# Latest DarkSide Results

Marco Rescigno INFN/Roma1 For the DarkSide collaboration



# Outline

- DarkSide-50 (DS50) detector concept
- Recent results:
  - Blind analysis of 532 live days of Underground Argon data (S1+S2), target high mass WIMP
  - Low mass DM searches interactive through electron or nuclear recoils with a ionization only measurement (S2-only)
- Future DarkSide program:
  - DS-proto
  - DarkSide-20k
- Conclusions



### DarkSide-50



35.6 height diameter x 35.6 cm height TPC 46.4 Kg of Active Liquid Argon

Filled with Low Radioactivity Argon (150 Kg total) tapped from underground  $CO_2$  wells in Cortez, CO (UAr)

Viewed by 38 Hamamatsu R11065 PMT



1,000 tonnes of ultrapure water instrumented with 80 photomultiplier tubes as Cherenkov veto for cosmic rays. 4-m diameter liquid scintillator sphere equipped with 120 photomultiplier tubes as a high-efficiency neutron veto.

# Two Phase (LAr) TPC



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

4

# Two Phase-TPC fiducialization method



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

INFN

# ER rejection using PSD in LAr

- Bkg rejection in LAr based on S1 pulse shape
- Light emitted from Ar2+ dimers triplet 103 times slower than singlet.
- Triplet vs singlet excitation depends on particle type
- Bkg rejection >10<sup>7</sup> reached in DS50 with atmospheric argon target
- DEAP-3600 projects >10<sup>10</sup> rejection
- Xenon bkg rejection based on S2/S1 ratio, limited to few 10<sup>3</sup>



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

### DS50 UAr data set (>800 life days)



#### PHYSICAL REVIEW D 93, 081101(R) (2016)

Results from the first use of low radioactivity argon in a dark matter search

Low-mass Dark Matter Search with the DarkSide-50 Experiment

D. Agnes, <sup>11</sup>, D. D. Back, <sup>13</sup>, B. Baldin, <sup>25</sup>, G. Kazander, <sup>13</sup>, K. Alkan, <sup>14</sup>, G. R. Aranji, <sup>25</sup> D. M. Aner, <sup>15</sup> M. P. Anev, <sup>15</sup> L. O. Back, <sup>13</sup>, B. Baldin, <sup>25</sup>, G. Bagani, <sup>25</sup> K. Biery, <sup>15</sup> W. Boch, <sup>15</sup>, <sup>15</sup> M. Catola, <sup>14</sup> M. Catola, <sup>15</sup> M. Devine, <sup>15</sup> G. Catola, <sup>15</sup> G. Catola, <sup>15</sup> G. Catola, <sup>15</sup> G. Devine, <sup>15</sup> A. De Catola, <sup>15</sup> M. Devine, <sup>15</sup> M. Devine, <sup>15</sup> M. Devine, <sup>15</sup> M. Catola, <sup>15</sup> M. Catola, <sup>15</sup> M. Catola, <sup>15</sup> M. Devine, <sup>15</sup> G. Catola, <sup>15</sup> G. Cato

<sup>11</sup> P. Crantan,<sup>20</sup> M. Gennar,<sup>20</sup> M. Gana,<sup>20</sup> Y. Conerlineert,<sup>14</sup> M. Gallano,<sup>21</sup> B. R. Hoeter,<sup>17</sup> M. M. Hannar,<sup>18</sup> M. T. Karaba,<sup>14</sup> D. Karaba,<sup>14</sup> D. Karaba,<sup>14</sup> D. K. Hangerford,<sup>14</sup> A. Hanna,<sup>15</sup> Y. K. Hangerford,<sup>14</sup> M. Hanna,<sup>14</sup> Y. K. Hangerford,<sup>14</sup> M. Karaba,<sup>14</sup> K. Keerert,<sup>24</sup> C. L. Kendirar,<sup>15</sup> I. Kochane,<sup>14</sup> C. Kohar,<sup>15</sup> K. Keerert,<sup>24</sup> C. L. Kendirar,<sup>15</sup> I. Kochane,<sup>15</sup> A. Goh,<sup>25</sup> D. Krober,<sup>16</sup> G. Korga,<sup>15</sup> M. A. Kahanin,<sup>26</sup> M. Kusta,<sup>15</sup> M. Karaba,<sup>14</sup> M. La Gumman,<sup>25</sup> H. M. Kahani,<sup>26</sup> M. Konga,<sup>15</sup> M. Kahanin,<sup>26</sup> M. Kusta,<sup>14</sup> M. J. Kataha,<sup>14</sup> H. Marka,<sup>14</sup> J. Marina,<sup>14</sup> M. J. Kataha,<sup>14</sup> H. M. Kataha,<sup>15</sup> M. Karaba,<sup>14</sup> M. Marota,<sup>14</sup> H. M. Kataha,<sup>15</sup> M. Kataha,<sup></sup>

