
11

GPUs and the Heterogeneous
programming problem

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

21
.4

m
m

26.5mm

System Interface + I/O

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

22

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 … A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core: one or more hardware threads sharing
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More
threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

Hardware Diversity: Combining building
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous:

Integrated CPU+GPU

Heterogeneous:
CPU + manycore coprocessor

Manycore CPU

Let’s take a deeper look at the GPU:
The vertex pipeline

5

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
float x,y,z,w;
float r,g,b,a;

} vertex;

struct {
vertex v0,v1,v2

} triangle;

struct {
short int x,y;
float depth;
float r,g,b,a;

} fragment;

struct {
int depth;
byte r,g,b,a;

} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool if
these stages of the
graphics pipeline
programmable?

6/38

High-end GPUs have historically been
programmable

Silicon Graphics RealityEngine GPU
1993

Intel i860
RISC CPU

Custom ASIC
for processor
interconnect

• I860 billed as a “Cray-on-a-chip”
0.80 micron technology
2.5M transistors

7/38

Programming GPUs

First paper on
GPGPU
programming I
could find dates to
1995 … though the
term GPGPU didn’t
appear in the
literature until
~2000.

The evolutions of the GPU

8

1st generation: Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500 (1998)

3rd Generation: GeForce3/Radeon 8500 (2001).
The first GPU to allow a limited programmability in
the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX (2002):
The first generation of “fully-programmable”
graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900 (2006) and
the birth of CUDA

Understanding GPGPU programming:
SIMD Architecture
§ Single Instruction Multiple Data (SIMD)
§Central controller broadcasts instructions to

multiple processing elements (PEs)
– Only requires one controller for whole array
– Only requires storage for one copy of

program
– All computations fully synchronized

Array
Controller

Inter-PE Connection Network

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

Control
Data

Thinking Machines Corp CM-200
(early 90’s).

The SIMT model (single instruction Multiple thread)

10

extern void reduce(__local float*, __global float*);

__kernel void pi(const int niters, float step_size,
__local float* l_sums, __global float* p_sums)

{
int n_wrk_items = get_local_size(0);
int loc_id = get_local_id(0);
int grp_id = get_group_id(0);
float x, accum = 0.0f; int i,istart,iend;

istart = (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters;

for(i= istart; i<iend; i++){
x = (i+0.5f)*step_size; accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);
reduce(l_sums, p_sums);

}

1. Turn source code into a scalar
instruction stream

2. Map instruction
streams onto an an N

dim index space

4. Run on hardware
designed around
the same SIMT

execution model

3. Map data structures
onto the same index

space

SIMT	execution	strategy
• The	underlying	GPU	hardware	is	still	a	vector	processor	…

Individual	scalar	instruction	streams	are	grouped	together	for	SIMD	
execution	on	hardware

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

SIMD execution scheduled across a fixed
number of SIMD Lanes … NVIDIA calls this
set of work-items a warp

Slide thanks to Krste Asanovic

• But	the	programmer	writes	scalar	code	that	runs	in	multiple	vector	
lanes	….	often	much	easier	than	traditional	vectorization

Programming models for SIMT platforms

• Proprietary solutions based on CUDA and OpenACC.
• But there are Open Standard solutions (supported to

varying degrees by all major vendors)

12

SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
Basically, an Open Standard that generalizes the SIMT
platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based
on the same work that was used to create OpenACC.
Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

*third party names are the property of their owners

Our Strategy

• We will start with OpenCL … the Open Standard
• We will explore the full range of issues required to

program a GPU.
• We will then (time permitting) show how the same

concepts map onto the other key GPGPU models
– CUDA
– OpenMP 4.5 and OpenACC

• We will close with high level observations on the field
of GPGPU computing

13

