

Outlook on direct dark matter searches

Gianluca Cavoto Sapienza Univ. Roma

23 Nov 2017

Outline

- Not a review, a (very) personal view on the future with a strong bias on the activity here in Rome
- WIMP and detectors with ton-year exposures
- Directionality a tool to reject background
 - Low pressure gas detector (CYGNUS), anisotropic targets (CNT)
- Sub-GeV dark matter
 - Detecting electrons
 - PTOLEMY and dark matter
- A comment on anti-particles in the cosmic rays
 - Hadronic cross sections at accelerators

At very different scales, a robust evidence

Strategies

Efficient scattering now (Direct detection)

DM is around us, scatter on conventional matter (nuclei, nucleons, electrons)

Direct detection: the name of the game

- No-one knows <u>what</u> a dark matter particle is
- WIMP model: non relativistic 10-1000 GeV particles with cross section much larger than solar neutrino weak cross section

- (not all the nuclei are equivalent)
- Some effect of the nuclear form factor

But other scheme are possible, interaction with electron, inelastic interaction...

6

Multiple experimental signatures for signal

- Low threshold means (often) low temperature
- Scalability to large mass
- Use more than one carrier of information!
 - Rejection of electron background

One key element is to calibrate the energy scale of nuclear recoils (quenching factors for ionisation and scintillation)

Multiple strategy for signal

PANDA-X and XENON-1T results

Two phase noble liquid

- Cross section excluded in Xe target down to σ_{χp} ~ 10⁻¹⁰ pb (at 40 GeV)
- Close to the neutrino *background* limit (neutrino from the Sun)
- Reduced mass sensitivity below 10 GeV: affected by threshold (and resolution) at low energy recoils

X. Cui et al. (PandaX-II Collaboration), Phys. Rev. Lett. 119, 181302 (2017).

E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017).

DAMA/Libra results

- Year-modulated signal in Nal crystal target (ton-y exposure)
- All the interpretation in terms of background not convincing so far.

Preferred values for $\sigma_{\chi p} \sim 10^{-40} - 10^{-41} \text{ cm}^2$ with $M_{\chi} \sim 10 - 100 \text{ GeV}$

Lowering PMT threshold

- Lowering PMT threshold (higher Q.E. PMT) can shed light on different models of the WIMP distributions (halo, stream, etc.)
- Diurnal modulation might be investigated (large exposure)

If an anisotropic scintillation crystal is found(**ZnWO**?), measure the WIMP direction! See later.

- SABRE
- Radio-pure new Nal crystals
 - Goal is 10x better than DAMA/LIBRA
- Active veto (scintillator, 3x rejection) + additional shielding
 - Eventually expose the same target in the southern emisphere (Stawell gold mine, Australia)

If same effect seen as in DAMA/LIBRA, confirm modulation measuring it in a different location (otherwise local systematics effect)

Scintillator

13

Reproduce DAMA-LIBRA results

Exposure: 150 Kg y

Prospect for SABRE

Where are we aiming to ?

- Need multi-ton mass
- Need several years data-taking
- Is the solar neutrino background the end of the story ?

Two phase noble liquid

 Good for high energy recoils

DARKSIDE

- Ar: pulse shape discrimination between electron and nuclear recoil
- Scint: 40 ph./keV light yield
- Ionization 20 eV/e
- BUT:
 - Need to remove radioactive ³⁹Ar

Istituto Nazionale di Fisica Ni

20 K Ar TPC

- 30 ton total, 20 ton fiducial, dual phase TPC, underground argon
- inside a liquid scintillator active neutron veto
- inside a 15m diameter 16m tall water tank, as active muon veto
- 15m² SiPM sensors (radiopure, increased LY, essential to keep PSD threshold low)
- Scalable design for application to larger scale detector
- Start of operation in 2021

100 ton yr background-free exposure

A big enterprises

- Extract underground Ar and then purify it (ARIA project)
- Refurbishing of a Sardinia coal mine to host distillation tower

- In collaboration with local authorities
- Construction at CERN
- Potential of a broader technological impact

Fiducialization

- The box containing the target material is radioactive
- Position sensitive detectors
 - Fiducial volume can be half of the total target mass.

Directionality

- WIMP must appear as coming from CYGNUS
- Nuclear recoils must reflect this feature (*dipole* distribution)
- Radioactive background is isotropic

Solar **neutrinos** comes from the **Sun**!

2000

WIMP Flux/m⁻²s

One m³ low pressure gas TPC

Astropart.Phys. 91 (2017) 65-74

The DRIFT detector (Boulby)

Very small mass: gas mixture CS₂ : CF₄ : O₂ (30-10-1 torr)
Full electron rejection up to 30 KeV_{ee}

Gas TPC DRIFT: negative ion drift TPC

- Limited diffusion ever over long drift distance (<0.5mm on 0.5m)
- If anode segmented, a "ion recoil track" can be reconstructed: direction
- Head-tail information is valuable as well (might be enough for discrimination)

erc

DRIFT fiducialization

Astropart.Phys. 91 (2017) 65-74

6000

A multi-site, ton observatory for WIMPs

CYGNUS-TPC proto-collaboration

- R&D effort with different technologies around the globe, hope to find the best one
- A White paper in preparation to find the optimal technology
 - It can be very simple, 1D + head-tail

10

ĉ

Low mass WIMP

- Lowering threshold in cryogenic detectors
- Lowering
 mass of the target nucleus
- Gamma rejection difficult at low WIMP masses: new techniques ?

Scintillation + phonon (TES) in CaWO₄ crystals (15 mK)
 A 100 eV threshold, non-zero background though!