A. Poterf, "S. Potelse," S. S. Poudel, D. A. Puggedevr," H. Qam, "F. Raguas," "J. M. Rassett," A. Rasseto, "B. Rossinoli," A. I. Remsheim, "M. Resignory, "A. Rossinu," Area, "I. Rossi," N. Rossi, "J. Rossi," D. Sakober, "D. Sakobergeve, "B. Sakobergeve, "B.

Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment

P. Agnes,<sup>1</sup> L. F. M. Albuquerque,<sup>2</sup> T. Alexander,<sup>3</sup> A. K. Alton,<sup>4</sup> G. R. Araujo,<sup>2</sup> D. M. Asner,<sup>5</sup> P. Agney, <sup>1</sup> I. F. M. Albuquergue, <sup>1</sup> T. Alexander, <sup>2</sup> A. K. Alton, <sup>4</sup> G. R. Araujo, <sup>2</sup> D. M. Amer,<sup>4</sup> M. P. Avel, <sup>1</sup> H. O. Back, <sup>2</sup> B. Balden, <sup>3</sup> G. Baltana, <sup>3</sup> K. S. Klenry, <sup>4</sup> J. Bocci, <sup>2</sup> G. Borfini, <sup>3</sup> W. Borisevin,<sup>1</sup> <sup>3</sup> H. Bottim, <sup>3</sup> H. F. Batana, <sup>1</sup> K. S. Basino, <sup>3</sup> K. M. M. Cadebda, <sup>3</sup> K. J. M. Cadebda, <sup>3</sup> K. J. Cadebda, <sup>4</sup> Greveta, H. J. F. Di Essanio, <sup>17</sup> G. Di Pietro, <sup>10</sup>, <sup>27</sup> C. Dionisi, <sup>9,28</sup> M. Downing, <sup>31</sup> E. Edkins, <sup>12</sup> A. Empl, A. Fan, <sup>33</sup> G. Fiorillo, <sup>20,21</sup> K. Fomenko, <sup>34</sup> D. Franco, <sup>35</sup> F. Gabriele, <sup>10</sup> A. Gabrieli, <sup>18,19</sup> C. Galbiati, <sup>17,27</sup> P. Garcia Abia,<sup>30</sup> S. Giagu,<sup>6,28</sup> C. Giganti,<sup>37</sup> G. K. Giovanetti,<sup>17</sup> O. Gorchaw,<sup>34</sup> A. M. Goretti,<sup>1</sup> F. Granato,<sup>38</sup> M. Gromov,<sup>23</sup> M. Guan,<sup>39</sup> Y. Guardincerri,<sup>6, a</sup> M. Gulino,<sup>40,19</sup> B. R. Hackett,<sup>32</sup> M. H. Hassanshahi,<sup>10</sup> K. Herrar,<sup>6</sup> B. Hosseini,<sup>11</sup> D. Hughes,<sup>17</sup> P. Humble,<sup>3</sup> E. V. Hungerford,<sup>1</sup> Al. Ianni,<sup>10</sup> An. Ianni,<sup>17,10</sup> V. Ippolito,<sup>9</sup> I. James,<sup>14,15</sup> T. N. Johnson,<sup>41</sup> Y. Kahn,<sup>17</sup> K. Keeter,<sup>4</sup> C. L. Kendziora,<sup>6</sup> I. Kochanek,<sup>17</sup> G. Koh,<sup>17</sup> D. Korablev,<sup>34</sup> G. Korga,<sup>1,10</sup> A. Kubankin,<sup>43</sup> M. Kuss,<sup>3</sup> M. La