Status and future perspectives on Ultra-High Energy Cosmic Rays

Valerio Verzi

INFN, Sezione di Roma "Tor Vergata", Italy

ENERGY SPECTRUM

UHECR = Ultra-High Energy Cosmic Rays

SOURCES IDENTIFICATION

• nuclei (from p to Fe) likely of extragalactic origin

$$r_{L}[kpc] \sim \frac{E[EeV]}{Z B[\mu G]}$$
 $B = 2 - 3 \mu G$

• sources identification possible if deflections in galactic and inter-galactic magnetic fields are small

IceCube Auger Telescope Array JCAP 01 (2016) 037 and references therein

mass composition is crucial

PROPAGATION

interaction with the CMB

GZK p $\gamma_{CMB} \rightarrow N \pi$ $E_{th} \approx \frac{m_p m_{\pi}}{2 \varepsilon_{CMB}} \approx 10^{20} eV$

K. Greisen, Phys. Rev. Lett., 16 (1966) 748 G.T. Zatsepin and V.A. Kuz'min, Sov. Phys. JETP Lett., 4 (1966) 114

abrupt suppression consistent with the GZK cut-off

ankle consistent with p $\gamma_{CMB} \rightarrow p e^+ e^-$

- GZK horizon depends on primary mass
- mass composition at Earth ≠ from the one at the sources

$$A \gamma_{CMB} \rightarrow A-1 N$$

- most of the energy transferred to the em component
- shower development and signal at ground sensitive to the hadronic interactions

The importance to take under control the systematic uncertainties

AGASA: 100 km² array of scintillators Hires: fluorescence detector

DETECTION TECHNIQUES

Surface Detector array (SD)

detection of the shower front at ground

(+) duty cycle ~ 100%
(-) shower size at ground ∝ E (systematics)

Fluorescence Detector (FD)

longitudinal shower development from fluorescence light from the N_2 de-excitation

(-) duty cycle ~ 13%
(+) calorimetric measurement of E

Hybrid detector (SD+FD)

calibrate the SD signals against FD energies

note: from FD
$$X_{\text{max}} \sim \ln \left(\frac{H}{A}\right)$$

UHECR HYBRID OBSERVATORIES

PIERRE AUGER OBSERVATORY Malargüe – Mendoza (Argentina) 35⁰ S latitude 3000 km²

The Pierre Auger Collaboration, NIM A 798 (2015) 172-213

TELESCOPE ARRAY Millard County, Utah (USA) 39⁰ N latitude 700 km²

M. Fukushima et al., Prog. Theor. Phys. Suppl. 151 (2003) 206

fully operative since 2008

- autonomous units ٠
- FADC at 40/50 MHz ٠
- water cherenkov vs scintillators ٠ \rightarrow sensitive to showers inclined at large zenith angle \rightarrow more sensitive to μ s

- large spherical • mirrors
- camera in the focal surface covered by pmts
- FADC at 10/40 MHz ٠
- similar f.o.v. ٠ (elevation ~ $0^0 - 30^0$)

LOW ENERGY EXTENSION

Low energy extension

- denser array
- high elevation FD telescopes (~ 30⁰ 60⁰)

SD EVENTS

FD ENERGY SCALE

50

40

Atmosphere FD calibration dE/dX reconst. $\Rightarrow E_{cal} = \int \frac{dE}{dX} dX$ Invisible energy $(\nu, \mu, ..) \Rightarrow E_{in\nu}$

 $E = E_{cal} + E_{inv} \qquad {}_{12}$

CHALLENGING EXPERIMENTS

• complex atmospheric monitoring (aerosols, clouds, ...)

Auger, Astrop. Phys. 33 (2010) 108

light transmission

• FD absolute calibration

Auger Drum

J. T. Brack et al., JINST 8 (2013) P05014

TA CRAYS

S. Kawana et al., Nucl. Instrum. Meth. A 681 (2012) 68

TA ELS (linac accelerator)

B. Shin et al., PoS (ICRC2015) 640 13

ENERGY SCALE

AUGER

ICRC13 arXiv:1307.5059

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the analysis seels	
Stability of the energy scale	5%

TA Astropart.Phys. 61 (2015) 93-101

Item	Error (%)	Contributions
Detector sensitivity	10	PMT (8%), mirror (4%), aging (3%), filter (1%)
Atmospheric collection	11	aerosol (10%),
Fluorescence yield	11	model (10%), humidity (4%),
Reconstruction	10	atmosphere (3%) model (9%) missing energy (5%)
Sum in quadrature	21	missing energy (5%)

