

Low Emittance Muon Accelerator: proposte di tesi

M. Antonelli

3 steps to lower the cost of future highest-energy circular colliders

- reduce SC/magnet cost
- build on a site with existing injector complex
- consider staging

 (e⁺e⁻ 1st, pp 2nd, and μ⁺μ⁻ 3rd?)
 FCC-ee FCC-hh (FCC-μμ"?)
 FCC-ee SPPC (F. Zimmermann)

The strength of a μ -beam facility lies in its richness:

- Muon rare processes
- Neutrino physics
- Higgs factory
- Multi-TeV frontier

 μ -colliders can essentially do the HE program of e^+e^- colliders with added bonus (and some limitations)

Muon based colliders great potential

As with an e⁺e⁻ collider, a $\mu^+\mu^-$ collider offers a precision probe of fundamental interactions without energy limitations

- By synchrotron radiation (limit of e⁺e⁻ circular colliders)
- By beam-strahlung (limit of e⁺e⁻ linear colliders)

Muon Collider is the ideal technology to extend lepton high energy frontier in the multi-TeV range with reasonable dimension, cost and power consumption

Muon based Higgs factory takes advantage of a strong coupling to Higgs mechanism by s resonance

IF THE MUON BEAM NOVEL TECHNOLOGY CAN BE DEMONSTRATED TO BE FEASIBLE

Muons: Issues & Challenges

• Limited lifetime: 2.2 μs (at rest)

- **Race against death: generation, acceleration & collision before** decay
- Muons decay in accelerator and detector
 - Shielding of detector and facility irradiation
 - Collider and Physics feasibility with large background environment? Not by beamshtrahlung as with e+/e- but by muon decay (e, v) Reduced background at high energy due to increased muon lifetime
- **Decays in neutrinos:** ۲
 - Ideal source of well defined electron & muon neutrinos in equal quantities whereas Superbeams by pion decay only provide muon v:

$\begin{array}{c} \mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \\ \mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu} \end{array} \begin{array}{c} \text{The neutrino factory} \\ \text{concept} \end{array}$

concept

Generated as tertiary particles in large emittances ۲

- powerful MW(s) proton driver and pion decay
- novel (fast) cooling and acceleration methods

$$\pi^+
ightarrow \mu^+ +
u_\mu$$

 $\pi^-
ightarrow \mu^- +
u_\mu$

Development of novel technologies with key accelerator and detector challenges

Muon beams specific properties

Muons are leptons like electrons & positrons but with a mass (105.7 MeV/c²) 207 times larger

- Negligible synchrotron radiation emission (α m⁻²)
 - Multi-pass collisions (1000 turns) in collider ring
 - High luminosity with reasonable beam power and wall plug power consumption

- relaxed beam emittances & sizes, alignment & stability
- Multi-detectors supporting broad physics communities
- Large time (15 μ s) between bunch crossings
- No beam-strahlung at collision:
 - narrow luminosity spectrum
- Multi-pass acceleration in rings or RLA:
 - Compact acceleration system and collider
 - Cost effective construction & operation
- No cooling by synchrotron radiation in standard damping rings

Requires development of novel cooling method

Muon Colliders potential of extending leptons high energy frontier with high performance

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Muon Colliders extending leptons high energy frontier with potential of considerable power savings

JP.Delahaye

Unique properties of muon beams (Nov 18,2015)

Idea for low emittance μ beam

Conventional production: from proton on target

 π , K decays from proton on target have typical **P**_µ~ **100 MeV/c** (π , K rest frame)

whatever is the boost, P_T will stay in Lab frame \rightarrow very high emittance at μ production point \rightarrow cooling needed!

Novel proposal: **direct** μ **pair production:** $e^+e^- \rightarrow \mu^+\mu^-$

just above the $\mu^+\mu^-$ production threshold ($\sqrt{s} \approx 0.212$ GeV) with minimal muon energy spread, with direct annihilation of ≈ 45 GeV e⁺ with atomic e⁻ in a thin target O(0.01 radiation length)

very small emittance at μ production point \rightarrow **no cooling** needed!