Commara,<sup>50,13</sup> M. Lai,<sup>61,13</sup> X. Li,<sup>17</sup> M. Lissni,<sup>11</sup> M. Lissia,<sup>11</sup> B. Loer,<sup>3</sup> G. Longo,<sup>50,21</sup> Y. Ma, A. Machadov<sup>4</sup> I. N. Machulin,<sup>61,44</sup> A. Mandarano,<sup>61,21</sup> D. Mapelli,<sup>17</sup> S. M. Mari,<sup>14,15</sup> J. Marick<sup>2</sup> C. J. Martoff, <sup>38</sup> A. Messina,<sup>9,28</sup> P. D. Meyers,<sup>17</sup> R. Milincic,<sup>32</sup> S. Mishra-Sharma,<sup>17</sup> A. Monte,<sup>31</sup> M. Morrocchi,<sup>7</sup> B. J. Mount,<sup>42</sup> V. N. Muratova,<sup>30</sup> P. Musico,<sup>13</sup> R. Nania,<sup>25</sup> A. Navrer Agasson,<sup>3</sup> M. Merrocchi, B. J. Mourit, " V. N. Muratoro," F. Muito, "A. K. Natia," A. Newer Agenon, "A. O. Kondrika," & A. Olemit, "M. Oncinit," F. Orinita, " B. Dagani," M. Pallavici, "Li J. L. Pandoli, " E. Paniti, " E. Paniti, " F. Panzon, "A" K. Parzon, "A" K. Panza, " N. Pellicin, " V. Penndo, " A. Ponze," S. S. Pondel, " D. A. Pagachev, "H. Idan," " F. Ragan," M. Rasetti, " I. A. Razoto, " B. Reinbold," " A. L. Renzhaw, " M. Reseigno," A. Romati, " 6, " B. Reinbold," N. Rossi, " S. Razoto, " R. Reinbold," A. Renzhaw, " M. Reseigno, " A. Romati," 6, " B. Resei," N. Rossi, " K. Rossi, " A. Razoto, " B. Reinbold," A. L. Renzhaw, " M. Reseigno, " A. Romati," 6," B. Resei, " N. Rossi, " A. Razoto, " B. Reinbold," A. L. Renzhaw, " M. Reseigno, " A. Romati," 6," B. Resei, " N. Rossi, " A. Rossi, " A. Rossi, " A. Rossi," A. Rossi, " A. Rossi, " A. Rossi," A. Rossi, " A. Rossi, " A. Rossi," D. Sablone,<sup>17,10</sup> O. Samoylov,<sup>34</sup> W. Sands,<sup>17</sup> S. Sanfilippo,<sup>15,14</sup> M. Sant,<sup>18,19</sup> R. Santorelli,<sup>36</sup> C. Savarese,<sup>47,10</sup> E. Scapparone,<sup>25</sup> B. Schlitzer,<sup>41</sup> E. Segreto,<sup>44</sup> D. A. Semenov,<sup>30</sup> A. Shchagin,<sup>4</sup> C. Sawatese, P. Sonpharone, B. Sonnitzer, M. Sogerio, T. S. Somenov, A. Somenov, M. Sonzapi, A. Shenkalov, S. P. Songhi, M. D. Skorokolavov, <sup>65</sup> 40, Shrinov, <sup>64</sup> A. Somitov, <sup>64</sup> C. Staaford, S. Stradok, <sup>7</sup> G. B. Suffitti, <sup>18</sup>, <sup>18</sup>, <sup>19</sup> Y. Suvorov, <sup>25,21,30</sup> 4; R. Tartaglia, <sup>10</sup> G. Testera, <sup>13</sup> A. Tonazzo, <sup>19</sup> P. Trinchese, <sup>25,31</sup> E. V. Unitakov, <sup>25</sup> M. Suvorov, <sup>25,21,30</sup> 4; R. Tartaglia, <sup>10</sup> G. Testera, <sup>13</sup> A. Tonazzo, <sup>19</sup> P. Trinchese, <sup>25,31</sup> E. V. Unitakov, <sup>25</sup> M. Suvorov, <sup>25,21,30</sup> 4; R. Tartaglia, <sup>10</sup> G. Testera, <sup>13</sup> A. Tonazzo, <sup>10</sup> 4, <sup>10</sup> C. Suvorov, <sup>25,21,30</sup> 4; R. Tartaglia, <sup>10</sup> G. Testera, <sup>10</sup> A. Tonazzo, <sup>10</sup> 10, <sup>10</sup> 10,

