- Kaon physics

Barbara Sciascia, LNF INFN for the KLOE collaboration

38th LNF Scientific Committee, 11st May 2009

Hadronic physics: state of the art

Hadronic cross section at Large Angle	published (PLB 670 (2009))
σ(π+π-γ)/σ(μ+μ-γ)	in progress
$\eta ightarrow \pi^+ \pi^- e^+ e^-$	PLB, in press
$\phi \to \mathbf{K}_{\mathbf{S}} \ \mathbf{K}_{\mathbf{S}} \ \gamma$	submitted to PLB
$\phi \rightarrow a0(980) \gamma$	submitted to PLB
Gluonium content in η'	final, paper in writing
$\eta ightarrow \pi^+ \pi^- \gamma$	in progress
$\eta \rightarrow e^+e^- \ e^+e^-$	in progress
$\eta \to \mu^+ \mu^-$	new
$\gamma\gamma o \pi^0\pi^0$	in progress
$\gamma\gamma \rightarrow \eta$	new

A global fit to determine the pseudoscalar mixing angle and the gluonium content of the η' meson.

- Use KLOE $R_{\phi} = BR(\phi \rightarrow \eta' \gamma) / BR(\phi \rightarrow \eta \gamma)$
- From a global fit to all measured $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ transitions, we extract:
 - gluonium fraction $Z_{G}^{2}=0.12(4)$
 - pseudoscalar mixing angle $\varphi_{\rm P}$ =40.4(6)°
 - ϕ - ω mixing angle ϕ_V =3.32(9)°
- Fit result slightly different from out previous but confirms the presence of significative gluonium contribution in η' .

η gluonium content

Paper under the

review of the

collaboration

KLOE result [PLB670(2009)285]

$a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.3_{\text{theo}}) \cdot 10^{-10}$

$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ at threshold

KLOE small angle analysis did not cover the region below 0.35 GeV^2

KLOE new results – B. Sciascia – 38th LNF Scientific Committee – 11 May 2009

 $sqrt(s) = M_{\Phi}$

2 pion tracks at large angles $50^{\circ} < \Theta_{\pi} < 130^{\circ}$

Photons at large angles $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- independent complementary analysis
- threshold region $(2m_{\pi})^2$ accessible
- γ_{ISR} photon detected (4-momentum constraints)

• lower background from \$\$\$ decays

 $(\phi \rightarrow f_0 \gamma \rightarrow \pi \pi \gamma, \phi \rightarrow \pi^+ \pi^- \pi^0)$ off-peak

Use data sample taken at $\sqrt{s} \cong 1000$ MeV, 20 MeV below the ϕ -peak

New analysis in progress

- Selection cuts established
- Efficiencies evaluated
- Few systematic uncertainties still under evaluation
- Very good agreement between the spectrum of the preliminary new result and the KLOE 08 published analysis

Kaon physics: state of the art

${ m K_S} ightarrow { m e^+e^-}$	published
$BR(K^{\pm} \rightarrow e^{\pm}v)/BR(K^{\pm} \rightarrow \mu^{\pm}v)$	final, paper in writing
CPT test from interferometry	1 fb ⁻¹ update, paper in writing
K _L lifetime with 2004/5 data	in progress
K _S lifetime	in progress
$BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$	in progress

Received and the second second

• SM prediction with 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [Cirigliano Rosell arXiv:0707:4464].

• Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74(2006)011701]. In R-parity MSSM, LFV can give **O(1%) deviation from SM**.

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4}\right) \left(\frac{m_\tau^2}{m_e^2}\right) |\Delta_R^{31}|^2 \ \tan^6 \beta \right]$$

NP dominated by contribution of ev_{τ} final state, with effective coupling (from loop):

$$l \mathbf{H}^{\pm}
u_{ au} \
ightarrow \ rac{\mathbf{g_2}}{\sqrt{2}} rac{\mathbf{m}_{ au}}{\mathbf{M_W}} \ \mathbf{\Delta_{13}}$$

• Present exp. accuracy on R_K at 6% level.

• New measurements of R_K can be very interesting, if error at 1% level or better.

Entering the precision realm for R_K

Main actors (experiments) in the challenge to push down precision on R_K :

NA48/2: preliminary result with 2003 data: $R_{K}=2.416(43)_{stat}(24)_{syst}10^{-5}$, from ~4000 Ke2 candidates (2% accuracy) NA48/2: preliminary result with 2004 data: $R_{K}=2.455(45)_{stat}(41)_{syst}10^{-5}$, from ~4000 Ke2 candidates from special minimum bias run (3% accuracy)

KLOE: preliminary result with 2001-2005 data: $R_{K}=2.55(5)_{stat}(5)_{syst}10^{-5}$, from ~8000 Ke2 candidates (3% accuracy), perspectives to reach 1% error after analysis completion.

NA62 (ex NA48): **collected** ~**150,000 Ke2** events in dedicated 2007 run, aims to breaking the 1% precision wall, possibly reaching <~0.5%

Analysis of R_K: basic principles

In KLOE data set (2001/5) expect $\sim 4 \times 10^4$ events.

