MeV-GeV dark matter searches @ fixed target experiments

Claudia Frugiuele

DM theoretical landscape is broad

Most of the experimental efforts focus on a small region.

Many compelling scenarios to guide the experimental searches: cosmological history of DM ?

Connection to other particle physics long standing questions (e.g. strong CP problem)?

DM theoretical landscape is broad

Most of the experimental efforts focus on a small region.

Focus on sub GeV thermal DM (mainly on MeV-GeV mass range)

MeV-GeV DM

Direct detection experiments lose sensitivity for masses below a few GeV

1. DM-electron direct detection experiments (e.g. Essig, Mardon, Volansky, 2012)

2. Accelerator based searches(fixed target experiments, B factories)

Many proposals

New generation direct detection experiments and new accelerator based searches

From US Cosmic Vision 2017

MeV-GeV thermal DM

An MeV-GeV particle interacting with the visible sector via new MeV-GeV forces could account for the observed DM abundance in the universe

s-wave annihilation into charged particles ruled out by CMB observations

NO s-wave annihilation YES p-wave annihilation

Type of signature: MeV-GeV mediator decaying into DM

Accelerator based searches

Important role played by fixed target experiments

Dark photon benchmark model

$$<\sigma v > \sim \alpha_D \epsilon^2 \frac{m_\chi^2}{m_A^2} \sim \frac{Y}{m_\chi^2}$$
$$Y \equiv \epsilon^2 \alpha_D \frac{m_\chi^4}{m_A^4}$$

 $\alpha_D = 0.5 , \ m_{A'} = 3m_{\chi}$

Dark photon invisible decay

BDX: electron beam dump experiment DM-electron scattering signatures

LDMX: electron fixed target experiment missing momentum signatures

Izaguirre, Krnjaic, Schuster, Toro, 2014

US cosmic vision 2017 Izaguirre, Krnjaic, Schuster, Toro, 15

Accelerator based searches

Important role played by fixed target experiments

Dark photon benchmark model

$$<\sigma v>\sim \alpha_D \epsilon^2 \frac{m_\chi}{m_A^2} \sim \frac{Y}{m_\chi^2}$$

 $Y \equiv \epsilon^2 \alpha_D \frac{m_\chi^4}{m_A^4}$

$$\alpha_D = 0.5 \ , \ m_{A'} = 3m_{\chi}$$

Dark photon invisible decay

Accelerator based searches

Important role played by fixed target experiments

Dark photon benchmark model

Searching for MeV-GeV DM @neutrino facilities

measuring neutrino masses and mixings

New complementarity goal

Dark matter discovery

[Batell, Pospelov Ritz, 2009]

How is the DM beam produced?

MeV-GeV gauge boson kinetically mixed with the photon $\,g_{A^\prime}^{
m SM}$

MeV-GeV scalar DM (no tension with CMB)

Production via meson decay

• Direct Production

 $q' \longrightarrow A' \qquad DM$

 $\epsilon e \mathcal{X}_{f}$

On shell production of the mediators is essential

High intensity experiments: order 10²⁰ protons on target per year!

How do we detect DM ?

Two observables

- DM-nucleus scattering
- DM-electron scattering

Main challenge: suppression of neutrino background.

Is it possible to build a DM program symbiotic to the neutrino one? YES- a crucial role is played by off-axis detectors

[Dobrescu, Coloma, CF, Harnik, 2015]

Off-axis detectors for DM

Difference angular distribution of DM and neutrino flux

[Dobrescu, Coloma, CF, Harnik 2015]

Neutrinos @ Main Injector (NuMI)

[CF, 2017]

Many possibilities (and existing data) to explore DM parameter space

DM-electron scattering

[DeNeverville, CF, 2018 in progress]

NOvA as a DM detector

Thermal target : solid Black line relic density (scalar)

NOvA as a DM detector

Direct detection reach for scalar

DM-quark scattering

[Dobrescu, CF 2014] [Dobrescu, Coloma, CF, Harnik 2015] [CF 2017]

Complementarity with direct detection program for sub GeV mass range

DM-quark scattering in MiniBooNE

Larger neutrino bkg: going very off axis helps

DM-quark scattering in MiniBooNE

UV dependent constraints from anomalies [Dobrescu,CF, 2014] [Dror,Lasenby,Pospelov,2017]

Symbiotic neutrino/DM programs

- NOvA & MiniBooNE dedicated analysis to light dark matter
- Study of potential sensitivity at SBND (liquid argon detector) and ICARUS 8 GeV FNAL Booster beam line
- Study of the sensitivity to non-minimal dark sectors (e.g. inelastic DM) both @ FNAL facilities and @ CERN (i.e. NA62)
- What are the prospects to probe DM at proposed facilities like LBNF or SHiP (Search for Hidden Particles)

Symbiotic neutrino/DM programs

- NOvA & MiniBooNE dedicated analysis to light dark matter
- Study of potential sensitivity a SBND (liquid and ICARUS 8 GeV FNALL & SBND (liquid Release of a MadGraph plugin (MadDump) to facilitate these analysis (L.Buonocore, CF, F.Maltoni, O.Mattelaer, F.Tramontano, in progress) (L.Buonocore, CF, F.Maltoni, O.Mattelaer, F.Tramontano, in progress)

Missing Momentum Technique

Missing Momentum Technique

ECAL/HCAL

Signal: a low energy electron & no other activity

Payoff: Rate scales as $\sim \epsilon^2$

Izaguirre, Krnjaic, Schuster, Toro, 2014

Outlook

The quest for sub GeV dark matter is in full swing

A discovery could be around the corner: new data and measurements in the next few years will probe interesting regions of the parameter space.

Outlook

The quest for sub GeV dark matter is in full swing

A discovery could be around the corner: new data and measurements in the next few years will probe interesting regions of the parameter space.

Thank you!

