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LHC: a new precision machine?

LHC: built to be discovery machine
Higgs boson: discovered
BSM particles: nothing yet

Direct discovery:
requires a decent signal to be identified over a huge background

Indirect discovery:
identify small deviations from the Standard Model expectations

In both cases, the keyword is: precision
Need very precise measurements and theoretical predictions!
Partly, the first depend on the second

LHC → protons → QCD → precision is a challenge!
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The three pillars of LHC pheno

architecture.knoji.com

Parton showers
Fixed-order

Resummation

•powerful general-purpose tools
•provide fully differential events
•interfaced with non-perturbative
   models to give a realistic description
•all-orders, but theoretical accuracy          
   beyond leading-log difficult to assess

•well defined and improvable     
  accuracy (examples up to N3LL)
•provide insights and understanding
•feasible for a limited number of          
  observables (low automation)

•exploit QCD pert. expansion
•NLO highly automated
•can provide fully differential events
•NNLO revolution on its way
•N3LO examples
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A successful example: tt̄ total cross section

[Czakon,Fiedler,Mitov,Rojo 1305.3892]FURTHER EXPLORATION OF TOP PAIR HADROPRODUCTION AT NNLO 5

 50

 100

 150

 200

 250

 300

 350

 6.5  7  7.5  8  8.5

σ
to

t [
p

b
]

√s [TeV]

Indep. µF,R variation
PP → tt+X; mtop=173.3 GeV

MSTW2008(68c.l.) LO; NLO; NNLO

NNLO (scales)
NLO (scales)

LO (scales)
CMS, 7TeV

ATLAS+CMS, 7TeV
ATLAS, 7TeV

CMS, 8TeV

 120

 140

 160

 180

 200

 220

 240

 260

 280

σ
to

t [
p

b
]

Scale variation

LO

NLO
NNLO

LL
NLL

NNLL
LL NLL

NNLL

LHC 8 TeV; mtop=173.3 GeV; A=0
MSTW2008 LO; NLO; NNLO

Fixed Order
NLO+res

NNLO+res

Fig. 2. – Scale dependence of the predicted cross-section at LO, NLO and NNLO at the LHC
as a function of

√
s (left). On the right plot: detailed breakdown of scale uncertainty for LHC

8 TeV at LO, NLO and NNLO including also soft-gluon resummation at LL, NLL and NNLL.

resummation. Inclusion of resummation with logarithmic accuracy at NLL or NNLL
also noticeably decreases the scale dependence of the theoretical prediction, as expected.
The absolute size of the resulting reduction in scale dependence is also at the 2% level.

An alternative way of assessing the impact of soft-gluon resummation is shown in
fig. 3 (which updates fig. 1 of Ref. [18] by including the exact NNLO result). Plotted
is the relative error of the cross-section at the LHC as a function of the collider energy.
We consider a broad range of energies, starting from slightly above the tt̄ production
threshold and going up to 45 TeV which is far above threshold. In all cases we observe
that the inclusion of soft gluon resummation extends the validity of the perturbative
prediction closer to threshold. For large collider energies the enhanced tt̄ threshold
contribution gets reduced and, indeed, we observe that the resummed and unresummed
predictions converge to each other in this case. We also notice that the difference between
NLL and NNLL is small and is more pronounced when added on top of the NLO result
(as anticipated). Finally we note that the inclusion of soft-gluon resummation on top
of the NNLO result makes the relative scale uncertainty practically independent of the
collider energy, except of course for the immediate threshold region which, a posteriori,
is another justification for the use of soft-gluon resummation.

5. – Application to searches for physics beyond the Standard Model

In addition to being a powerful tool for testing the Standard Model, the high precision
of the total inclusive tt̄ production cross-section presents an opportunity for devising new
strategies for searches of physics beyond the Standard Model. A first exploration of the
improvements in BSM searches arising from NNLO top data was presented in Ref. [9],
where it was shown that the use of top quark data in a NNLO global PDF fit leads to
an improved determination of the poorly known large-x gluon PDF. This improvement
then translates into more accurate predictions for BSM heavy particle production and
for the large mass tail of the Mtt distribution, the latter used in searches of new heavy
resonances which decay into top quarks.

While the above examples illustrate the indirect improvement in BSM searches due
to top quark data, high-precision top production can also impact BSM studies directly,

Perturbative expansion converges nicely
Theoretical uncertainty shrinks increasing the order
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Precision is nothing without accuracy

A very precise (small uncertainty) determination of a cross section which is
far from the “true” value is not good for anyone...

A realistic determination of the theory uncertainties is
preferred/mandatory!
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How accurate are current theoretical predictions?

For many processes NNLO scale band is ~±2%  
Though only in 3/17 cases is NNLO (central) within NLO scale band…

WHAT PRECISION AT NNLO?