T. J. Waldrop,<sup>4</sup> H. Wang,<sup>33</sup> Y. Wang,<sup>33</sup> A. W. Watson,<sup>38</sup> S. Westerdale,<sup>17</sup>,<sup>15</sup> M. M. Wojcik,<sup>50</sup> M. Wojcik,<sup>51</sup> X. Xiang,<sup>17</sup> X. Xiao,<sup>33</sup> C. Yang,<sup>39</sup> Z. Ye,<sup>1</sup> C. Zhu,<sup>17</sup> A. Zichichi,<sup>24,25</sup> and G. Zuzel<sup>1</sup>

DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon

Phenomenology and Experiments in Flavour Physics M.Rescigno - 7th Workshop I workshop on Theory,



# First blind analysis of UAr data

#### arxiv:1802.07198

Initial blind region shown with data from the first UAr publication: PRD 93, 081101(R) (2016)



- Design of an analysis delivering a signal region with less than 0.1 bkg events expected
  - Use data driven measurement and methods to identify and reduce background sources
  - First use of radial fiducialization in addition to the usual in Z
  - Extensive external sources campaign to calibrate detector response and efficiencies

## DS50 Background modeling

svents /

#### arxiv:1802.07198

 $^{39}\text{Ar}$  emits  $\beta^-$ 

Activity in atmospheric Argon ~1 Bq/Kg ☆

Reduced by a factor 1400 using Argon from underground sources <sup>85</sup>Kr also found in the tapped source





TABLE I. TPC component activities, estimated by fitting  $^{232}$ Th<sub>PMT</sub>,  $^{238}$ U<sup>lower</sup><sub>PMT</sub>,  $^{40}$ K<sub>PMT</sub>, and  $^{60}$ Co<sub>PMT</sub> in sequence, followed by  $^{235}$ U<sub>PMT</sub>,  $^{238}$ U<sup>upper</sup><sub>PMT</sub> while  $^{85}$ Kr and  $^{39}$ Ar are fixed at their measured rates as reported in [15]. Cryostat activities (<sub>c</sub>) are summed across all cryostat locations, and fixed at their respective measured rates from assays. PMT activities (<sub>p</sub>) are summed across all PMT locations, and across all 38 tubes.

| Source                                 | Activity [Bq]                 | Source                        | Activity [Bq]               |
|----------------------------------------|-------------------------------|-------------------------------|-----------------------------|
| $^{232}$ Th <sub>p</sub>               | $0.277 \pm 0.005$             | $^{232}\text{Th}_{c}$         | $0.19 \pm 0.04$             |
| ${}^{40}\mathrm{K_p}$                  | $2.74 \pm 0.06$               | $^{40}$ K <sub>c</sub>        | $0.16^{+0.02}_{-0.05}$      |
| $^{60}Co_{p}$                          | $0.15 \pm 0.02$               | $^{60}$ Co <sub>c</sub>       | $1.4 \pm 0.1$               |
| $^{238}$ U <sub>p</sub> <sup>low</sup> | $0.84 \pm 0.03$               | $^{238}\mathrm{U_c^{low}}$    | $0.378^{+0.04}_{-0.1}$      |
| $^{238}U_{p}^{1}$                      | $4.2 \pm 0.6$                 | $^{238}\mathrm{U_c^{up}}$     | $1.3^{+0.2}_{-0.6}$         |
| $^{235}U_{p}$                          | $0.19 \pm 0.02$               | <sup>235</sup> U <sub>c</sub> | $0.045_{-0.02}^{+0.007}$    |
| $^{85}$ Kr                             | $1.9{\pm}0.1~\mathrm{mBq/kg}$ | <sup>39</sup> Ar              | $0.7\pm0.1~\mathrm{mBq/kg}$ |

