

SIDDHARTA Status Report

Silicon Drift Detector for Hadronic Atom Research by Timing Applications Catalina Curceanu, LNF-INFN

- LNF- INFN, Frascati, Italy
- SMI- ÖAW, Vienna, Austria
- IFIN HH, Bucharest, Romania
- Politecnico, Milano, Italy
- MPE, Garching, Germany
 - PNSensors, Munich, Germany
 - **RIKEN**, Japan
 - Univ. Tokyo, Japan
 - Victoria Univ., Canada

HadronPhysics I3

JRA10 – FP6 - I3HP

SIDDHARTA's first kaonic hydrogen spectrum

Content

- Short reminder of 2008 activities since installation
- Activities in 2009
- Kaonic helium final results for publication
- (Very) Preliminary results for kaonic hydrogen
- SIDDHARTA scientific case and the EU FP7 HadronPhysics Network LEANNIS
- Plans and Beam Time Request

SIDDHARTA - activities in 2008

-Installation of the setup on DAFNE (including shielding): September 2008

-Tests and debug: September – October 2008 (in parallel with the DAFNE restart), calibration procedure definition, trigger test

-Degrader optimization by measurement of kaonic helium4: November – December 2008

Lead shielding of SIDDHARTA

SIDDHARTA setup on DAΦNE

X-ray calibration spectrum

Trigger optimization using a He target

Degrader optimization using a He target

	K ⁻ He(Lα)	S/B ratio	I.L. [pb ⁻¹]	K-He/pb-1
Deg 2	397±24	4.0	11.4	34.8±2.1
Deg 3	590±30	4.6	14.8	39.9±2.0
Deg 4	420±24	4.2	11.1	37.8±2.2
Deg 5	209±19	2.6	9.0	23.2±2.1

thickness to be added to base [µm]

550

SIDDHARTA: activities in 2009

-In-beam calib. procedure – sliding mechanism (degrader / calib. Foil); stability tests

-Study of systematic errors with a 55Fe source inside setup (Mn lines versus Cu and Ti) -> 2 eV systematic error with KHe

--> data for publication

-Hydrogen filled inside target in March, KH measurement started

Optimization of the calibration procedure and study of the systematic errors

With KHe

Sliding mechanism: degrader/calib foil(s) –January

Sliding mechanism: degrader/calib foil(s) –January

55Fe source (5.9 KeV line) inside the vacuum jacket

KHe spectrum

New target cell – better calibration and higher solid angle

New target cell installation (26 Feb)

New target cell installation (26 Feb)

Typical calibration spectrum beam and X-ray tube

Spectrum fit results for a typical SDD

Kaon detector collimator (factor about 1.5)

KHe spectrum with the new target cell

Kaonic helium analysis

First measurement of KHe4 on gaseous target -to be published

gy shift of the kaonic helium $2p$ state [8]		
ΔE_{2p} (eV)	Ref.	
-41 ± 33	Wiegand <i>et al.</i> [11]	
-35 ± 12	Batty et al. [12]	
-50 ± 12	Baird et al. [13]	

ray shift of the knonic belium 2n state [8] En

> -43 ± 8 Average of above [8,13]

> > Theoretical value around 0 eV -> kaonic helium puzzle

Available online at www.sciencedirect.com

Physics Letters B 653 (2007) 387-391

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

Precision measurement of the $3d \rightarrow 2p$ x-ray energy in kaonic ⁴He

S. Okada ^{a,*}, G. Beer^b, H. Bhang^c, M. Cargnelli^d, J. Chiba^e, Seonho Choi^c, C. Curceanu^f,
Y. Fukuda^g, T. Hanaki^e, R.S. Hayano^h, M. Iio^a, T. Ishikawa^h, S. Ishimotoⁱ, T. Ishiwatari^d,
K. Itahashi^a, M. Iwaiⁱ, M. Iwasaki^{a,g}, B. Juhász^d, P. Kienle^{d,j}, J. Marton^d, Y. Matsuda^a,
H. Ohnishi^a, H. Outa^a, M. Sato^{g,1}, P. Schmid^d, S. Suzukiⁱ, T. Suzuki^a, H. Tatsuno^h, D. Tomono^a,
E. Widmann^d, T. Yamazaki^{a,h}, H. Yim^c, J. Zmeskal^d

 ^a RIKEN Nishina Center, RIKEN, Saitama 351-0198, Japan
 ^b Department of Physics and Astronomy, University of Victoria, British Columbia V8W 3P6, Canada ^c Department of Physics, Seoul National University, Seoul 151-742, South Korea
 ^d Stefan Meyer Institut für subatomare Physik, Austrian Academy of Sciences, A-1090 Vienna, Austria ^e Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan ^f Laboratori Nazionali di Frascati, INFN, I-00044 Frascati, Italy ^g Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan ^h Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ⁱ High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan ^j Physik Department, Technische Universität München, D-85748 Garching, Germany Received 30 June 2007; accepted 13 August 2007

Available online 17 August 2007

Editor: V. Metag

Abstract

We have measured the Balmer-series x-rays of kaonic ⁴He atoms using novel large-area silicon drift x-ray detectors in order to study the low-energy \bar{K} -nucleus strong interaction. The energy of the $3d \rightarrow 2p$ transition was determined to be $6467 \pm 3(\text{stat}) \pm 2(\text{syst})$ eV. The resulting strong-interaction energy-level shift is in agreement with theoretical calculations, thus eliminating a long-standing discrepancy between theory and experiment.

