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LHC: a new precision machine?

LHC: built to be discovery machine
@ Higgs boson: discovered
@ BSM particles: nothing yet

Direct discovery:
requires a decent signal to be identified over a huge background

Indirect discovery:
identify small deviations from the Standard Model expectations

In both cases, the keyword is: precision
Need very precise measurements and theoretical predictions!
Partly, the first depend on the second

LHC — protons — QCD — precision is a challenge!
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Simone Marzani

jife three pillars of LHC pRERS

Ye0) iR -
©O)(¢ i \ Resummation

e well defined and improvable
accuracy (examples up to N3LL)

¢ provide insights and understanding

! l efeasible for a limited number of

Doric Tonic Corinthian observables (low automation)

architecture knoji.com

Parton showers

| * powerful general-purpose tools leed_order

| *provide fully differential events i i

| *interfaced with non-perturbative * exploit QCD pert. expansion
models to give a realistic description *NLO h\ghly automated !

eall-orders, but theoretical accuracy * can provide fully differential events
beyond leading-log difficult to assess *NNLO revolution on its way

*N3LO examples
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A successful example: tt total cross section

[Czakon,Fiedler,Mitov,Rojo 1305.3892]

Scale variation
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Perturbative expansion converges nicely
Theoretical uncertainty shrinks increasing the order
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http://arxiv.org/abs/1305.3892

Precision is nothing without accuracy

PRECISION VS ACCURALCY

©OLOJO)

|/ Precision X Precision X Precision + Precision
X Accuracy v’ Accuracy X Accuracy /' Accuracy

A very precise (small uncertainty) determination of a cross section which is
far from the “true” value is not good for anyone...

A realistic determination of the theory uncertainties is
preferred/mandatory!
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How accurate are current theoretical predictions?

WHAT PRECISION AT NNLO?
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How do we determine theory uncertainties?

Fact: theory computations depend on unphysical scales (factorization pp,
renormalization pg, ...)

ZCZ] (as ,UR NR P > & fZ(MF) ® fJ (MF)

These scales are fictitious, and the scale dependence is formally higher
order (i.e., it vanishes to all orders)

Idea: vary the scale(s) about a given arbitrary central value to probe
higher orders

Canonical method: Scale variation

Marco Bonvini Quantifying theoretical uncertainties



Scale variation

Pros:
@ simple

@ applicable to all processes

Caveats:
@ which central scale? — no large logs in C
@ how much should I vary the scale? — canonical factor 2

@ the variation only probes a limited class of higher order terms: is it
significant? — it depends (e.g., other channels)

@ how do | construct an uncertainty from the variations?
— envelope, or symmetrized max deviation

how do | interpret the uncertainty? — good question...

what if I'm close to a stationary point? — good luck!
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Higgs production in gluon fusion at LHC

Dominant production mechanism
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(one order of magnitude larger than
vector-boson fusion) 10
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Recently computed to N3LO
[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger 1602.00695]
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http://arxiv.org/abs/1602.00695

in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT
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in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT
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in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT
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in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT

o [pb]
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in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT
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in gluon fusion at LHC: perturbative (in)stability

my = 125 GeV at LHC 13 TeV in the rEFT
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Scale variation not promising...

Canonical scale variation by a factor of 2 fails for ggH and many others

The problem seems to lie on the large perturbative corrections compared
with the size of scale dependent terms.

Possible solutions:
@ symmetrising is always better (in vicinity of a stationary point)

@ increase the scale variation range (factor 47 107?)

@ revert to a different perturbative expansion +—
@ consider other sources of uncertainty from missin higher orders +—
@ attack the problem in a completely different way —

Comment: having a statistical interpretation is useful for including theory
uncertainties in PDF fits.
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Reverting to a different perturbative expansion

The fixed order expansion is just a way to organize the perturbative series
Clas) = Z ok o
k
Nothing prevents us to reshuffle the terms in the series

I'll consider two options:
@ resummation: it's an expansion in «; at fixed a;log(something)

@ non-linear transformations for convergence acceleration
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Why resummation?