# Blind Analysis/Neutron bkg

arxiv:1802.07198

Neutron veto cuts:

- Prompt: 1PE in [-50,250] ns of the TPC S1 trigger
- Delayed: 6PE in 500 ns sliding window in [0,185] μs of the TPC trigger

 Prompt cut only
 Delayed cut only
 Combined

  $0.9927 \pm 0.0005$   $0.9958 \pm 0.0004$   $0.9964 \pm 0.0004$ 

 Neutron Veto efficiency from AmC / AmBe calibrations





- VETO PROMPT TAG (pass all cuts but fail veto prompt selection) sample with neutrons identified by the late coincidence
- Only 1 neutron consistent with radiogenic origin
- Scale 1 event with data driven efficiency to estimate final neutron background

## Blind analysis/ER+Cherenkov

#### arxiv:1802.07198



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

12

# Blind analysis/ER+Cherenkov

#### arxiv:1802.07198



Making an hybrid model using Ar39 data (model pure ER) + Cherenkov light in PTFE and Fused Silica (simulation)

Check rate and shape with a background enhanced sample from Na22 source Final check/normalization in VETO PROMPT TAG sample

### Blind analysis/unblinded data



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

### Blind analysis/results

#### arxiv:1802.07198



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

15

### **S2-ONLY ANALYSIS**

16

INFN

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

# S2-only/S2 Pulse Shape



Proportional emission of VUV photons amplify signal.

Rise-time is influenced by diffusion of the charge cloud in the liquid and transit time through the gas

Decay constant of light in gaseous Argon different then in liquid ( $\tau_{slow}$ ~3.2 us)

 $\rightarrow$  Slow signal !

We are looking for very small excitations!

FIG. 8: Examples of S2 pulse shape fits for the electron diffusion measurement. Left: Event with a 22 µs drift time. Right: Event with a 331 µs drift time. The waveforms have been re-binned to 32 ns sampling, and the x-axes redefined such that t = 0 is at the S2 start.

50

arXiv: 1802.01427

time



# S2-only/ S2 PE per extracted e<sup>-</sup> from S2 echoes



Single electron extracted from the cathode by S2 VUV photon (S2 echoes):

| Det. zone  | $\varepsilon_2^{1e}$ [PE/e] | $\langle \kappa  angle$ | $\varepsilon_2^{1e}$ (corr) [PE/e] |
|------------|-----------------------------|-------------------------|------------------------------------|
| CENTER     | $22.76 \pm 0.15$            | 0.94                    | $24.2 \pm 0.2$                     |
| INNER RING | $15.58\pm0.07$              | 0.70                    | $25.2\pm0.1$                       |

#### Luca Pagani's Phd thesis: fermilab-thesis-2017-11





(b)

# S2-only/ S2 PE per extracted e<sup>-</sup> from impurities



- Electronegative molecules (e.g. O<sub>2</sub>, H<sub>2</sub>0), might be present at the ppb levels in LAr
- Ionization electrons might attach to impurities during drift and later be released with time scales of O(10 ms)
- Signals are time/spatially correlated with preceding ionization events
- Rate increased significantly during the several days where filter (getter) was excluded from the Argon circulation due to servicing

19

Cartoon from Luca Pagani's Phd thesis: fermilab-thesis-2017-11

# S2-only/ S2 PE per extracted e<sup>-</sup> from impurities

arxiv:1802.06994



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

### S2-only/Detection Threshold



Trigger on two PMT hits (60% efficiency for single Photo-Electrons) in 100 ns : reach 100% at ~30 PE (50% ~15 PE)

Extraction efficiency for ionization electrons >99.9 % Software pulse finding efficiency 100% for S2>30 PE