11
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How do we determine theory uncertainties?

Fact: theory computations depend on unphysical scales (factorization µF,
renormalization µR, ...)

σ(mH) =
∑
i,j

Cij

(
αs(µR), µR

mH
,
µF

mH

)
⊗ fi(µF)⊗ fj(µF)

These scales are fictitious, and the scale dependence is formally higher
order (i.e., it vanishes to all orders)

Idea: vary the scale(s) about a given arbitrary central value to probe
higher orders

Canonical method: Scale variation
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Scale variation

Pros:
simple
applicable to all processes

Caveats:
which central scale? → no large logs in C
how much should I vary the scale? → canonical factor 2
the variation only probes a limited class of higher order terms: is it
significant? → it depends (e.g., other channels)
how do I construct an uncertainty from the variations?
→ envelope, or symmetrized max deviation
how do I interpret the uncertainty? → good question...
what if I’m close to a stationary point? → good luck!
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Higgs production in gluon fusion at LHC

Dominant production mechanism

Gluon Fusion

t
t

t
H

dominant production mode
sensitive to heavy particle spectrum

R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 31 / 42

(one order of magnitude larger than
vector-boson fusion)
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 H (N3LO QCD + NLO EW)

→pp 

 qqH (NNLO QCD + NLO EW)

→pp 

 WH (NNLO QCD + NLO EW)

→pp 

 ZH (NNLO QCD + NLO EW)

→pp 

 ttH (NLO QCD + NLO EW)

→pp 

 bbH (NNLO QCD in 5FS, NLO QCD in 4FS)

→pp 

 tH (NLO QCD, t-ch + s-ch)

→pp 

Recently computed to N3LO
[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger 1602.00695]
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Scale variation not promising...

Canonical scale variation by a factor of 2 fails for ggH and many others

The problem seems to lie on the large perturbative corrections compared
with the size of scale dependent terms.

Possible solutions:
symmetrising is always better (in vicinity of a stationary point)
increase the scale variation range (factor 4? 10?)
revert to a different perturbative expansion ←
consider other sources of uncertainty from missin higher orders ←
attack the problem in a completely different way ←

Comment: having a statistical interpretation is useful for including theory
uncertainties in PDF fits.
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Reverting to a different perturbative expansion

The fixed order expansion is just a way to organize the perturbative series

C(αs) =
∑

k

αk
s C

(k)

Nothing prevents us to reshuffle the terms in the series

I’ll consider two options:
resummation: it’s an expansion in αs at fixed αs log(something)
non-linear transformations for convergence acceleration
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Why resummation?

In general, perturbative coefficients contain logarithms of scaleless ratios.
Sometimes, these are logarithmically enhanced:

αs : logX X = E1/E2

α2
s : log2 X, logX
α3

s : log3 X, log2 X, logX
αn

s : logn X, . . . , logX

If/when αs logX ∼ 1 → fixed-order expansion no longer predictive!

Resum the logs, and convert to a “logarithmic-order” expansion:

gLL(αs logX) + αs gNLL(αs logX) + α2
s gNNLL(αs logX) + . . .

Leading Log (LL), Next-to-Leading Log (NLL), Next-to-Next-to-Leading
Log (NNLL)...
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Threshold resummation

Inclusive cross section: the scales are
mH : Higgs mass
√
ŝ: partonic center of mass energy

Scaleless ratio:

z = m2
H

ŝ

{
zŝ→ energy that flows into the Higgs
(1− z)ŝ→ energy for extra radiation

Multiple gluon emissions induce terms

αn
s

(
lnk(1− z)

1− z

)
+
, 0 ≤ k ≤ 2n− 1

large in the partonic threshold (soft) limit ŝ ∼ m2
H , when the remaining available

energy for gluon radiation (1− z)ŝ is low (soft gluons).

In Mellin N space (soft region: N →∞)

αn
s lnk N, 0 ≤ k ≤ 2n
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Improved threshold resummation
Standard dQCD resummation gives

Cgg(N,αs) N→∞= g0
(
αs,

mH
mt

)
× expS(αs, lnN) +O(1/N)

αsS(αs, lnN) = g1(αs lnN) + αsg2(αs lnN) + α2
sg3(αs lnN) + α3

sg4(αs lnN) + . . .

[Sterman 1987] [Catani, Trentadue 1989] [Forte, Ridolfi 2003]

Resums lnj N , contains constants (corresponding to δ(1− z)), and nothing else.
Resummation doesn’t fix subleading contributions suppressed by 1/N !