- Perform direct search for Ke2 and K μ 2; no tag: gain ×4 of statistics.
- Selection of K^{\pm} decays asking for kink in DC.
- Exploit tracking of K and secondary: assuming $m_v=0$ get M^2_{LEP} .

R_K analysis: quality cuts

- Rule of the game: reject K μ 2 by 10⁴, with Ke2 efficiency of O(50%).
- Background composition: $K\mu 2$ events with bad P_K , bad P_1 reconstruction.
- Apply quality cuts for K and exploit $\Phi \rightarrow KK$ two-body kinematics

 $M_{lep}^{2} = f(P_{K}, P_{l}, \cos\theta) \rightarrow a\text{-priori}$ error δM_{lep}^{2} is scaled by opening angle.

Achieve cancellation in Ke2/K μ 2 efficiencies, applying $\cos\theta$ trailing cuts

Efficiency $\sim 33\%$ at this level

R_K analysis: counting Kµ2 events

Fit to M^2_{lept} distribution: 300 million Kµ2 events per charge Background under the peak <0.1%, from MC

R_K analysis: electron identification

- Apply quality cuts, enough to count $K_{\mu 2}$, not for K_{e2} (still Bkg ~ 10×Sig)
- Further rejection for K_{e2} : extrapolate track to EmC, select closest cluster
- PID exploits EmC granularity: energy deposits E_k into 5 layers in depth

CONTRACTOR

R_K analysis: electron identification

Check Data-MC agreement for NN output: K_{Le3}

R_K analysis: control samples

Check NN output using K^{\pm}_{e3} , $K^{\pm}_{\mu3}$

Require π^0 detection Cut against $\pi\pi^0$ bkg Use $\pi^0 \gamma$'s to evaluate E_{miss} , P_{miss}

Can select pure $K^{\pm}e3$ sample above 0.2 Can select $K^{\pm}\mu3$ sample below 0.4 Perform 2d fit in entire plane

R_{κ} : control samples

R_K analysis: fitting for Ke2 counting

Two-dimensional binned likelihood fit in the NN- M^2_{lep} plane:

0.86<NN<1.02, -4000<M²_{lept}<6100 MeV².

R_K analysis: fitting for Ke2 counting

Assess fit systematic error (0.3%) varying fit region:

R_K analysis: radiative corrections

To match theory, has to count IB only Expect $DE \sim IB$, but we poorly know $\delta DE/DE \sim 15\%$

- Fit using IB+DE, count IB by considering as "signal" events those with $E_{\gamma}^* < 20$ MeV
- Correct for IB tail, $\varepsilon^{IB} = 95.28(5)$
- Repeat fit varying DE by its 15% uncertainty, get 0.45% error...

...too bad. Perform a dedicated analysis to measure DE:

- Explicitly detect radiated photon
- Compare DE/IB ratio with expectation from theory

R_K analysis: radiative corrections

• Pass from IB/DE \sim 9 to IB/DE \sim 0.6 500 PID in (0.98,1.02) by explicitly detecting radiated γ Data • Count 752(36) + 692(36) events 400 Fit • Obtain: IB/(IB+DE) = 0.5153(96)**Bkg component** 300 •Agrees with expectation, 200 $IB_{SM}/(IB_{SM}+DE_{mmt}) = 0.509(38)$ •Allow systematics from DE to IB 100 measurement to be pushed **down** at 0.1% 0 6000 -2000 0 2000 4000 ${\rm M_{lep}}^2$ (MeV²)

Dedicated analysis under the review of the collaboration.

KLOE new results – B. Sciascia – 38th LNF Scientific Committee – 11 May 2009

8000

R_K: systematic error budget

Source	Systematic error [%]		Main mathad
Source	Stat	Syst	Main method
Reconstruction	0.4	0.4	Control samples
Trigger efficiency	0.4		Downscaled events
Bkg subtraction		0.3	Fit range variation
Ke2(DE) component	0.1		Measurement on data
Clustering for e, μ	0.3		KL control samples
Total	0.6	0.5	

Further systematic check: use same algorithms to measure $R_3 = Ke3/K\mu3$

 $\begin{array}{l} R_3 = 1.507 \pm 0.005 \ \text{for } \text{K}^+ \\ R_3 = 1.510 \pm 0.006 \ \text{for } \text{K}^- \end{array} \qquad \text{world avg } R_3 = 1.506 \pm 0.003 \ \text{(FlaviaNet)} \end{array}$

 R_{K} : result

$$R_{\rm K} = (2.493 \pm 0.025 \pm 0.019)10^{-5}$$

- Statistical error is 1.1% (0.85 from 14k Ke2 events \oplus bkg subtraction)

- Systematic error is dominated by statistics again (0.015)

- Measurement do not depend on K charge, good systematic check: K⁺: 2.496(37) vs K⁻: 2.490(38) (uncorrelated errors only)

- Measurement agrees with SM prediction, $\mathbf{R}_{\mathbf{K}} = 2.477(1)$

2.6

Real Provide American Stress Contraction C

R_K: sensitivity to NP

Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$

WA w new KLOE result: $R_{K} = 2.468(25) \times 10^{-5}$

Still a lot of very good physics from the 2.5 fb⁻¹ on tape, while preparing for the xx fb⁻¹ regime.