# S2-only/ER scale

#### arxiv:1802.06994



 $^{37}$ Ar from cosmic ray activation during UAr transport: 35 d  $au_{1/2}$  to  $^{37}$ Cl via electron capture

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

22

# S2-only/NR scale (in situ)

arxiv:1802.06994

Events



- In situ calibration with <sup>241</sup>Am<sup>13</sup>C source
- Low rate source with little gamma activity
- Find NR scale by fitting simulated spectrum to data +bkg distribution
- Allow measure down to 4 Ne threshold



- In situ calibration with <sup>241</sup>AmBe source
- High rate source: neutrons produced with associated gamma
- Find NR scale by fitting simulated spectrum to data with 4.4 MeV γ in LSV detector
- Deep at low Ne due to LSV data available only for S1 triggers. Joint fit with AmC data for Ne>50

# S2 only/NR scale (external)

#### Phys. Rev. D 91, 092007 (2015)



arXiv:1801.06653

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

# S2-only/ NR scale

arxiv:1802.06994

 $Q_{\rm y} \ [e^{-/keV_{\rm nr}}]$ 



# S2-only/ Ne spetrum



Phenomenology and Experiments in Flavour Physics M.Rescigno - 7th Workshop I workshop on Theory,

# S2-only/ Result



27

# Sub GeV DM interacting with e<sup>-</sup>

#### arxiv:1802.06998



- Interpretation of the same spectrum in the context of DM coupled to light mediators. Masses below 1 GeV of interest
- Generally have couplings to electrons → easier to detect
  - Require evaluation of atomic physics effects for the exact orbitals of the target material. First calculation for Argon in this paper (M.Lisanti et al.)
- Two kinds of form factors generally employed:
  - Constant (high mass mediator top)
  - αm<sub>e</sub>/q<sup>2</sup> (low mass mediator bottom)

# Sub GeV DM interacting with e<sup>-</sup>

arxiv:1802.06998



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

# DS50 + ReD and future LAr DM program

- Main thrust on improved calibration for low energy nuclear recoil
  - A significant reduction in Q<sub>y</sub> uncertainty and "some" indication of the underlying distribution of the number of ionization electrons at very low recoil would allow significant improvement in the sensitivity at lower masses (1-2 GeV/c<sup>2</sup>)
- DS50 will be extremely valuable to perform a number of optimization studies for low energy ionization search: optimize fields, recirculation, trigger
  - Reduction and/or modeling of the single-electron background would allow to move the analysis threshold down to 1-2 e<sup>-</sup> corresponding to 2-300 eVnr and possibly extend the sensitivity well below 1 GeV/c<sup>2</sup>
- Darkside-Proto is around the corner in the path towards the construction of Darkside-20k (20 Ton Fiducial Mass dual phase TPC)

### **S2-ONLY PROSPECTS**

31

INFN

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics



## ReD experiment





- ReD experiment has first beam in June @ LNS TANDEM
- Original goal is the directionality measurement (high energy nuclear recoils), now aiming also at a direct measurement of low energy nuclear recoil with same TPC by tuning appropriately the beam and geometry setups

# A physics-case for a ton size LAr TPC (DS-proto)

Background limited in DS50 S2-only analysis.

Potential breakthroughs:

- Urania/Aria program
- Use of SiPM
- Larger mass in Ds-Proto Investigating the possibility to use DSproto for a physics run

#### Bkg [0-50 Ne] composition





Test bed for DS-20k technology 370 SiPM tile photo-sensors Low backround SS cryostat Possible installation in LNGS in late 2019. Run in 2020?

# <sup>39</sup>Ar depletion in Urania+Aria

- Urania plant is able to remove <sup>85</sup>Kr
- By design more air leak tight wrt to DS50 plant (also possible a reduced <sup>39</sup>Ar content)
- Relative volatility b/w <sup>39</sup>Ar and <sup>40</sup>Ar is 1.0015±0.0001<sup>\*</sup>
- Thousands of distillation stages in a 350 m tall column (Seruci I) under construction in Nuraxi-Figus mine (Sulcis Iglesiente)
- Would allow reduction of <sup>39</sup>Ar content by a factor 10 per pass
- Seruci I production rate is calculated at 10 kg/day, perfectly matching the capacity needed to feed Ds-Proto (800 Kg total LAr)