Can be improved taking into account [MB,Marzani 2014]

exact single gluon emission kinematics

lnN → ψ0(N)

collinear contributions from the full splitting function Pgg

N → N + 1 (in its simplest form)

exponentiation of (some) constants
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Benefits of using a resummed expansion

Resummed expansion (valid in the limit of large log) is then matched to
the fixed-order expansion (valid, hopefully, elsewhere).

The resummed and matched series allows to:
speed up perturbative convergence
estimate theory uncertainty from

scale variation
subleading-log (all-order!) contributions
(moving constants in the exponent)
subleading-power (all-order!) contributions
(changing 1/N contributions)

Our proposal: [MB,Marzani,Muselli,Rottoli 2016]
vary all these things (42 variations) and take an envelope
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Higgs resummed expansion
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Perturbative convergence sped up!
Reduction of theory uncertainty increasing the order
Less sensitivity to central scale
More reliable uncertainty estimate (statistical interpretation still missing...)
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Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
−3.9 16.0+4.3

−3.1 13.8+3.2
−2.4 11.9+2.5

−1.9

NLO 44.2+12.0
−8.5 36.9+8.4

−6.2 31.6+6.3
−4.8 27.5+4.9

−3.9

NNLO 50.7+3.4
−4.6 46.5+4.2

−4.7 42.4+4.6
−4.4 38.6+4.4

−4.0

N3LO 48.1+0.0
−7.5 48.1+0.1

−1.8 46.5+1.6
−2.6 44.3+2.5

−2.9

LO+LL 24.0+8.9
−6.8 20.1+6.2

−5.0 16.9+4.5
−3.7 14.3+3.3

−2.8

NLO+NLL 46.9+15.1
−12.6 46.2+15.0

−13.2 46.7+20.8
−13.8 47.3+26.1

−15.8

NNLO+NNLL 50.2+5.5
−5.3 50.1+3.0

−7.1 51.9+9.6
−8.9 54.9+17.6

−11.5

N3LO+N3LL 47.7+1.0
−6.8 48.5+1.5

−1.9 50.1+5.9
−3.5 52.9+13.1

−5.3
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Same method applied to pseudo-scalar Higgs production

dQCD→

[Ahmed,MB,
Kumar,Mathews,
Rana,Ravindran,
Rottoli 2016]
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Non-linear sequence transformations

NONLINEAR SEQUENCE TRANSFORMATIONS 
FOR THE ACCELERATION OF CONVERGENCE 

AND THE SUMMATION OF DIVERGENT SERIES 

Ernst Joachim WENIGER 

Institut ftir PhysikaIische und Theoretische Chemie, Universitiit Regensburg, D-8400 Regensburg, 
Federal Republic of Germany 

1989 

NORTH-HOLLAND - AMSTERDAM 

Given a sequence s1, s2, ..., sn, ... (partial sums of a perturbative expansion) with

lim
n→∞

sn = s

(all-order cross section) one can speed up the convergence by applying a
non-linear transformation to the sequence. Used e.g. for determination of special
functions from series representations.

Caveat: if you know all the terms in the expansion, you can select the best
algorithm, and check the convergence; but we only know the first few terms of
the perturbative series...
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One formula to describe them all

G(n)
k (qm, sn, ωn) =

k∑
j=0

(−1)j

(
k

j

) k−1∏
m=1

n+ j + qm

n+ k + qm

sn+j

ωn+j

k∑
j=0

(−1)j

(
k

j

) k−1∏
m=1

n+ j + qm

n+ k + qm

1
ωn+j

From different forms of qm and ωn many algorithms are
generated/recovered.

s
?= lim

k+n→∞
G(n)

k
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Application to the Higgs cross section

Idea 1: Choose some “good” algorithms and compute a guess for the
all-order cross section [David,Passarino 2013]

Idea 2: Choose many algorithms and compute many guesses (∼ 100) for
the all-order cross section. Do it for several choices of the central scale (the
sum must be the same). Observe. Decide. [MB,Marzani,Muselli,Rottoli 2016]

Note: statistical interpretation still missing, but not impossible...
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Figure 5. Distributions of the Higgs cross section at 13 TeV as obtained using the various convergence acceler-
ation algorithms described in the text. Both the fixed-order (orange) and the resummed (blue) expansions are
shown, for the four scales µR = µF = mH/2 (top left), mH (top right), mH/4 (bottom left) and 2mH (bottom
right).

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

Fixed-order expansion 48.7 ± 1.0 48.7 ± 1.2 46.3 ± 4.6 44.6 ± 9.3

Resummed expansion 48.9 ± 0.5 48.9 ± 0.6 50.2 ± 1.0 52.6 ± 1.6

Table 5. Mean and standard deviation of the estimates of the all-order sum of the fixed-order (first row) and
resummed (second row) expansions, based on the set of convergence acceleration algorithms described in the
text.