Hadron physics: $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ published

- F_{π} from off-peak data, large angle analysis; F_{π} from ratio of $\pi\pi\gamma$ to $\mu\mu\gamma$ events.

- η -ology
- analysis of $\gamma\gamma \rightarrow \pi^0 \pi^0$ (search for the $\sigma(600)$)

Kaon physics: **R**_K final results

- CPT tests from interferometry
- BR(K[±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-})$, K_S and K_L lifetimes, FF slopes

from K_{13} decays, $BR(K_S \rightarrow \pi \mu \nu)$

- Rare K_S decays

Spare slides

2 tracks with $50^{\circ} < \Theta_{\text{track}} < 130^{\circ}$ a) kinematics: $p_{\gamma} = p_{miss} = -(p_+ + p_-)$ **b**) small angle γ ($\theta_{\pi\pi} < 15^{\circ} \text{ or} > 165^{\circ}$) YOKE - high statistics for ISR S.C. COIL Cryostat Barrel EMC - low relative FSR contribution End Cap EMC $50^{\circ} < \theta < 130^{\circ}$ - suppressed $\phi \rightarrow \pi^+ \pi^- \pi^0$ wrt the signal ×10² DRIFT CHAMBER 1200 7 m $\theta > 165^{\circ}$ $\theta < 15^{\circ}$ 1000 0.0 800 $50^{\circ} < \theta < 130^{\circ}$ 600 400 6 m 200 Statistics: 242 pb⁻¹, 3.1 Mevents between 0.35 and 0.95 GeV². 0.5 0.8 0.9 0.3 0.4 0.6 $M^2_{\pi\pi}$ [GeV²]

KLOE result [PLB670(2009)285]

Systematic errors on $a_m^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(q_{\pi\pi})$	0.1%
Acceptance (q _p)	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$ σ_{ππ}, undressed from VP, inclusive for FSR as function of (M⁰_{ππ})²

KLOE result [PLB670(2009)285]

Systematic errors on $a_m^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
p/e-ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(q_{\pi\pi})$	0.1%
Acceptance (q _p)	negligible
Unfolding	negligible
Software Trigger	0.1%
√s dep. of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6$ %

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6 \%$

Theoretical predictions on $\mathbf{a}_{\mathbf{u}}$ vs BNL result:

KLOE08 strengthens the discrepancy between SM and experiment ($\sim 3.3\sigma$)

R_{K} at KLOE: p_{K} determination

Get rid of bad-P_K component using redundant measurement

Get rid of bad-P₁'s using asymmetry of DC hits in left and right views

R_K analysis, "Kaography"

DC inner wall "Kaography"

 $\phi_{DC}^{\ 3}$ $\Delta_{\rm DC}$ (µm) 2 1 -20 0 0 20 -1 40 -2 60 -3 80 $\overline{Z_{DC}^{30}(cm)}$ -10 20 -40 -30 -20 0 10

Get rid of bad-P₁'s using fit quality + asymmetry of DC hits in L & R views

KLOE new results – B. Sciascia – 38th LNF Scientific Committee – 11 May 2009

In doing extrapolation for K, material budget is a key issue: $\beta_{\rm K} \sim 0.2$

For the Carbon-fiber DC inner wall, sensititivity on thickness difference Δ_{DC} wrt nominal value of 0.9 mm is order of 10 µm

 $R_K - PID$

- For PID, build variables using essentially cluster information.
- Rejection from PID: now>1000 \rightarrow loosen kinematic selection criteria

• Ke2 counts: two-dimensional binned likelihood fit in the (NN,M_{lep}^2) plane

SOLIX KLOE

R_K analysis: efficiency evaluation

Reconstruction efficiency from MC, corrections from control samples Select $K^{+,-}_{\mu 2}$ and $K^{+,-}_{e3}$ in events tagged by identification of a $K^{-,+}_{\mu 2}$ decay Fit $P_{\mu}(P_{e})$ using $\mu(e)$ cluster r,t (& E), kinematics: no K, $\mu(e)$ trks required

Analysis of R_K: NN vs M²_{LEP} plane

Associate track to EmC clusters for e/μ separation, evaluate PID (NN)

Enough bkg rejection from kinematics to see Ke2 w/o any EmC-based PID

MC agrees with data, including very far resolution tails

Impact of PID: retain 60% of signal, reject all but 0.2% of background Check with K_{Le3} data/MC control samples After PID (rejection factor is ~500) count Ke2 events

Analysis of R_K: Ke2 event counting (old)

Ke2 event counts: likelihood fit of M_{LEPT} vs E_{RMS} . Input: MC shapes for Ke2(γ) and background. Fir parameters: # of Ke2 and bkg; result: 8090±160 observed events.

Better parametrization of kinematic criteria, better understanding of bkg $M_{lep}^2 = f(P_K, P_l, \cos\theta) \rightarrow a$ -priori error δM_{lep}^2 is scaled by opening angle Achieve cancellation in Ke2/Kµ2 efficiencies, applying cos θ trailing cuts

