \right] + \mathcal{O}(\alpha_s^2)$

Add a second

and:

$$V_1(\bar{u},\bar{w}) + V_2(\bar{u},\bar{w}) = -\frac{C_A}{2} \frac{\alpha_s}{\pi} \left\{ \frac{1}{\bar{u}\bar{w}} \left[\bar{u} \frac{\theta(u-w)}{u-w} + \bar{w} \frac{\theta(w-u)}{w-u} \right]_+ + \left(\frac{w}{\bar{w}} - \frac{1}{u} \right) \theta(u-w) + \left(\frac{u}{\bar{u}} - \frac{1}{w} \right) \theta(w-u) \right\}$$
$$+ \left(C_F - \frac{C_A}{2} \right) \frac{\alpha_s}{\pi} \left[\left(2 - \frac{\bar{u}\bar{w}}{uw} \right) \theta(u+w-1) + \frac{uw}{\bar{u}\bar{w}} \theta(1-u-w) \right]$$

see also: Hill, Becher, Lee, MN 2004

Conclusions

- If a new heavy particle the first of a new sector is discovered at the LHC, its interactions with SM particles can be described using an effective field theory
- * This should be done consistently!
- SCET_{BSM} offers the systematic framework for separating the scales M_S and v and resumming large Sudakov logs of this ratio, while correctly treating the dependence on the mass ratio M/M_S, where M refers to the masses of yet undiscovered particles

The end!