© 2007 Elsevier B.V. All rights reserved.

PACS: 13.75.Jz; 25.80.Nv; 36.10.Gv

Keywords: Kaonic atom; X-ray spectroscopy; Silicon drift detector

E570 at KEK: K⁻He

SIDDHARTA: K⁻He

Shift = 0+/- 6(stat) +/- 2(sys.) eV

Burial of K⁻He puzzle:

ΔE_{2p} (eV)	Ref.	
-41 ± 33	Wiegand et al. [11]	
-35 ± 12	Batty et al. [12]	
-50 ± 12	Baird et al. [13]	
-43 ± 8	Average of above [8,13]	
$\pm 2 \pm 2 \text{ (stat)} \pm 2$	(sys) Okada et al. [17	
$0 \pm 6 \text{ (stat)} \pm 2$	(sys) This work	

Kaonic hydrogen

Collected about 100 pb⁻¹ till end of April (very) preliminary analyses

SIDDHARTA kaonic hydrogen Drift time spectrum

Preliminary SIDDHARTA kaonic hydrogen spectrum

KH preliminary analyses Selection of cleanest data subset

For 100 pb⁻¹ precision in shift about 25 eV

-> for 400 pb⁻¹

Expected precision in shift about 10 eV

SIDDHARTA scientific programme EU dimension

The scientific aim

of the K_{α} line of **kaonic hydrogen** and the *first (similar) measurement* of **kaonic deuterium**

LEANNIS Network in FP7 HadronPhysics2

- 1. Breakthrough in the *low-energy KN phenomenology*;
- 2. Threshold amplitude in QCD
- 3. Information on Λ (1405)

LEANNIS

- 12 participating institutions from
- 5 EU countries: Austria, Finland Germany, Italy, Poland,
- Associated country: Japan

Low Energy Antikaon-Nucleon (Nucleus) Interaction Studies

Research objectives

 Precise determination of the isospin dependent antikaon-nucleon scattering lengths using kaonic atom X-ray spectroscopy with new technlogy followed by theoretical extraction and interpretation.

• Precision X-ray spectroscopy of kaonic atoms with light nuclei, such as ³He and ⁴He for determination of the antikaon-nucleus interaction including its theoretical interpretation.

• Further developments and applications of theoretical methods: chiral perturbation theory, effective field theory with strangeness, chiral SU(3) dynamics with coupled channels, antikaon-nuclear few-body theory; comparisons with data from high-precision experiments.

• Search for deeply bound antikaonic nuclear states using various reactions and fully exclusive determination of the reaction and decay products.

LEANNIS Tasks

- T1 Theoretical investigations in strangeness-nuclear physics
 - Computation of antikaon-nucleon scattering lengths using SU(3) effective field theory approach
 - Three-body calculations for the analysis of K-d system near threshold
 - Systematic theoretical approaches to antikaon-nuclear quasibound states

direct and crossed Born terms next-to-leading order (NLO): $\langle \mathcal{L}_{B} = \sum_{i=1}^{3} b_{i} \left\{ \bar{\Psi}_{B} \Phi \mathcal{M} \Phi \Psi_{B} \right\}_{i} - \sum_{j=1}^{4} d_{j} \left\{ \bar{\Psi}_{B} \Phi \mathcal{M} \Phi^{-2} \Psi_{B} \right\}_{j}$

J. Marton, LEANNIS Meeting Vienna, March 27, 2009

LEANNIS Tasks

• T2. SIDDHARTA

- Data Analysis
- Theoretical analysis and interpretation

• T7. AMADEUS

- Theoretical impact for planning of the experiment (Monte Carlo)
- Preparation of AMADEUS setup
- Data taking

J. Marton, LEANNIS Meeting Vienna, March 27, 2009

SIDDHARTA plans and beam time request

1) 10 eV level precision measurement of kaonic hydrogen: 400 pb⁻¹, about 300 pb⁻¹ to be still collected

2) 2009: first measurement of kaonic deuterium, for 600 pb⁻¹ (represents as well background measurement for KH)

3) Further option: precision Kaonic helium measurement (He3), need 50-100 pb⁻¹

Expected SIDDHARTA result

Kaonic hydrogen precision estimated using the kaonic helium measurement

error in shift: better than \pm 10 eV error in width: better than \pm 35 eV

We wish to express our **THANKS TO**

➢ Director LNF, Mario Calvetti
 ➢ DAΦNE machine staff, in particular
 Pantaleo Raimondi and Claudio Sanelli
 ➢ G.Corradi, D. Tagnani (Electronics)

- B. Dulach, C. Capoccia (Mech. Design, Installation)
- Staff of the mechanical workshop (M.A. Franceschi, G. Bisogni)