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Imagine we feel like in paradise ...
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alter the discovery of a new particle
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What will happen?



We will see a tsunami of theoretical papers describing
this particle’s properties in an EFT




For the example of a spin-0 singlet S

» Most general etfective Lagrangian at D=b:
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» Can describe the production and decay rates of S in
terms of a hand full of parameters




What's wrong about it?

* An EFT is used to separate the physics on different A
(length or mass/energy) scales ey

* Goal: separate new-physics scale M from the
electroweak scale v

+ But the EFT contains the heavy resonance S as a field,
so it’s scales are v (masses of SM particles) and Ms

« Widely different scales Ms>v are not separated by the
EFT (no control over large logs)

* For M ~ Ms, an infinite tower of higher-dimensional
operators gives rise to unsuppressed contributions



Is there a way out?




Is there a way out?




Solt-collinear effective theory (SCET)

« SCET is the proper effective field theory to describe the
properties of highly energetic light particles produced in

Bauer, Fleming, Pirjol, Stewart 2001;

the decay of a heavy particle: Baver, Pirjol, Stewart 2002
Beneke, Chapovsky, Diehl, Feldmann 2002

“ systematic scale separation between Ms and v,
including resummation of large logarithms

* case where M ~ Ms can be dealt with naturally

« Effective Lagrangian is process dependent: will consider
2-body decays of a heavy, spin-0 resonance S which is a
singlet under the SM



Outline of the construction

“ At the new-physics scale M ~ Ms the full
theory is matched onto SCETgsy, giving
rise to Wilson coefficient functions

* The SCET operators are evolved from
Ms down to the scale v using RGEs and
anomalous dimensions derived in the
effective theory

“ At the scale v a matching onto a theory
with massive SM fields is performed

“ If desired, the operators can be evolved
down further when very light SM
particles are involved

see also: Chiu, Golf, Kelley, Manohar 2007
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Basic elements of SCET

* Intrinsic complication consists of fact that large mass M
enters low-energy theory as a parameter characterizing
the large energies E; ~ Ms of the light final-state particles

+ Gives rise to non-local operators in the effective
Lagrangian, with fields separated along the light-like
directions in which these particles travel

Bauer, Fleming, Pirjol, Stewart 2001; Bauer, Pirjol, Stewart 2002
Beneke, Chapovsky, Diehl, Feldmann 2002

+ After Fourier transformation, this introduces a

dependence of the Wilson coefficients on Ms



Basic elements of SCET

“ In a given decay process of S, final state contains jets
defining directions {ni,...,n;} of large energy flow

* Each jet consists of one or more n;-collinear particles,
which carry energies much larger than their rest mass

« Define light-like reference vectors n = (1,n;) and
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Basic elements of SCET

« Particles inside a jet can interact with each other, but
only soft particles can mediate between different jets

“ In SCET, particles are described by gauge-invariant
collinear building blocks defined using Wilson lines:

+ scalar doublet: &, (z) = W] (x) ¢(z)

+ fermions: X, () = = W, (@) ¥(x)

® callce DOsOms: A MG DY)
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Bauer, Pirjol, Stewart 2002
Hill, MN 2002
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Basic elements of SCET

“ Power counting rules:
(I)’IIZN)\7 anN)\, .A«ZZJ_N)\y nZ"AnzN)\z

imply that adding fields gives rise to power suppression

« Because of EWSB, the effective theory also contains scalar fields
carrying no 4-momentum:

EWSE b [0
) S ~ A
: V2 (U)

“ For 2-body decays, operators need to contain collinear fields in
two opposite directions

* Obtain Lagrangian by constructing gauge-invariant operators
built out of these fields, starting at O(A2)



Effective Lagrangian at O(\°)

* Most general expression:
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* Model-independent predictions for all diboson decay

rates in terms of 7 Wilson coefficient functions!




Effective Lagrangian at O(\°)

« After EWSB, ®,,, contains both the Higgs boson and the
longitudinal modes of the electroweak gauge bosons:
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Diboson decay rates

* For the S — hh decay mode we obtain:
M(S =) hh) — MC(b(b

* For the S — V1V, decay modes we define the form
factor decomposition:
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* Both amplitudes scale like A9 and hence are of leading
order in power counting



Diboson decay rates

+ For the form factors we obtain:
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— Goldstone boson equivalence theorem!



Example of a UV completion

“ Consider for illustration a model containing a doublet

of heavy, vector-like quarks ¢ = (T B)" transforming as
(3, 2, 1/6), with Lagrangian £ = Lgy + L5 + £, and:

2
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* We then find the non-trivial matching conditions:
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Effective Lagrangian at O(X)

* Most general result (i,j are generation indices):
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Decay rates into fermions

+ For the S — 111 decay modes, we find:

MG fufin) > —p e by
— p ot S
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where after rotation to the mass basis:
CFLfR = U}LLCFLfRWfR — CfoR

* Both amplitudes scale like A and hence are of
subleading order in power counting



Effective Lagrangian at O(X')

* The only decay mode not yet accounted for is S — Zh,

and at tree level a single operator contributes

+ We find:
Coavos (Mg, M, 12) T,
£ 5 Coonol = 2 iS (@, @0 — @) @, ) (@F, @0+ @[ @, ) + (01 © )]
and: V2

I — Zin = =00 e o resolves a puzzle!
Bauer, MN, Thamm 2016

* Amplitude scales like A2 and hence is of subsubleading
order in power counting







Resumming logarithms of Ms/v

“ At the new-physics scale M ~ Ms the
full theory is matched onto SCETgsy,
giving rise to Wilson coefficient
functions

“ The SCET operators are evolved from
M down to the scale v using RGEs
and anomalous dimensions derived in
the effective theory

“ At the scale v a matching onto a theory
with massive SM fields is performed
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Resumming logarithms of Ms/v

+ Anomalous dimensions in SCET contain terms

enhanced by a logarithm In(MZ /;?) times the cusp
anomalous dimension

* These are responsible for resuming Sudakov double
logarithms ~ [ovg In®(M3/v*)]"

+ Some of the RGEs also contain convolutions over the

momentum-fraction variable u (a la DGLAP)

* We find that a non-trivial operator mixing occurs
starting at O(A3), where also other subtleties arise



OCD evolution at O(A?)

* We find, for example:

mixing of O(A2) operators into O(A3) operators via
subleading interactions in the SCET Lagrangian
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Example: QCD evolution at O(A3)

* Relevant diagrams:

mixing of O(A2) operators into O(A3) operators via
subleading interactions in the SCET Lagrangian



Example: QCD evolution at O(A3)

+ with:

see also: Hill, Becher, Lee, MN 2004



Conclusions

« If a new heavy particle — the first of a new sector — is
discovered at the LHC, its interactions with SM particles
can be described using an effective field theory

* This should be done consistently!

* SCETsswm offers the systematic framework for separating
the scales Ms and v and resumming large Sudakov logs
of this ratio, while correctly treating the dependence on
the mass ratio M/ Ms, where M refers to the masses of
yet undiscovered particles






