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GPUs and the Heterogeneous 
programming problem

Tim Mattson (Intel Labs) 

Intel Labs 80 core Research 
processor

Intel labs 48 core SCC processor
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IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm 
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor
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Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the 
speakers and not their employer.

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.  

• This was a team effort, but if we say anything really 
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt 
Keutzer and his team for CS194 … A UC Berkeley course 
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.



Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core:  one or more hardware threads sharing 
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a 
single stream of instructions drives multiple data 
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More 
threads than functional units.  Over subscription to hide 
latencies. Optimized for throughput.   



Hardware Diversity: Combining building 
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous: 

Integrated CPU+GPU

Heterogeneous: 
CPU + manycore coprocessor

Manycore CPU



Let’s take a deeper look at the GPU:
The vertex pipeline
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Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
float x,y,z,w;
float r,g,b,a;

} vertex;

struct {
vertex v0,v1,v2 

} triangle;

struct {
short int x,y;
float depth;
float r,g,b,a;

} fragment;

struct {
int depth;
byte r,g,b,a;

} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool if 
these stages of the 
graphics pipeline 
programmable?
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High-end GPUs have historically been 
programmable

Silicon Graphics RealityEngine GPU
1993

Intel i860 
RISC CPU

Custom ASIC
for processor
interconnect

• I860 billed as a “Cray-on-a-chip”
0.80 micron technology
2.5M transistors
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Programming GPUs

First paper on 
GPGPU 
programming I 
could find dates to 
1995 … though the 
term GPGPU didn’t 
appear in the 
literature until 
~2000.



The evolutions of the GPU
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1st generation: Voodoo 3dfx (1996)

2nd Generation: 
GeForce 256/Radeon 7500 (1998)

3rd  Generation: GeForce3/Radeon 8500 (2001). 
The first GPU to allow a limited programmability in 
the vertex pipeline.  

4th  Generation: Radeon 9700/GeForce FX (2002): 
The first generation of “fully-programmable” 
graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900 (2006) and 
the birth of CUDA



Understanding GPGPU programming: 
SIMD Architecture
§ Single Instruction Multiple Data (SIMD)
§Central controller broadcasts instructions to 

multiple processing elements (PEs)
– Only requires one controller for whole array
– Only requires storage for one copy of 

program
– All computations fully synchronized

Array 
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Thinking Machines Corp CM-200 
(early 90’s).



The SIMT model (single instruction Multiple thread)
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extern void reduce(   __local  float*,   __global float*);          

__kernel void pi(  const int niters, float  step_size,    
__local  float*  l_sums,  __global float*  p_sums)                 

{                                                          
int n_wrk_items = get_local_size(0);                 
int loc_id = get_local_id(0);     
int grp_id = get_group_id(0);             
float x, accum = 0.0f;    int i,istart,iend;                                      

istart =   (grp_id * n_wrk_items + loc_id) * niters;
iend = istart+niters; 

for(i= istart; i<iend; i++){ 
x = (i+0.5f)*step_size;    accum += 4.0f/(1.0f+x*x); }

l_sums[local_id] = accum;
barrier(CLK_LOCAL_MEM_FENCE);  
reduce(l_sums, p_sums);                  

}

1. Turn source code into a scalar 
instruction stream

2. Map instruction 
streams onto an an N 

dim index space

4. Run on hardware 
designed around 
the same SIMT 

execution model

3. Map data structures 
onto the same index 

space



SIMT	execution	strategy
• The	underlying	GPU	hardware	is	still	a	vector	processor	…

Individual	scalar	instruction	streams	are	grouped	together	for	SIMD	
execution	on	hardware

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

A stream of 
Scalar 
instructions

SIMD execution scheduled across a fixed 
number of SIMD Lanes …  NVIDIA calls this 
set of work-items a warp

Slide thanks to Krste Asanovic

• But	the	programmer	writes	scalar	code	that	runs	in	multiple	vector	
lanes	….	often	much	easier	than	traditional	vectorization



Programming models for SIMT platforms

• Proprietary solutions based on CUDA and OpenACC.
• But there are Open Standard solutions (supported to 

varying degrees by all major vendors)
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SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
Basically, an Open Standard that generalizes the SIMT 
platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based 
on the same work that was used to create OpenACC.  
Therefore, just like OpenACC, you can program a GPU 
with OpenMP!!!

*third party names are the property of their owners



Our Strategy

• We will start with OpenCL … the Open Standard
• We will explore the full range of issues required to 

program a GPU.
• We will then (time permitting) show how the same 

concepts map onto the other key GPGPU models
– CUDA
– OpenMP 4.5 and OpenACC

• We will close with high level observations on the field 
of GPGPU computing
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