

Antonio Capone

Stato e prospettive della Fisica delle Astroparticelle Università "La Sapienza", Roma

23/11/2017

Stato e prospettive della Fisica delle Astroparticelle - Università di Roma "La Sapienza" - Ante

Talk outline

- Motivation for High Energy Astrophysical neutrino detection
- IceCube/Gen2, ANTARES/KM3NeT
- Neutrino Telescopes main physics goal: search for astrophysical neutrinos
 - Search for a diffuse flux
 - Search for point-like sources
- Indirect search for Dark Matter
 - from the SUN, the Galactic Plane, the Earth
- Transient/multi-messenger studies
 - Search for GRB
 - Search for transient high intensity gamma sources
 - Search for common CR+neutrino, GW+neutrino, ... point like sources
- Perspectives for the future
- Conclusions & Summary

2

Cosmic Horizons – Microwave Radiation 380.000 years after the Big Bang

wavelength = 10^{-3} m \Leftrightarrow energy = 10^{-4} eV

Cosmic Horizons – Optical Sky

wavelength = 10^{-6} m \Leftrightarrow energy = 1 eV

Cosmic Horizons – X ray sky

wavelength ~ 10^{-12} m \Leftrightarrow energy ~ 1 keV

23/11/2017

Stato e prospettive della Fisica delle Astroparticelle - Università di Roma "La Sapienza" - Antonio Capone

Cosmic Horizons – Gamma Radiation 300.000 years after the Big Bang

wavelength = 10^{-15} m \Leftrightarrow energy = 1 GeV

23/11/2017

Stato e prospettive della Fisica delle Astroparticelle - Università di Roma "La Sapienza" - Antonio Capone

Cosmic rays spectrum spans over a large energy interval

- Observed elementary particles or nuclei carrying a kinetic energy up to 10²¹eV (like a tennis ball moving at ~150km/h)
- Many open questions:
 - Where they come from ?Which acceleration
 - mechanism ?

Cosmic Horizons – H.E. Gamma Radiation

wavelength = 10^{-21} m \Leftrightarrow energy = 10^3 TeV

Multi-Messenger Astronomy

The Universe is transparent for UHE neutrinos !

The evolution of astronomy

 From Traditional Astronomy (Optics) to Multi-Wavelength Astronomy: adio continuum (408 MHz) observations of light in the visible band are

X-ray and γ astronomy

Galileo Galilei showing the Doge of Venice how to use the telescope (1858), fresco by Giuseppe Bertini (1825–1898)

23/11/2017

... and to Multi-Messengers Astronomy: HE-CR, photons, neutrinos, GW

Neutrino fluxes: what do we know/expect?

Neutrino Interactions - 1

Neutrino Interactions - 2

Cherenkov v Telescope: Detection principle

Search for neutrino induced events, mainly $v_{\mu} N \rightarrow \mu X$, deep underwater

Down-going μ from atm. showers S/N ~ 10⁻⁶ at 3500m w.e. depth

p, nuclei

Neutrinos from cosmic sources induce 1-100 muon evts/y in a km³ Neutrino Telescope

Up-going μ from neutrinos generated in atm. showers $S/N \sim 10^{-4}$

p, nuclei

- ~TeV muons propagate in water for several km before being stopped • go deep to reduce down-going atmospheric µ backg. • long µ tracks allow good angular reconstruction For $E_{\nu} \ge 1TeV \quad \theta_{\mu\nu} \sim \frac{0.7^{\circ}}{\sqrt{E_{\nu}[TeV]}}$

