T T

BT,

L

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

GPUs and the Heterogeneous

programming problem
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System
Agent &

s

s
5.
-

, Processor il
Graphics 5

Bua, ':J

1 e Ea Y

i e e B
B LR 1 A
s 0 ¥ o D

22 i, Lt === |, Including |
- ~-. STies Il T DMI, Display
T e
"' Shared L3 Cache** |1 :

.
k)

T Memory Controller I/0

Intel Labs 80 core Research N . .
processor Intel “Sandybridge” processor IBM Cell Broadband engine processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Hardware Diversity: Basic Building Blocks

Q CPU Core: one or more hardware threads sharing
= an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data

elements.
[iCache | SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

S

Hardware Diversity: Combining building

LLC

Multicore CPU

el [erfa e
§l168 68|88
§&|&é& & &
§&|e&[cE &

o
0o~
oo~
Joo~

fE8

LLC

Joo~

¢

=1

blocks to construct nodes

Manycore CPU

|| ICache ||| ICache |
Scheduler

Sl

[iCache || [ICache |

Scheduler Scheduler

SEEEld

Heterogeneous: CPU+GPU

fE
=
=
=

Joo~
Yo
Joo
Vo
Joo
¥orn
Joo~
¥opn

cl
cl
1

|-Bm

SO~
0o~
oo
0o~
Joo~
0o~

Ilﬁilﬁl:ﬁ =

Jou]| |N/Oo
oo~

=
BLEEL

Heterogeneous:
CPU + manycore coprocessor

Jor
Scheduler
(&)

e (R

Heterogeneous:
Integrated CPU+GPU

Let’s take a deeper look at the GPU:
The vertex pipeline

struct {
float x,vy,2z,w;
float r,qg,b,a;
} vertex;

struct {
vertex vO0,vl,v2
} triangle;

struct {
short int x,y;
float depth;
float r,qg,b,a;
} fragment;

struct {
int depth;
byte r,qg,b,a;
} pixel;

Application
\
Vertex assembly
— \ 4
Vertex operations

\ 4
Primitive assembly
ﬁ v

Primitive operations

\ 4
Rasterization
v

Fragment operations
/

N\
Y
=——p _ Frame buffer _>
v
Display

Thanks to Kurt Akeley

Wouldn’t be cool if
these stages of the
graphics pipeline
programmable?

programmable

RISC CPU _ P
Interconnect

System Bus -

Command
Processor

geometry

Geometry

——

Engines

Triangle Bus —*

Fragment .
Generators

Image

Engines

raster memory board raster memory board
display generator board | =’ > video

Silicon Graphics RealityEngine GPU - 860 billed as a "Cray-on-a-chip”
0.80 micron technology

1993 -
2.5M transistors 6/38

Programming GPUs

First paper on
GPGPU
programming |
could find dates to
1995 ... though the
term GPGPU didn’t
appear in the
literature until
~2000.

Accelerated Volume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware

Brian Cabral, Nancy Cam, and Jim Foran
Silicon Graphics Computer Systems*

Abstract

Volume rendering and reconstruction centers around solving two
related integral equations: a volume rendering integral (a general-
ized Radon transform) and a filtered back projection integral (the
inverse Radon transform). Both of these equations are of the same
mathematical form and can be dimensionally decomposed and ap-
proximated using Riemann sums over a series of resampled images.
When viewed as a form of texture mapping and frame buffer accu-
mulation, enormous hardware enabled performance acceleration is
possible.

1 Introduction

Volume Visualization encompasses not only the viewing but also
the construction of the volumetric data set from the more basic pro-
jection data obtained from sensor sources. Most volumes used in
rendering are derived from such sensor data. A primary example
being Computer Aided Tomographic (CAT) x-ray data. This data
is usually a series of two dimensional projections of a three di-
mensional volume. The process of converting this projection data
back into a volume is called tomographic reconstruction.* Once a
volume is tomographically reconstructed it can be visualized using
volume rendering techniques.[5, 7, 13, 15, 16, 17]

These two operations have traditionally been decoupled, being
handled by two separate algorithms. It is, however, highly benefi-
cial to view these two operations as having the same mathematical
and algorithmic form. Traditional volume rendering techniques can
be reformulated into equivalent algorithms using hardware texture
mapping and summing buffer. Similarly, the Filtered Back Pro-
jection CT algorithm can be reformulated into an algorithm which
also uses texture mapping in combination with an accumulation or
summing buffer.