ENERGY SCALE

Fluorescence yield

Auger uses Airfly TA uses Kakimoto + FLASH

Invisible energy (ν , μ , ...) Auger: estimated from data exploiting the muon sensitivity

of the SD signals

J. Rosado et al., Astropart. Phys. 55 (2014) 51

note: combined effect: 5%-10% relative shift between TA and Auger energy scales 16

TA ENERGY SPECTRUM

exposure

AUGER ENERGY SPECTRUM

unprecedented statistics

SD spectra only above full efficiency energy threshold consistency between different measurements common energy scale

Auger ICRC17 arXiv:1708.06592

ENERGY SPECTRUM: AUGER vs TA

- consistency in the ankle position
- inconsistency in the cut-off position

	Auger	ТА
E _{ankle} (EeV)	5.08	5.2
E _{1/2} (EeV)	22.6	60

ENERGY SPECTRUM: AUGER vs TA

- a 10.4% rescaling factor is fully consistent with the different fluor. yield and E_{inv} (if TA uses Auger fluol. yeld & $E_{inv} \rightarrow \Delta E/E \approx -9\%$)
- why the spectra are so different at the cut-off?
 - astrophysics?
 - and/or experimental effects?

Telescope Array & Auger

- common declination band \rightarrow inter calibration, ٠ systematics, ..., comparison of the energy spectra
- main goal: anisotropy with full sky coverage ٠

Dedicated conferences:

- Nagoya (Japan) Dec 2010
- CERN Feb 2012
- Utah (USA) Oct 2014
- Kyoto (Japan) Oct 2016

next: Oct 2018

DECLINATION DEPENDENCE OF THE ENERGY SPECTRA

Auger + TA Proceedings of UHECR2016 PoS (ICRC2017) 498

- common declination band $-15.7^0 < \delta < 25^0$
- Auger has not a declination dependence
- TA: cut-off position in the common declination band closer to the Auger one (*)

(*) common decl. band $\log_{10}(E_2) = 19.59$ e 19.56 for TA and Auger, respectively

Anisotropies at intermediate scale

TA 'hot spot'

S. Troitsky PoS (ICRC2017) 548

25° around $(\alpha, \delta) = (144.3^{\circ}, 40.3^{\circ})$ 143 events E > 57 EeV $N_{obs} = 34$ $N_{exp} = 13.5$

$\sim 3\sigma$ post-trial

note: 'hot spot' outside the common declination band $-15.7^0 < \delta < 25^0$

 ψ (degree)

Anisotropies at intermediate scale - Auger

U. Cacciari, PoS (ICRC2017) 484

UHECR produced in gamma-ray sources

- Active Galactic Nuclei
- 17 AGNs from 2FHL Catalog (Fermi-LAT) with E > 50 GeV
- $\Phi(> 50 \text{ GeV})$ proxy of UHECR flux
- Star-forming or Starburst Galaxies
- 23 objects with $\Phi(> 1.4 \text{ GHz})$ from Fermi-LAT search list
- $\Phi(> 1.4 \text{ GHz})$ proxy of UHECR flux

Likelihood ratio

$$TS = 2\ln\left(\frac{H_1}{H_0}\right)$$

1

\

$$H_0: isotropy$$
$$H_1: (1-f) \times isotropy + f \times FluxMap(\psi)$$

OBSERVATION OF A LARGE SCALE ANISOTROPY

Auger, Science 57 (2017) 1266-1270

EVIDENCE OF EXTRAGALACTIC ORIGIN OF UHECRs

Auger, Science 57 (2017) 1266-1270

- observed dipole lies $\sim 125^{\circ}$ from GC
- infrared-detected galaxies in 2MRS catalog
 - dipole lies $\sim 55^{\circ}$ from the expected one
 - better agreement when the Galactic B is taken into account

ANISOTROPIES WITH FULL SKY COVERAGE

Higher order multipoles

$$\Phi(\mathbf{n}) = \sum_{\ell=0}^{+\infty} \sum_{m=-\ell}^{+\ell} a_{\ell m} Y_{\ell m}(\mathbf{n})$$

anisotropy at $\sim 1/1$ radians

MASS COMPOSITION - AUGER

J. Bellido, PoS (ICRC2017) 522

lightest composition at ~ 2×10^{18} eV heavier composition at lower and at higher energies narrower $\sigma(X_{max})$ above ~ 2×10^{18} eV

MASS COMPOSITION - AUGER

J. Bellido, PoS (ICRC2017) 522

mass composition from X_{max} distributions

MASS COMPOSITION - AUGER

J. Bellido, PoS (ICRC2017) 522

- largest proton fractions at $\approx 10^{18.3} \text{ eV}$
- above 10^{18.3} eV increasing fraction of He and N
- no Fe at almost all energies

are the two measurements in agreement?