In general, perturbative coefficients contain logarithms of scaleless ratios.
Sometimes, these are logarithmically enhanced:

Qs log X X =E1/E
ol log® X, log X

ozf: log® X, log? X, log X

" log" X, cey log X

If /when a;log X ~ 1 — fixed-order expansion no longer predictive!
Resum the logs, and convert to a “logarithmic-order” expansion:
grr(aslog X) 4 o gnon(as log X) 4 o2 ganen(as log X) + ...

Leading Log (LL), Next-to-Leading Log (NLL), Next-to-Next-to-Leading
Log (NNLL)...
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Threshold resummation

Inclusive cross section: the scales are
@ my: Higgs mass
(4] \/§: partonic center of mass energy

Scaleless ratio:

z =

my { z§ — energy that flows into the Higgs
8

(1 — 2)§ — energy for extra radiation

Multiple gluon emissions induce terms

k J—
d;(w) , 0<k<2n—1
+

1—=2

large in the partonic threshold (soft) limit § ~ m%, when the remaining available
energy for gluon radiation (1 — 2)3 is low (soft gluons).

In Mellin N space (soft region: N — o)

o In" N, 0<k<2n
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Improved threshold resummation

Standard dQCD resummation gives

Cgg(N, as) Nzoe 9o (as, ':;f ) x exp S(as,In N) +O(1/N)

@sS(ae,InN) = gi(asIn N) + asgz2(asIn N) + a2ga(asIn N) + algi(asIn N) + ...

[Sterman 1987] [Catani, Trentadue 1989] [Forte, Ridolfi 2003]
Resums In/ N, contains constants (corresponding to §(1 — 2)), and nothing else.

Resummation doesn't fix subleading contributions suppressed by 1/N!

Can be improved taking into account [MB,Marzani 2014]

@ exact single gluon emission kinematics
In N — 1o(N)
@ collinear contributions from the full splitting function Py,
N—>N+1 (in its simplest form)

@ exponentiation of (some) constants
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Benefits of using a resummed expansion

Resummed expansion (valid in the limit of large log) is then matched to
the fixed-order expansion (valid, hopefully, elsewhere).

The resummed and matched series allows to:
@ speed up perturbative convergence
@ estimate theory uncertainty from

o scale variation

o subleading-log (all-order!) contributions
(moving constants in the exponent)

o subleading-power (all-order!) contributions
(changing 1/N contributions)

Our proposal: [MB,Marzani,Muselli,Rottoli 2016]
vary all these things (42 variations) and take an envelope
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Higgs resummed expansion

70

60

50

40

o [pb]

30

20

10

Higgs cross section: gluon fusion

Higgs cross section: gluon fusion
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Perturbative convergence sped up!
Reduction of theory uncertainty increasing the order
Less sensitivity to central scale
More reliable uncertainty estimate (statistical interpretation still missing...)
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| po=mmu/4 po=mu/2 po=mug po=2mpg

Lo 186555 160757 138733 119733
NLO 42720 369754 316763 27.5t4)
NNLO 507734 465742 424746 3gatid
N°LO 481700 481l 465TLS 443123
LO+LL 240189 201782 169742 143733
NLO+NLL 46.9715¢  46.27739 4671795 473104
NNLO+NNLL | 50.22:5 50.1+39 519795 54.9%78
NSLO+N3LL | 47.774 485119 50.139  52.9+131
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Same method applied to pseudo-scalar Higgs production

Pseudo-scalar production cross section Pseudo-scalar production cross section
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Non-linear sequence transformations

NONLINEAR SEQUENCE TRANSFORMATIONS
FOR THE ACCELERATION OF CONVERGENCE
AND THE SUMMATION OF DIVERGENT SERIES

Ernst Joachim WENIGER

Given a sequence $1, S2, ..., Sn, ... (partial sums of a perturbative expansion) with

lim s, =s
n—oo

(all-order cross section) one can speed up the convergence by applying a
non-linear transformation to the sequence. Used e.g. for determination of special
functions from series representations.

Caveat: if you know all the terms in the expansion, you can select the best
algorithm, and check the convergence; but we only know the first few terms of
the perturbative series...
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One formula to describe them all

Sy (%) [[ Lottt ones

me1 n+k+qm Wn+j

SRTG) T

Ao vkt gm wnyg

Q,(Cn) ((Imy Sns Wn) =

From different forms of ¢,, and w,, many algorithms are
generated /recovered.