The mathematical and alocornthmice cimilarsty of thece two aner.

[x(), ()

Figure 1: The Radon transform represents a generalized line
integral projection of a 2-D (or 3-D) function f(z,y,z) onto a
line or plane.

der and reconstruct volumes at rates of 100 to 1000 times faster than
CPU based techniques.

2 Background: The Radon and Inverse Radon
Transform

We begin by developing the mathematical basis of volume rendering
and reconstruction. The most fundamental of which is the Radon

The evolutions of the GPU

1st generation: Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500 (1998)

3rd Generation: GeForce3/Radeon 8500 (2001).
The first GPU to allow a limited programmability in
the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX (2002):
The first generation of “fully-programmable™
graphics cards.

5th Generation: GeForce 8800/HD2900 (2006) and
the birth of CUDA

Third party names are the property of their owners

Understanding GPGPU programming:
SIMD Architecture

® Single Instruction Multiple Data (SIMD)

® Central controller broadcasts instructions to
multiple processing elements (PEs)

— Only requires one controller for whole array |

— Only requires storage for one copy of
program

— All computations fully synchronized

Thinking Machines Corp CM-200
(early 90’s).

Inter-PE Connection Network

T

> PE |[* PE [> PE [* PE [

Array [P
Controller

Control >
Data <>

302 > [>

302 > [>
302 &> [>
302 &> [>

S0 = &>
S0 = &>
S0 = &>
S0 = &>

The SIMT model (single instruction Multiple thread)

1. Turn source code into a scalar

instruction stream

extern void reduce(__local float*, _ global float*);

__kernel void pi(const int niters, float step_size,
__local float* |_sums, _ global float* p_sums)
{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f;, inti,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

L_sumsl[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

2. Map instruction
streams ontoanan N
dim index space

0000 0000 0000 0000
0000 0000 0000 0OOOGO
0000 0000 0000 OOOGO
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 GOOOGO
0000 0000 0000 OOOGO
0000 0000 0000 0000
QO e000® 0000 0000 0000
0000 0000 0000 GOOOGO
0000 0000 0000 OOOGO
0000 0000 0000 0000
0000 0000 0000 00OGO
0000 0000 0000 OOOGO
0000 0000 0000 00OGO
0000 0000 0000 000GO

w
<
Q
©
o

ata structures
onto the same index
space

4. Run on hardware

designed around
the same SIMT

execution model

10

SIMT execution strategy

 The underlying GPU hardware is still a vector processor ...
Individual scalar instruction streams are grouped together for SIMD
execution on hardware

UTO pT1 pT2 uT3 pT4 pTS5 pTe uT7

1d x
A streamof | mul a
Scalar 1d y
instructions add

st y

<€ >

SIMD execution scheduled across a fixed
number of SIMD Lanes ... NVIDIA calls this
set of work-items a warp

e But the programmer writes scalar code that runs in multiple vector
lanes often much easier than traditional vectorization

Slide thanks to Krste Asanovic

Programming models for SIMT platforms

* Proprietary solutions based on CUDA and OpenACC.

« But there are Open Standard solutions (supported to
varying degrees by all major vendors)

SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
Basically, an Open Standard that generalizes the SIMT
platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based
on the same work that was used to create OpenACC.
Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

*third party names are the property of their owners 12

Our Strategy

* We will start with OpenCL ... the Open Standard

* We will explore the full range of issues required to
program a GPU.

« We will then (time permitting) show how the same
concepts map onto the other key GPGPU models
- CUDA
— OpenMP 4.5 and OpenACC

* We will close with high level observations on the field
of GPGPU computing

13