- Atmospheric neutrino flux ~ E_v^{-3}

- Neutrino flux from cosmic sources $\sim E_{v}^{-2}$

Search for neutrinos with E_v>1÷10 TeV

Detecting neutrinos in H₂O

Proposed by Greisen, Reines, Markov in 1960

- DUMAND
- IMB
- Kamiokande
- •Baikal
- •AMANDA

16

IceCube – The Neutrino Telescope at the South Pole

ANTARES: Astronomy with Neutrino Telescope and Abyss environm. RESearch

The Largest Neutrino Nucl. Instr. and Meth.A 656 (2011) 11-38 **Detector in the Northern Hemisphere Total Instrum.** Volume ~ 10⁻² km³ MULTISDISCIPLINARITY > ossociated sciences (oceanography, marine 25 storeys biology, geology ...) 350 m 14.5 m 40 km to shore Junction Box String-based detector **Downward-looking PMTs** 100 m axis at 45° to vertical ~2500 m -70 m depth **12 detection lines** 25 storeys / line ANTARES 3 PMTs / storey Turkey 18

Stato e prospetitive della Fisica delle Astroparticelle - Università di Roma

23/11/201Alleria

Events in IceCube Detector

23/11/2017

SPI

A cosmic neutrino interacts INSIDE IceCube detector

> 300 optical sensors; > 100,000 photons; 2 nanosec time resolution

Up-going track in ANTARES: a neutrino candidate

Example of a reconstructed up-going muon (i.e. a neutrino candidate)

Neutrino Telescope physic's goals Search for point-like cosmic Neutrino Sources

excess of events coming from the same direction

23/11/2017

Stato e prospettive della Fisica delle Astroparticelle - Università di Roma "La Sapienza"

Neutrino Telescope physic's goal: Search for Diffuse flux of Cosmic Neutrinos

- Neutrinos from:
 - Unresolved AGN
 - "Z-bursts"
 - "GZK like" proton-CMB interactions
- Top-Down models Neutrinos

Their identification out of the more intense background of atmospheric neutrinos (and μ) is possible at very high energies (E_{μ} >> TeV) and requires good energy reconstruction.

Neutrino Telescope physic's goal

astronomy/astrophysics in a multi-messenger framework

Search for Coincident event in a restricted time/direction windows with EM/g/GW counterparts (flaring sources, transient events, ...)

Relaxed energy/direction measurement + transient/ multi-messenger information

IceCube (1 km3 Neutrino Telescope) event statistics

* 3000 per second

* 1 every 6 minutes

IceCube typical events

isolated neutrinos interacting *inside* the detector (HESE)

up-going muon tracks (UPMU)

total energy measurement all flavors, all sky

astronomy: angular resolution superior (<0.5°)

The great discovery (from IceCube 2013)

IceCube 2013 - High Energy Starting Event Analysis

3-Year Analysis PRL 113, 101101 (2014)

36 events in 3 years

Three > PeV events seen in three years, including a 2-PeV neutrino

IceCube 2017 - High Energy Starting Event Analysis

starting events: now 6 years $\rightarrow 8\sigma$

IceCube today: diffuse v_{μ} flux with up-going muons

after 7 years \rightarrow 6.4 sigma

IceCube 2017

High Energy Staring events (showers) and up-going muons analyses give consistent results

Where these neutrinos are coming from ??

A diffuse flux from extragalactic sources A subdominant Galactic component cannot be excluded

It's mandatory now !!!!

• Let search for neutrino point like sources:

- Large size detector required (very small fluxes expected)
- Very good accuracy in angular reconstruction (high background, the irreducible atmospheric background has to be subtracted statistically)

The ANTARES search for point-like v sources based on two kind of events

• Tracks: CC ν_{μ} or $\nu_{\tau} \rightarrow \mu$

• Electronic or hadronic showers: NC and CC ν_e or $\nu_{\tau} \rightarrow$ showers

Multi-wavelength observation: Mrk421 an example

Extensive multi-wavelength measurements showing the spectral energy distribution (SED) of Markarian 421 from observations made in 2009. The dashed line is a fit of the data with a leptonic model. Abdo et al. ApJ 736(2011) 131 for the references to the data