Compressor S Ar DAr UAr **Distillation Column** Pump Reboiler

34

\*from calculations

# Aria modules shipped and assembled at Seruci (May 2018)



## Low radioactivity photo-sensor

- 5x5 cm SiPM tile with a front-end amplification & summing stage in an acrylic cage: a Photo Detector Module (PDM)
- Intrinsically radio-pure Silicon
- Screening of cryogenic electronic components and substrates to achieve the lowest possible radioactivity
- Current estimate including all services– is about 2 mBq/PDM, dominated by Arlon 55 NT substrates (for SiPM and front-end)
- On-going fused silica substrates R&D can achieve factor 10 reduction (200 μBq/PDM)
- Remind, even 2 mBq/PDM much better than current DS50 PMT (compare to ~200 mBq/PMT)!



# First PDM performance (prelim.)



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

37

I N F N

### Future Darkside Low-Mass Searches



1 year data taking with DS-proto underground vs radiopurity levels of target and electronics (ambitious).

### **DARKSIDE-20K PROSPECTS**

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics



# DS20K conceptual design/ **Proto-Dune Cryostat**





39 cm

Two identical cryostats already built @CERN in ~40 weeks

About 8x8x8 m<sup>3</sup> inner volume, 750 ton of LAr

Cryostat technology and expertise from Liquefied Natural Gas industry <sup>SS 1.2</sup> mm primary membrane in contact with the liquid (primary containment)

secondary membrane : composite laminated material (secondary containment) : triplex Aluminum based

39 cm

Insulation : reinforced polyurethane foam (5-6 W/m<sup>2</sup>), 90 kg/m3



# DS20K conceptual design/PS veto

- TPC thin copper vessel to be surrounded by an active plastic scintillator layer as a neutron veto
- Considering options to load with Boron or Gadolinium for increased capture cross section
- Cryogenic SiPM sensors in Liquid sensors similar to those developed for the TPC
- Detector concept minimize internal neutron background sources and allow easier scaling for bigger target mass



### DS20K sensitivity prospects



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics





### Conclusions

- A new search window from DS50 S2-only search for LAr
  - Threshold in sub keV range
  - Background at ~1 count/keVee/day (to be reduced further)
- More data in hands:
  - In total almost 3 annual cycle for the S2-only analysis, with a quite stable detector
  - Working on an improved analysis including all data
- A clear path to approach the neutrino floor with the next generation of Liquid Argon dark matter experiments for both the low and high mass WIMP searches







# Blind analysis/Radial cut



Non trivial x-y reconstruction for Ds50 geometry and optics. Algorithm find best position based on expected light sharing among the PMT on the top plane. Resolution ~6 mm for large enough signals. In addition usual 40 µs cut in Z direction from anode and cathode (~4 cm)



#### arxiv:1802.07198

| Cut              | Livetime/Acceptance |  |  |
|------------------|---------------------|--|--|
| All channels     | 545.6 d             |  |  |
| Baseline         | $545.6 \ d$         |  |  |
| Time since prev  | $545.3 \ d$         |  |  |
| Veto present     | $536.6 \ d$         |  |  |
| Cosmo activ      | $532.4 \ d$         |  |  |
| Muon signal      | 0.990               |  |  |
| Prompt LSV       | 0.995               |  |  |
| Delayed LSV      | 0.835               |  |  |
| Preprompt LSV    | 0.992               |  |  |
| N pulses         | 0.978               |  |  |
| S1 start time    | 1                   |  |  |
| S1 saturation    | 1                   |  |  |
| Min uncorr S2    | 0.996               |  |  |
| xy-recon         | 0.997               |  |  |
| S2 F90           | 1                   |  |  |
| Min corr $S2/S1$ | 0.995               |  |  |
| Max corr $S2/S1$ | 0.991               |  |  |
| S2 LE shape      | 1                   |  |  |
| $S1_p$ max frac  | 0.948               |  |  |
| S1 TBA           | 0.998               |  |  |
| Long S1 tail     | 0.987               |  |  |
| Radial cut       | 0.84                |  |  |
| S1 NLL           | >0.99               |  |  |
| Combined         | 0.609               |  |  |
|                  |                     |  |  |



