

1

Latest results of 1 tonne x year Dark Matter Search with XENON1T

Marcello Messina on behalf of the XENON collaboration

جامعـة نيويورك أبوظـي NYU ABU DHABI

Seventh Workshop on Theory, P h e n o m e n o l o g y a n d Experiments in Flavor Physics FP-Capri2018 8-10 June 2018, Capri, Villa Orlandi, Italy

www.xenon1t.org

The XENON Collaboration: 165 scientists 25 Institutions and 11 Countries

Evidence for Dark Matter

Observables: Rate

Event rate in a terrestrial detector

Two-phase Xe Time Projection Chamber as WIMP detector

two signals for each event:

5

The XENON legacy

2005-2007	2008-2016	2012-2018	2019-2023
25 kg - 15cm drift	161 kg - 30 cm drift	3.2 ton - 1 m drift	8 ton - 1.5 m drift
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²
BG~1000	BG~5.3	BG~0.2	BG~??

E. Aprile et all, "The XENON1T Dark Matter experiment, EPJ C 77, 881 (2017)

E. Aprile et all, "The XENON1T Dark Matter experiment, EPJ C 77, 881 (2017)

E. Aprile et all, "The XENON1T Dark Matter experiment, EPJ C 77, 881 (2017)

E. Aprile et all, "The XENON1T Dark Matter experiment, EPJ C 77, 881 (2017)

Water Cherenkov Muon Veto

July 2016

- 700 t pure water instrumented with 84 high-QE 8" PMTs
- Active shield against muons
- Trigger efficiency > 99.5% for muons in the water tank
- Cosmogenic neutron background suppressed to < 0.01 events/t/yr

JINST 9, 11007 (2014)

280 240

200 👸

120

The XENON1T Time Projection Chamber

3.2 t LXe @180 K 2.0 t active target viewed by 248 PMTs ~1 meter drift length ~1 meter diameter

The XENON1T Light Detection System

- 248 3-inch low-radius
 Hamamatsu R11410-21
 PMTs arranged in two arrays.
- 35% QE @ 178 nm
- each PMT digitized at 100MHz
- operating gain 1-5x10⁶ @
 1.5kV stable within 1-2 %
- SPE acceptance ~94%
- High reflectivity PTFE lining
 of entire inner volume
- Highly-transparent (>90%) grid electrodes

127 PMTs in the top array

121 PMTs in the bottom array

The XENON1T Light Detection System

 Highly-transparent (>90%) grid electrodes

Light and Charge Signals Stability

stability of many more variables are checked as function of time

Light and charge yield stability monitored with several sources:

- ²²²Rn daughters
- Activated Xe after neutron calibrations
- ^{83m}Kr calibrations
- ²¹⁴Bi and ²⁰⁸TI for high energy calibration
- Stability is within a few %

XENON1T: science and calibration data

- 279 days of DM data taking since Spring 2016
- The largest exposure reported so far with this type of detector

Energy Resolution

- Good agreement between predicted and measured background spectrum
- ⁸⁵Kr: ~0.66 ppt; ²¹⁴Pb: ~ 10 uBq/kg

- Energy scale from a combination of S1 and S2. Excellent linearity from keV to MeV
- Best energy resolution ever measured with a LXeTPC ~1.6% at 2.5 MeV and 6% at 40 keV

Position Reconstruction

- X-Y reconstruction via **neural network**:
 - Input: charge/channel top array
 - Training: Monte Carlo simulation

Position resolution using ^{83m}Kr

- Two interactions (9, 31 keV), same x-y
- Position resolution (1-2 cm)

Position corrections using ^{83m}Kr

- Drift field distortion
- Localized inhomogeneities from inactive PMTs
- Data-derived correction verified by comparison to MC with several event sources

Electronic Recoil Backgrounds

• Rn222 : 10 uBq/kg

²²²Rn

218Po

²¹⁴Pb

²¹⁴Bi

214Po

²¹⁰Pb

²¹⁰Bi

²¹⁰Po

²⁰⁶Pb

α

α

α

3.8 d

3.05 min

26.8 mir

19.9 mir

164 µs

22.3 a

5.0 d

138 d

stable

5.3 MeV

7.7 MeV

5.5 MeV

6.0 MeV

- Achieved with careful surface emanation control and measurements
- Further reduction with online cryogenic distillation
- Kr85 : sub-ppt Kr/Xe
 - Achieved with online cryogenic distillation
- Materials radioactivity (HPGe gamma screening): subdominant

ER Background Evolution

Source	Rate [t ⁻¹ y ⁻¹]	Fraction [%]
222Rn	620 ± 60	85.4
85Kr	31 ± 6	4.3
Solar v	36 ± 1	4.9
Materials	30 ± 3	4.1
136Xe	9 ± 1 1.4	
Total	720 ± 60	

(Expectations in 1-12 keV search window, 1t FV, single scatters, *before ER/NR discrimination*)

JCAP04 (2016) 027

Predicted: (considering considering 10 uBq/kg of ²¹⁴Pb and 0.66 ppt of Kr):

(71 ± 7) events / (t·year·keV)

Measured: in 1300 kg FV and below 25 keVee

(82+5-3 (syst) ± 2 (stat)) events / (t·year·keV)

Lowest ER background ever achieved in a DM detector !