γ and v discovery potential

23/11/2017

36
From multiwavelenght to multimesenger: γ and ν discovery potential

ANTARES Search for point-like cosmic v Sources

9 years of ANTARES data searching for all neutrino flavours: 7629 "tracks" + 180 "shower" events passed the selection criteria

so far no significant excess has been found

ANTARES results: "full sky search" of v sources

The visible sky of ANTARES divided on a $1^0 \times 1^0$ (r.a x decl.) boxes. Maximum Likelihood analysis searching for clusters

The most significant cluster: decl. $\delta = 23.5^{\circ}$, r.a. $\alpha = 343.8^{\circ}$ has a pre-trial p-value of 3.84×10^{-6} \rightarrow U. L. from this sky location $E^2 \frac{d\Phi}{dE} = 3.8 \times 10^{-8}$ GeV cm⁻² s⁻¹

23/11/2017

ANTARES results: "full sky search" of v sources

Joint IceCube + ANTARES search for v sources

Skymap of pre-trial p-values for the combined ANTARES 2007/12 and IceCube 40, 59, 79 point-source analyses.

23/11/2017

Latest ANTARES results on the search for diffuse \boldsymbol{v} flux

Tracks

Data: 2007-2015 (2451 live-days) Above E_{cut} : Bkg: 13.5 ± 3 evts, IC-like signal: 3 evts

Observed: 19 evts

Cascades

Data: 2007-2013 (1405 live-days) Above E_{cut} : Bkg: 5 ± 2 evts, IC-like signal: 1.5 evts

Observed: 7 evts

Search for neutrinos from the Galactic ridge - 1

v's and γ-rays produced by CR propagation

 $p_{CR} + p_{ISM} \rightarrow \pi^0 \pi^{\pm} \dots$ $\pi^0 \rightarrow \gamma \gamma (EM \ cascade)$

$$\pi^{\pm} \rightarrow \nu_{\mu}, \nu_{e} \dots$$

- Search for v_{μ} , data 2007-2013
- Search region |l|<30°, |b|<4°
- Cuts optimized for neutrino energy spectrum ~E^{-γ} (γ=2.4-2.5)
- Counts in the signal/off zones
- No excess in the HE neutrinos
- 90% C.L. upper limits: 3<E_v<300 TeV

Distribution of the reconstructed E_{μ} of up-going muons in the Galactic Plane (black crosses) and average of the off-zone regions (red histogram).

Physics Letters B 760 (2016) 143–148

23/11/2017

Search for neutrinos from the Galactic plane - 2 New analysis on tracks and showers, based on Max. Lik.

KRA_{γ} new model to describe the C.R. transport in our galaxy. It agrees with C.R. measurements (KASCADE, Pamela, AMS, Fermi-LAT, HESS). FERMI-LAT diffuse γ flux from along the galactic plane ($\pi^0 \rightarrow \gamma \gamma$) well explained above few GeV.

KRA_{γ} allows to predict the ν flux by π^{\pm} decays induced by galactic CR interactions

 $\frac{\text{KRA}_{\gamma}}{\text{KRA}_{\gamma}} \frac{50 \text{PeV cut-off for CR}}{\text{KRA}_{\gamma}} \frac{50 \text{PeV cut-off for CR}}{50 \text{PeV cut-off for CR}}$

KRA_{γ} assuming a neutrino flux $\propto E^{-2.5}$ and a CR spectrum with 50 PeV cut-off can explain ~20% of the IceCube observed HESE. ANTARES, with an good visibility of the Galactic Plane well suited to observe these fluxes or to put competitive limits: no signal found \rightarrow set 90%C.L. upper limits. ... not only neutrino astrophysics...

... also open problems in particle physics ...