2o (n)
s= lim G,
k+n—o0
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Application to the Higgs cross section

Idea 1: Choose some “good” algorithms and compute a guess for the
all-order cross section [David,Passarino 2013]

Idea 2: Choose many algorithms and compute many guesses (~ 100) for
the all-order cross section. Do it for several choices of the central scale (the
sum must be the same). Observe. Decide.  [MB,Marzani,Muselli,Rottoli 2016]

Note: statistical interpretation still missing, but not impossible...
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Application to the Higgs cross section

Idea 1: Choose some “good” algorithms and compute a guess for the
all-order cross section [David,Passarino 2013]

Idea 2: Choose many algorithms and compute many guesses (~ 100) for
the all-order cross section. Do it for several choices of the central scale (the
sum must be the same). Observe. Decide.  [MB,Marzani,Muselli,Rottoli 2016]

Note: statistical interpretation still missing, but not impossible...

po =mu/4  po=mu/2 po=mg  po = 2my
Fixed-order expansion | 48.7+1.0 487+£1.2 46.3+46 446+£9.3
Resummed expansion | 48.9 +0.5 48.9+0.6 50.2+1.0 526+1.6
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Accelerated Higgs cross section

Frequency

Frequency

Higgs cross section: gluon fusion
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A different approach based on Bayesian statistics

Cacciari and Houdeau (2011) proposed a statistical model for the
interpretation of theory uncertainties, from which one can compute the
uncertainty on the truncated perturbative series for a given degree of belief
(DoB) given the first terms in the expansion.

o= E cnal
n

Quoting from the original paper:

We make the assumption that all the coefficients c,, in a perturbative series
share some sort of upper bound ¢ > 0 to their absolute values, specific to
the physical process studied. The calculated coefficients will give an
estimate of this ¢, restricting the possible values for the unknown c,,.

The model assumes a prior for f(¢) and a prior for f(cy|c). Since a small
number of ¢, are known, a good prior is quite useful

The method outputs a probability density for o: statistical interpretation!
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Improvements of the CH method

To account for a possible power growth (CH)

o= ULoiCk()\) (%)k
k=0

Considering also a factorial (renormalon) growth (CH)
[Bagnaschi,Cacciari,Guffanti,Jenniches 2014]

> k
=010 Y be(ko) (k+ ko)t (52)
k=0

Problem: determining A

Solution 1: [Bagnaschi,Cacciari,Guffanti,Jenniches 2014]
survey over several observables (assumes ) is process-independent)

Solution 2: <+ [Forte,lsrgo,Vita 2013]
fit A requiring the first known coefficients ci () are of the same size

Solution 3: [MB,Borroni (work in progress)|
making A a parameter of the model, with its own prior
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results

Higgs cross section: gluon fusion
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Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N®*LO cross sections for the four
scales fip = g = mu /4, mu/2, mu, 2my (from left to right). For the four values of the scales, the fitted values
of \ are respectively 0.44,0.46,0.24,0.17 for CH and 1.08, 1.14,0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

| 1o = mu /4 Ho = My /2 Ho = T Ho = 2my
CH | 48.1+0.7(1.2) 48.1£0.6(1.0) 46.5+2.1(3.5) 44.3+3.5(5.8)

CH | 48.1+1.2(1.9) 48.1+1.2(20) 46.5+4.2(7.0) 44.3+6.9(11.5)
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Summary

@ A careful treatment of theory uncertainties is mandatory for precision physics
at LHC.

@ A statistical definition of theory uncertainties will be also useful for PDF fits
and experimental analyses
e Options:
e Canonical scale variation often fails, and has no statistical interpretation
o Non-canonical scale variation might not be the best way
o Reverting to a different expansion (resummed, accelerated) is promising

o Estimate other sources of unknown higher orders other than scale dependent
terms

o CH Bayesian approach gives a statistical interpretation of theory uncertainties,
but room for improvements

@ Future: construct a new statistical model, along the lines of CH, which uses
more information to provide a better estimate
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