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

## S2-only/ER scale

arxiv:1802.06998



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

49

# Compare with Xenon100 – ionization only



FIG. 4. Energy distribution of the events remaining in the data set after all data selection cuts. As an example, the expected spectrum for a WIMP of  $6 \text{ GeV}/c^2$  and a spin-independent WIMP-nucleon scattering cross section of  $1.5 \times 10^{-41}$  cm<sup>2</sup> is also shown. The corresponding nuclear recoil energy scale is indicated on the top axis. The charge yield model assumed here has a cutoff at 0.7 keV, which truncates the WIMP spectrum. The optimum interval (thick red line) is found in the S2 range [98, 119] PE and contains 1173 events.

Phys. Rev. D 94, 092001 (2016)



|                        | Xenon 100                | Darkside-50      |
|------------------------|--------------------------|------------------|
| Bkg<br>[ev/keVnr/kg/d] | 0.5 in<br>[0.7,1.7] keV  | 0.2 @<br>1.1 keV |
| Bkg<br>[ev/keVnr/kg/d] | 0.07 in<br>[3.4-9.1] keV | 0.4 @ 6 keV      |
| Analysis<br>Threshold  | 0.7 keVnr                | 0.6 keVnr        |

# Compare with Xenon100 – ionization only



#### Low Mass Region Projections

#### ≈2020

DAMIC/SENSEI CCD

NEWS-G (Spherical Proportional Counter)

Low temperature calorimeters: SuperCDMS, CRESST, Edelweiss)



52

M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics



### Nuclear recoil spectra



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

54

# Ar39 and Kr85 forbidden spectra



FIG. 12. Updated energy spectra of  ${}^{39}$ Ar (red curve) and  ${}^{85}$ Kr (blue curve). The dashed curves represent  $\pm 1\sigma$  theoretical uncertainties. The *x*-axis is units of MeV.

# Prompt and delayed Veto signals

Borated-liquid-scintillator neutron veto

- ( $\alpha$ ,n) from PMT U and Th are the dominant neutron source.
- Separately detect both thermalization and capture signals from neutron.
- Rejection measured with AmC neutrons giving WIMP-like TPC signature.
- Rejection for radiogenic neutrons ~500.
- Also effective for cosmogenic neutrons.



Single Electron Response



M.Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

57

# Fighting ER+Cherenkov

- 1 "thick PTFE coated with TPB WLS used as a reflector in DS50
- Cherenkov from electrons in Teflon produce visible light that can be seen in the TPC, dangerous bkg when a coincident ER recoil occurs
- For DS20k replace PTFE with a sandwich of thin acrylic transparent sheets and 3M enhanced specular reflector foils
- PTFE has high (α,n) cross due to Fluorine. Reduces also second largest radiogenic neutron source in the original Ds20k design







FIG. 16. Cross-sectional view of the reflector panel corner joints.



#### arxiv:1802.06994 $10^{-1}$ 10<sup>2</sup> 10-2 10 10 10<sup>2</sup> 10<sup>3</sup> 10 $\mathbf{E}_{xe} [keV_{nr}]$ 9 8 7 $[e^{-keV_{nr}}]$ 6 5 Xe Data LUX 2016 4 **Š** ZEPLIN-III 2011 3 XENON10 2011 Ar Data Manzur et al. 2010 ARIS XENON10 2009 Ō 2 SCENE 44 $\dot{\Box} \dot{\Diamond} \dot{\triangle} \dot{\Diamond}$ Aprile et al. 2006 AmBe - AmC - ARIS \_ SCENE Joshi et al. 2014 Xe Model 1 ☆ Bezrukov et al. 2011 Joshi et al. 2014 Cross Calibrated \* 0 $10^{-3}$ $10^{-2}$ $10^{-1}$ 1 ε

## S2-only/ NR scale

M. Rescigno - 7th Workshop I workshop on Theory, Phenomenology and Experiments in Flavour Physics

59