– Dark Matter searches:

- Neutralino annihilation in Sun, Earth, Galactic Center
- Magnetic Monopoles
- Particle acceleration mechanisms
- Multi-messenger searches
- Neutrino Oscillations
- Search for Sterile Neutrinos

Stato e prospettive della Fisica delle Astroparticelle - Università di

23/11/2017

Indirect search for Dark Matter in the Sun

No excess observed over the expected background: evaluate 90% C.L. upper limits for expected signal

Indirect search for Dark Matter in the Galactic Centre

9 years of ANTARES data: 2007-2015 - ANTARES "observes" the G.C > 66% time Search performed for:

- 50 GeV/c² < M_{WIMP} < 100 TeV/c²
- $WIMP + WIMP \rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu\overline{\nu}$

The expected v flux depends on the DM distribution around the GC. 3 halo models have been considered

Parameter	111.00	DUINCIL	iviciviiiidii
r _s [kpc]	$16.1^{+17.0}_{-7.8}$	$9.26^{+5.6}_{-4.2}$	17.6 ± 7.5
ρ_{local} [GeV/cm ³]	$0.471\substack{+0.048\\-0.061}$	$0.487\substack{+0.075\\-0.088}$	0.390 ± 0.034

The integrated J-Factor, J_{int} , for a cone-shaped region centred on the G.C. with an opening angle Ψ

Distribution of measured angles between reconstructed tracks and the Galactic Centre (crosses). The red line describes what is expected from background event.

23/11/2017

Indirect search for Dark Matte

from WIMP annihilations in the Milky Way.

Indirect search for Dark Matter in the Earth

- WIMPS can be gravitationally bound to the Earth if $v_{WIMP} < v_{escape}^{Earth}$
- $v_{escape}^{Earth} \sim 14 \frac{km}{s}$; $v_{WIMP} = \overline{v}_{270}$ following a Maxwell-Boltzmann distr. with r.m.s. velocity 270 km/s \rightarrow only a small fraction of WIMPS captured on the Earth.
- WIMPS-nucleons collision described by spin-independent cross section σ_p^{SI}
- Fe and Ni most abundant in the Earth \rightarrow effective capture for $M_{WIMP} \sim 50 \ GeV$
- In the Earth the capture $(\Gamma_c(t))$ and annihilation $(\Gamma_A(t))$ rates would reach the equilibrium in $\tau \sim 10^{11} \text{ y} >> \text{ Earth age } (t_{\text{Earth}} = 4.5 \ 10^9 \text{ y})$
- In these conditions:

Indirect search for Dark Matter in the Earth 6 years of ANTARES data: 2007-2012 25 GeV/c² < M_{WIMP} < 1 TeV/c² $WIMP + WIMP \rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \nu\overline{\nu}$

No excess found over the expected background Limits on the WIMP-WIMP annihilation rate in the Earth Limits on the spin independent WIMP-nucleon cross-section

The Multi-Messenger Search Programme with ANTARES

- Neutrinos trigger others
- Others trigger neutrinos

common working group (GWHEN) S. Adrián-Martínez et al., JCAP 06 (2013) 008

ANTARES 🔶 AUGER

Adrian-Martinez et al., ApJ 774 (2013) 008

TATOO (Telescopes – ANTARES Target of Opportunity)

Optical follow-up of neutrino alerts for transient source search (GRBs, SNae). Analysis in progress!

ANTARES ⇔ Optical Telescopes TAROT & ROSTE + more

Ageron et al., Astrop.Phys 35 (2012) 530-536

GCN (Gamma-ray Coordination Network)

ANTARES 🔶 GCN

A&A 559, A9 (2013), JCAP 1303 (2013) 006

Search for v from flaring AGN - 2008

RESULTS

- 1 neutrino candidate event compatible with the time/space distribution ($\Delta \alpha$ =0.56°) of 3C279 with probability (p-value) = 1% (but post trial probability = 10%)
- Fluence Upper Limits
- RESULTS ARE VERY PROMISING, new analisys going on with 2008-2011 FERMI data

Search for v from flaring AGN – 2008-2011 [40 sources, 86 flaring periods] (ANTARES + FERMI) ...to be extended to IACT blazars (HESS, MAGIC, VERITAS) p-values (Pre-trial/Post-trial)