Nuclear Recoil Backgrounds

Cosmogenic µ-induced neutrons significantly reduced by rock overburden and muon veto

- Coherent elastic v-nucleus scattering, is an an irreducible background at very low energy (1 keV)
- Radiogenic neutrons from (α, n) reactions and fission from ²³⁸U and ²³²Th: reduced via careful materials selection, event multiplicity and fiducialization

Source	Rate [t ⁻¹ y ⁻¹]	Fraction [%]
Radiogenic v	0.6 ± 0.1	96.5
CEVNS	0.012	2.0
Cosmogenic v	< 0.01	< 2.0

(Expectations in 4-50 keV search window, 1t FV, single scatters) JCAP04 (2016) 027

Dark Matter Search Data: Blinded and salted

- Blinding: to avoid potential bias in event selection and the signal/background modeling the nuclear recoil ROI (S2 vs S1 only) was blinded from the start of SR1 analysis (and SR0 re-analysis).
- Salting: to protect against post-unblinding tuning of cuts and background models, an undisclosed number and type of event was added to data

Event Selection & Detection Efficiency

- Detection efficiency dominated by 3-fold coincidence requirement
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in cS1
- 10 GeV (dashed) 50 GeV (dotted) and 200 GeV (dashed and dotted) WIMP spectra shown

Background prediction and Unblinding

FV volume increased from 1 tonne (in SR0 First Result) to 1.3 tonne thanks

to improvements in position reconstruction

Mass	1.3t	1.3t	0.9t
(S2, S1)	Full	Reference	Reference
ER	627±18	1.62±0.30	1.12±0.21
Neutron	1.43±0.66	0.77±0.35	0.41±0.19
CEvNS	0.05±0.02	0.03±0.01	0.02
AC	0.47+0.27-0.00	0.10-0.00+0.06	0.06-0.00+0.03
Surface	106±8	4.84±0.40	0.02
BG	735±20	7.36±0.61	1.62±0.28
Data	739	14	2
WIMPs best-fit (200GeV)	3.36	1.70	1.16

- Reference region is defined as between NR median and NR -2sigma
- ER is the most significant background and uniformly distributed in the volume
- Surface background contributes most in reference region, but its impact is subdominant in inner R
- Neutron background is less than one event, and impact is further suppressed by position information
- Other background components are completely sub-dominant
- Numbers in the table are for illustration. Statistical interpretation is done by profile likelihood analysis

Dark Matter Search Results

- Results interpreted with un-binned profile likelihood analysis in cs1, cs2, r space
- piechart indicate the relative PDF from the best fit of 200 GeV/c² WIMPs with a cross-section of 4.7x10⁻⁴⁷ cm²

Statistical Interpretation

- No significant (>3 sigma) excess at any scanned WIMP mass
- Background only hypothesis is accepted although the p-value of ~0.2 at high mass (200 GeV and above) does not disfavor a signal hypothesis either

- Extended un-binned profile likelihood analysis
- Example left: Background and 200 GeV WIMP signal best-fit predictions, assuming 4.7 x 10⁻⁴⁷ cm², compared to data in 1.3T and 0.9T
- Most significant ER & Surface backgrounds shape parameters included

XENON1T Dark Matter Search Results

- Most stringent 90% CL upper limit on WIMPnucleon cross section above 6 GeV
- Factor of 7 more sensitivity compared to previous experiments
- ~ 1sigma upper fluctuation from median sensitivity

Minimum at 4.1x10⁻⁴⁷ cm² for a WIMP of 30 GeV/c²

The next step: XENONnT

Aprile et al., Eur. Phys. J. C (2017) 77: 881. XENON1T sub-systems Aprile et al., JCAP 77 (2016), 358. online Rn-removal Aprile et al., Eur. Phys. J. C (2017) 77: 275. online Kr-removal Aprile et al., JCAP 4 (2016), 27. sensitivity

Minimal Upgrade

Background

Record low-back levels in XENON1T dominated by ²²²Rn-daughters.

Identified strategies to effectively reduce 222Rn by ~ a factor 10.

Fast Turnaround

Use XENON1T subsystems, already tested

Fast pace:

Installation starts in 2018 commissioning in 2019

The XENON1T infrastructure and sub-systems were originally designed to accommodate a larger LXe TPC.

XENONnT TPC features: total Xe mass = 8 t target mass = 5.9 t

Fiducial Xe Target

fiducial mass = -4t

Summary

• XENON1T experiment:

✓ Is it the LXE TPC with largest exposure? Yes

✓ Is it the experiment with lowest background in any DM detector? Yes

- \checkmark Did we put the strongest limit at hight WIMP mass? Yes
- Am I disappointed not having found DM? Yes

✓ Is there another episode? Yes: XENONnT