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

e+ ring parameter	unit	
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e ⁺ bunch spacing = T _{rev} (AR)	ns	200
Beam current	mA	240
N(e⁺)/bunch	#	$3\cdot10^{11}$
U ₀	GeV	0.51
SR power	MW	120

(also 28 km foreseen to be studied as an option)

CMC

CERN Muon Collider

- 14 TeV cm
- LHC tunnel
- SPS tunnel and mb PS
- ~7GeV SRF
- pulsed magnets
- cost ~LHC

V. Shiltsev

Argomenti di tesi:

- Beam dynamics (LNF, ESRF, Roma1)
 - Low emittance and high momentum acceptance 45 GeV e⁺ ring
 - High momentum acceptance muon accumulator rings
 - Muon collider parameters
 - Beam recirculation test at DAFNE
- Target study (LNF, CERN, Roma1)
 - O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production
 - Target thermo-mechanical stresses tests
- Positron source (LNF, Mi, LAL, Roma1)
 - Positron production scheme
 - Collection, acceleration and injection system
- HEP Experiment(LNF, Roma1, Pd, Ts, Co, Pi):
 - Muon production: experiment @ H4 (July/August 2017), continue next year

e+ lifetime

determined by **bremsstrahlung and momentum acceptance** Lifetime with ~ 40 turns

agreement within 10%

2-3% e+ losses happen in the first turn

M. Boscolo, RD_FA meeting, Bologna,03/07/17

Target considerations

Beam size as small as possible (matching various emittance contribution), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise move target (for free with liquid jet) and e⁺ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise
 - Be, C

[Kavin Ammigan 6th High Power Targetry Workshop]

- Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μm, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot
- Liquid target: better wrt power removal (200kW)
 - Li, difficult to handle lighter materials (H, He)
 - LLi jets examples from neutron production, Tokamak divertor

(200 kW beam power removal seems feasible), minimum beam size to be understood

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

Test at storage ring: DAFNE Tracking

Referenze e contatti

References:

- M. Boscolo et al, "STUDIES OF A SCHEME FOR LOW EMITTANCE MUON BEAM PRODUCTION FROM POSITRONS ON TARGET " IPAC 2017
- M.Antonelli, "Very Low Emittance Muon Beam using Positron Beam on Target", ICHEP (2016)
- M.Antonelli, E.Bagli, M.Biagini, M.Boscolo, G.Cavoto, P.Raimondi and A.Variola, "Very Low Emittance Muon Beam using Positron Beam on Target", IPAC (2016)
- M. Antonelli, "Performance estimate of a FCC-ee-based muon collider", FCC-WEEK 2016
- M. Antonelli, M. Boscolo, R. Di Nardo, P. Raimondi, *"Novel proposal for a low emittance muon beam using positron beam on target"*, **NIM A 807 101-107 (2016)**
- P. Raimondi, "Exploring the potential for a Low Emittance Muon Collider", in Discussion of the scientific potential of muon beams workshop, CERN, Nov. 18th 2015
- M. Antonelli, **Presentation Snowmass 2013**, Minneapolis (USA) July 2013, M. Antonelli and P. Raimondi, Snowmass Report (2013) also INFN-13-22/LNF Note

SLAC team:

- L. Keller, J. P. Delahaye, T. Markiewicz, U. Wienands:
 - *"Luminosity Estimate in a Multi-TeV Muon Collider using* $e^+e^- \rightarrow \mu^+\mu^-$ *as the Muon Source"*, MAP 2014 Spring workshop, Fermilab (USA) May '14
 - Advanced Accelerator Concepts Workshop, San Jose (USA), July '14

Contacts:

M. Antonelli, M. Boscolo (LNF) F. Anulli, G. Cavoto, F. Collamati(Roma1)

L. Palumbo, R. Livoti (SBAI)