E⁻²exp^{-E/10TeV} F^{-2} $E^{-2}exp^{-E/1TeV}$ F^{-1} Source 3C 279 0.17%/9.91% 0.33%/14.5% 5.31%/73.5% 6.68%/89.4% 3.85%/82.2% PKS 1124-186 1.94%/54.3% 1.07%/41.29% 1.68%/55.1% 6 specially PKS 1830-211 2.67%/69.5% 1.43%/52.8% 6.64%/91.6% 3.08%/72.6% significant 3C 454.3 3.53%/67.7% 4C +21.35 3.68%/68.9% 5.31%/73.5%% **CTA 102** 4.62%/86.5%

(—) Those cases have a fitted signal $n_{sig} \lesssim 0.001$ and p-value $\sim 100\%$

flares

ANTARES and v from μ -Quasars

μ-Quasars = Galactic X-ray binary systems with relativistic jets

Several models indicate μ -Quasars as possible sources of HEvs, with flux expectations depending on the baryonic content of the jets.

SWIFT ANTARES⇔RXTE FERMI

The detection of HEvs from μ -Quasars would give important clues about the jet composition.

<u>JHEAp</u>, 3-4 (2014) 9-7, arXiv:1402.1600 [astro-ph.HE]

ANTARES and ν from $\mu\text{-}Quasars$

ANTARES data set: $2007-2010 \rightarrow 6$ sources selected, with requisites: -in the ANTARES visible sky;

-showing an outburst in the period 2007-2010.

Time-Dependent Analysis for each source, the data analysis has been restricted to the flaring time periods, selected in a multi-wavelength approach (X-rays/ γ -rays) and with a dedicated outburst selection algorithm (+ additional criteria, customized for the features of each μ Q).

ANTARES and v from µ-Quasars Data Analysis & Results

METHOD

- unbinned search
- likelihood ratio test statistic
- quality cuts optimized for 5σ discovery

RESULTS

 no statistically significant excess above the expected atmospheric bkg

90% C.L. upper limits on the flux normalization ϕ

- ...assuming a neutrino spectrum following:
- a power-law
- a power-law with expo. cut-off
 - → INFER INFORMATION on JET COMPOSITION: constraints on
 - η_p/η_e = ratio of proton to electron luminosity in the jet

[systematic uncertainties included]

A Multi-Messenger Search of v from GRB

ANTARES Multi-messenger program: search for v_{μ} from very bright GRB sources

Search was performed for 4 bright GRBs: GRB080916C, GRB 110918A, GRB 1: observed between 2008 and 2013. The expected neutrino fluxes evaluated in

- the fireball model have with the interna
- the photospheric scenario ($E_{\nu} < 10TeV$

No events have been found: 90% C.L. upper li

Monthly Notices Royal Astronomical Society (2017) 469 (1): 906-915

ANTARES Multi-messenger program v follow-up of GW sources - 1

3 alerts sent by LIGO during the run 01 (2015/09 \rightarrow 2016/01):

A joint ANTARES/IceCube/LigoSC/Virgo analysis performed as "Neutrino follow-up" of GW150914

Phys.Rev. D93 (2016), 122010

- No ANTARES events in ± 500 s from the GW time (0.015 expected)
- Limits from ANTARES dominates for $E_V < 100 \text{ TeV}$
- U.L. from IC dominated above 100 TeV
- Size of GW150914 : 590 deg² ANTARES resolution: <0.5 deg²
- Limits on total energy radiated in neutrinos: <10% GW
- Future: Receive / send alerts in real time

The most wanted object: NS-NS (NS-BH)

- A rich variety of phenomena in the case of NS-NS merging
- •GW standard "sirene"
- Neutrinos (?)
- EM counterpart
 - > Fast emission (GRB)
 - Beamed emission
 - Afterglow (X-ray,...)
 - > Kilonova (*)
 - Isotropic emission
 - Neutron-rich ejecta
 - > Radio emission
- UHECR's acceleration?