He based detector: UNDER

- Proposal for LNGS
 - With NO shielding it can primarily serve as a good monitor for fast neutrons
- With the addition of ³He can be made sensitive to thermal neutron.
- With proper (neutron) shielding and low threshold can be a prototype for low mass DM detector

erc

UNDER detector concept

1 m³ TPC ⁽³⁾He:CF₄(:SF₆) Triple thin GEMs CMOS + PMT

- Gas pressure close to 1bar
- Use GEM amplification at anode, read the light from the GEM discharge with a low noise CMOS camera
 - 2D X-Y resolution at 100 μm
 - No interference with gas

Fiducialization to be addressed (CYGNYS_RD)

- negative ions drift of SF6 minority carriers
- electron drift: diffusion
- primary scintillation

R&D, CYGNUS

Light production in a GEM discharge readout with low noise CMOS camera For a min, track we predict (Garfield)

For a m.i.p. track we predict (Garfield) ~ 7e⁻/mm (primary ionisation electrons) For a m.i.p. track we **measure** ~ 1000 photons/mm that means ~150 photons/primary electron

Camera calibration, pedestal is less than *2* photon per pixel (*"photon" noise equivalent*)

Very good signal to noise ratio!

A snapshot of radioactivity

TPC with electron drift in He-CF₄ (60-40) gas mixture

- Use 2D projection to separate
 electron recoils from
 nuclear recoil (specific ionisation)
- directional information

Electron tracks

450 MeV electron tracks producing ionisation cluster, drifting to GEM, flash of lights during GEM discharge

24 cm

Resolution for a high energy electron track is 30-60 µm

By studying the distribution of collected light in slices of different widths, the energy resolution behaviour was evaluated.

Primary light

Still very far from being useful for full fiducialization (but we used sub-optimal Q.E. PMT and limited light collection) *It might be good to reject cathode events anyway!*

R&D NITEC

NITEC: Negative Ion Time Expansion Chamber

3 x 3 x 5 cm³ 0.045 Liters Triple thin GEMs Timepix pixel charge readout

- Small gas volume to study gas properties
- Operation in pure SF₆ at low pressure
- Operation with gas mixture
- GEM pixelated charge readout

SF₆ negative ion drift

 Measured ion mobility in SF₆ based gas mixture at 600 torr. (from drift velocity of negative ions generated by the 45 MeV BTF electron beam)

- Need to understand the "light" gain of gas mixture with SF₆
- Hope to see signal of minority carriers (SF₅, SF₄, etc.)

- Idea: WIMP scatters on a *anisotropic* target as *aligned* carbon nanotubes.
- Nuclear recoils are exiting the target only when they are along the CNT axis - otherwise absorbed

collaboration University of Mons, Belgium

length: 100 μ m (can be increased) ext. diameter: (20 ± 4) nm aspect ratio: $5x10^4$ commercial

length: 75 µm

ext. diameter: (13 ± 4) nm

aspect ratio: 0.6×10^4

detector side

substrate (absorbing)

Litituto Nazionale di Fisica Nucleare

C ion moving within the array

First look at CNT

Color is drift time (along Z) for different Z position (X-Y projection)

CNT are good conductor, modifying the field cage electric field. Different field configuration to be tried for the conceptual demonstration

What if dark matter is not so massive ? Scattering over the target *electrons*

Sub-GeV dark matter

US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report : https://arxiv.org/abs/1707.04591

Electron emission from a cathode

Work function of CNT is > 4 eV

All these effects are suppressed: room temperature is low enough, UV photon efficiently screened, E field < 100 V/ μ m

Istituto Nazionale di Fisica Nucleare

erc

Electron emitted from aligned CNT

Electron extracted by a DM scattering

Few eV energy electrons recoiling off

 Inelastic electron graphene interactions are suppressed at this energy (compare *e* wavelength) Electron collected by an external electric field *E*

- electrons can be transmitted, reflected absorbed by a graphene sheet
- absorption ~ 10⁻³
 (but no good data available)

Directionality

Different rate at different angles θ_w

 $\theta_w\,{\sim}90$ preferred by graphene electron wave function

A rate **asymmetry** can be measured by comparing two CNT target orientation

With an exposure of 100g * 160 day a 5 σ non null asymmetry can be measured

Sensitivity region

 Two arrays of hybrid dark-photodiodes (~10⁴ units, 10mg dark cathode mass each)

PTOLEMY - graphene target

- PonTecorvo Observatory for Light Early universe Massive neutrino Yield.
 - dope graphene sheets with ³H: target for relic neutrinos

Detect electron of few eV kinetic energy

MAC-E filter technique to select the endpoint of the tritium

- Null experiment with no tritium (prove radio-purity at the level of relic neutrino detection
- Compact arrangement of graphene sheets
 - G-FET (nano-ribbon, unable band gap

A last detour on indirect searches

47

• Secondary particle production from IP at very small angle: calibration of MC for cosmic rays, <u>muon</u> <u>production</u> $\sqrt{s} = 13TeV \rightarrow E_p = 10^{17}eV$

Small Angle Spectrometer

https://indico.cern.ch/event/435373/

LHC point 5 200 inelastic collisions

LHC magnets close to the IP deflect secondaries toward to the pipe

Use a bent crystal to <u>extract</u> those forward secondaries and count them!

Muon identification (charm)

My conclusion (for direct searches)

- WIMP is a great paradigm, but DAMA/LIBRA result yet unconfirmed.
- "Several ton-year "is the new frontier in the high mass (> 10 GeV) region, but so far null results are not very encouraging.
- Need to prepare to dig into the neutrino floor
 - directional tools need to be explored now (anisotropic targets, low density large volume)
- Look in other mass range, well below GeV
 - electron recoils

Besides brute force, we need some brave (experimental) idea and - possibly - some luck (since nobody really knows where exactly to look).