All the numbers in Tab. 5 come from estimates of the all-order sum of the series, which should
be then the same for all scales and for both the fixed-order and the resummed expansions. They are
indeed all compatible within the quoted errors, except the resummed result at µ0 = 2mH which is
higher than most of the other results: this is just a consequence of the limited statistical meaning of
the error estimates, which does not take into account the shape of the distribution of the results, which
is rather asymmetric in this case. The smaller standard deviation on the resummed results shows once
again that the resummed series converges faster, as well as the smaller standard deviation on the
results at lower scales indicates that using µ0 = mH/2 or µ0 = mH/4 leads to a faster convergence, in

– 19 –
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Accelerated Higgs cross section
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A different approach based on Bayesian statistics

Cacciari and Houdeau (2011) proposed a statistical model for the
interpretation of theory uncertainties, from which one can compute the
uncertainty on the truncated perturbative series for a given degree of belief
(DoB) given the first terms in the expansion.

σ =
∑

n

cnα
n
s

Quoting from the original paper:
We make the assumption that all the coefficients cn in a perturbative series
share some sort of upper bound c̄ > 0 to their absolute values, specific to
the physical process studied. The calculated coefficients will give an
estimate of this c̄, restricting the possible values for the unknown cn.

The model assumes a prior for f(c̄) and a prior for f(cn|c̄). Since a small
number of cn are known, a good prior is quite useful

The method outputs a probability density for σ: statistical interpretation!
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Improvements of the CH method

To account for a possible power growth (CH)

σ = σLO

∞∑
k=0

ck(λ)
(
αs

λ

)k

Considering also a factorial (renormalon) growth (CH)
[Bagnaschi,Cacciari,Guffanti,Jenniches 2014]

σ = σLO

∞∑
k=0

bk(λ, k0) (k + k0)!
(
αs

λ

)k

Problem: determining λ

Solution 1: [Bagnaschi,Cacciari,Guffanti,Jenniches 2014]
survey over several observables (assumes λ is process-independent)

Solution 2: ← [Forte,Isrgò,Vita 2013]
fit λ requiring the first known coefficients ck(λ) are of the same size

Solution 3: [MB,Borroni (work in progress)]
making λ a parameter of the model, with its own prior
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CH: results
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Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections for the four
scales µF = µR = mH/4, mH/2, mH, 2mH (from left to right). For the four values of the scales, the fitted values
of � are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1 ± 0.7(1.2) 48.1 ± 0.6(1.0) 46.5 ± 2.1(3.5) 44.3 ± 3.5(5.8)

CH 48.1 ± 1.2(1.9) 48.1 ± 1.2(2.0) 46.5 ± 4.2(7.0) 44.3 ± 6.9(11.5)

Table 4. N3LO results and their CH and CH uncertainties at 68% DoB (95% DoB in brackets).

are all of the same size. In fact, as we also confirmed, it is convenient to exclude the first coefficient
from the fit, on the ground that the LO result is not in line with the next orders (it is much smaller),
and the fact that this fit aims at guessing the asymptotic behaviour of the coefficients. In the results
that follow, we will then use for each method (CH and CH) the value of � obtained by such fit.

In Fig. 4 we show the four results at LO, NLO, NNLO and N3LO for the four scales µF = µR =

mH/4, mH/2, mH, 2mH, each with the two versions (CH and CH) of the Cacciari-Houdeau uncertainty.
We observe that the CH uncertainty is larger than the CH one at LO and NLO, but is smaller at NNLO
and N3LO: this effect originates from the factorial contribution, which changes the relative weight of the
individual orders in the determination of the uncertainty. In this respect, the CH uncertainty at N3LO
is more conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)
is able to cover the next order only at NNLO, while for lower orders only the 95% DoB uncertainty
(thinner band) works (except at LO for CH). We also see that for small scales µF = µR = mH/4, mH/2

the uncertainty shrinks considerably as the perturbative order increases, an indication that the series
is converging. For larger scales, µF = µR = mH, 2mH, the observed pattern is much worse and, as a
consequence, the uncertainty band of the N3LO is still large.

In Tab. 4 we report the value of N3LO cross section together with its uncertainty as obtained

– 16 –
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Something else?
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Summary
A careful treatment of theory uncertainties is mandatory for precision physics
at LHC.

A statistical definition of theory uncertainties will be also useful for PDF fits
and experimental analyses

Options:
Canonical scale variation often fails, and has no statistical interpretation
Non-canonical scale variation might not be the best way
Reverting to a different expansion (resummed, accelerated) is promising
Estimate other sources of unknown higher orders other than scale dependent
terms
CH Bayesian approach gives a statistical interpretation of theory uncertainties,
but room for improvements

Future: construct a new statistical model, along the lines of CH, which uses
more information to provide a better estimate
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