(*) By radioactive decay of heavy elements produce via r-process nucleosynthesis in the neutron-rich merger ejecta

A joint ANTARES/IceCube/LigoSC/Virgo/Auger analysis performed as "Neutrino follow-up" of GW170817

- A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi-GBM and INTEGRAL.
- ANTARES, IceCube, and Pierre Auger Observatories searched for high-energy neutrinos from the merger in the GeV–EeV energy range.
- No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. No neutrino found in an extended search in the direction within the 14-day period following the merger.

ANTARES Multi-messenger program

v associated with GeV and TeV γ -ray flaring blazars and X-ray binaries

- Search for v's (2008-2012) correlated with high activity state
- Blazars monitored by FERMI-LAT and IACTs (JCAP 1512 (2015), 014)
- 33 X-ray binaries during flares observed by Swift-BAT, RXTE-ASM and MAXI. Transition states from telegram alerts
- No significant excess (best post-trial 72% for GX 1+4), then → Upper limits on v fluence and model parameters constrain

The future of Neutrino Astronomy in the Mediterranean Sea ANTARES → KM3NeT

12 Lines, 885 OM

Basic active element: Digital Optical Module 31 x 3" PMTs

18 OMs/line

23/11/2017

KM3NeT - Collaboration

KM3NeT Neutrino Telescope science scopes

Low Energy $MeV < E_v < 100 GeV$ Medium Energy M eV < E_v < 100 GeV

- Neutrino Oscillations
- Neut. Mass Hierarchy
- Sterile neutrinos
- Neut. From Supernovae

- Dark Matter search

- Monopoles
- Nuclearites

- Neutrinos from extraterrestrial sources

High Energy

E_v > 1 TeV

- Origin and production mechanism of HE CR

KM3NeT-ORCA

ANTARES

KM3NeT-ARCA

... and synergies with Sea-Sciences: oceanography, biology, seismology, ...

69

KM3NeT Building Blocks

	ARCA	ORCA	
Location	Italy – Capo Passero	France - Toulon	
Detector Lines distance	90m	20m	
DOM spacing	36m	9m	
Instrumented mass	500Mton	5,7 Mton	

KM3NeT phased implementation

Phase	Building Blocks		Number of DUs		Phisics Goals		Status	
	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA	ARCA	ORCA
1	0.2	0.06	24	7	Proof of feasibility and first science results. Joined analysis with ANTARES.		Fully funded. First 2 DUs acquiring data in Capo Passero.	
2.0	2	1	230	115	Study of the IceCube signal.	Determination of neutrino mass hyerarchy.	Not yet funded.	Not yet funded.
3	6	1	690	115	All flavour neutrino astronomy.			

L.O.I. KM3NeT ARCA and ORCA • J. Phys. G43 (2016) n. 8, 084001 • arXiv: 1601.07459

The future of Neutrino Astronomy in the Mediterranean Sea

KM3NeT-ARCA

ARCA detector

- ARCA: 2 blocks
- 115 strings/block
- 90m horizontal spacing
- 18 Optical Modules/strings
- 36m vertical spacing

Summary

- ANTARES studied the Southern sky with ν_μ competitive sensitivities and excellent angular resolution for both *tracks* and *cascades*;
 - > Upper limits on known GeV-TeV γ -ray sources <10⁻⁸ GeV/(cm² s)
 - > Sensitivity for a diffuse flux close to the level of the IC signal
- Detailed study of extended regions (Galactic plane, Fermi Bubbles)
 - > no v_{μ} excess from the Galactic ridge/IC hot spot;
- A large multi-messenger effort
 - > EM radiation: radio (MWA), optical, X-ray, γ-rays (LAT, IACTs)
 - > Gravitational Wave observatories and IceCube
- ANTARES contribute to the indirect searches for Dark Matter
 - > Most competitive limits for spin-dependent cross-section
 - > Competitive $<\sigma v >$ limits from the Galactic centre
- KM3NeT-Arca Neutrino Telescope under construction will soon be able to observe the neutrino sky with unprecedented sensitivities.