31

13

- 1) simulate TA events according to the Auger composition
- 2) compare TA X_{max} distributions: data vs simulations

consistency within the systematics

V. De Souza PoS (ICRC2017) 522

SPECTRUM INTERPRETATION

ankle 5×10¹⁸ eV

"dip" scenario requires extragal. protons (>85%)

BUT

correlation X_{max} vs S(1000)

evidence of a mixed composition at the ankle

cut-off

end of the spectrum due to propagation effects?

BUT

combined fit spectrum and composition

 $\Phi_A \propto f_A E^{-\gamma} f_{cut}(E, Z_A, R_{cut})$

maximum rigidity (1) favored over photo-disintegration (2)

others: R. Aloisio &V. Berezinsky arXiv1703.08671

G.Farrar & M.Unger, PoS (ICRC2015) 336513

HADRONIC **INTERACTIONS**

Auger, PRD 91 (2015) 032003 showers inclined at large zenith angle muon excess $\sim 30\%$ -80% for mass composition from X_{max}

$$S = R_E S_{EM} + R_{had} R_E^{\alpha} S_{had}$$

rescaling factors to match the SD and FD signals (hybrid data)

evidence of muon excess not sensitive to energy scale uncertainty 34

OTHER OBSERVABLES SENSITIVE TO MASS COMPOSITION

Auger, PRD 90 (2014) 122005 L.Collica (Auger) PoS (ICRC2015) 336

Auger, PRD 92 (2015) 019903 Auger, PRD 9

Auger, PRD 93 (2016) 072006

Hadronic interaction models fail to provide consistent interpretations of different observables

PHOTON LIMITS

FD: X_{max} SD: time spread, shower front curvature

Auger, JCAP 04 (2017) 009 and references therein

most of top-down models ruled-out start to constraint GZK photons

 $p \gamma_{GZK} \rightarrow p \pi^0$ 36

NO NEUTRINOS (E>100 PeV) IN COINCIDENCE WITH GW IN AUGER SD DATA

Auger Antares IceCube arXiv:1710.05839 E. Zas PoS (ICRC2017) 972 Auger, Phys. Rev. D 94, 122007 (2016)

Equivalent c.m. energy (S_{pp} [TeV]

10

 σ_{p-air} FROM FD

800

700

600

500

400

300

200

10¹³

[qm]

σ p-air 10⁻¹

Nam et al. 1975

Siohan et al. 1978

Ionda et al 1999

. Aielli et al.2009 Aglietta et al.2009

uger PRL2012

his Work 2015

10¹⁴

Baltrusaitis et al. 198

nurenko et al.1999 elov et al 2007

lescope Array 2015

10¹⁵

10¹⁶

Energy [eV]

10¹⁷

R. Ulrich PoS (ICRC2015) 401

R. Abbasi PoS (ICRC2015) 402

10²

EPOS-LHC

--- QGSJETII-04

10¹⁹

10²⁰

--- SIBYLL-2.1

10¹⁸

CORRELATIONS AMONG IceCube NEUTRINOS AND TA+AUGER CRs

IceCube, Auger & TA JCAP01 (2016) 037

NO ULTRARELATIVISTIC MONOPOLES IN AUGER FD DATA

Auger, Phys. Rev. D 94 (2016) 082002

FUTURE

- accumulate exposure
- mass composition at the highest energies ?
- how to overcome the problem of the limited FD duty cycle ?

AUGER IN THE NEXT DECADE

Auger upgrade

. . .

scintillator faster electronic (120 MHz)

- discriminate e.m. and muonic components
- mass sensitivity above the cut-off (no sensitivity from FD)

TA IN THE NEXT DECADE

J. Matthews, PoS (ICRC17) 1096

TAx4 ~3000 km²

SD: 507 scintillators 1.2 km - 700 km²

new 500 SD stations 2.08 km spacing

2 additional FDs in MD and BR

Radio detection of EAS

T. Heuge Phys. Rep. 620, 1-52 (2016)

radio signals related to the em of the shower 100% duty cycle no atmospheric attenuation, ... Askaryan effect 25% of e⁻ over e⁺ G. Askar'yan, Soviet Phys. JETP 14, 441 (1962)

- X_{max} from LOFAR
- energy estimation from AERA (Auger)
- main limitation:
 - small footprint at ground \rightarrow requires dense array of antennas

Neutrino with radio detectors

J. Alvarez-Muñiz PoS (ICRC2017) 1111

Fluorescence radiation detection from space

JEM-EUSO Program

EUSO-TA	(2013 -)
EUSO-Balloon	(2014)
EUSO-SPB1	(2017)
MiniEUSO	(2018)
EUSO-SPB2	(2021)
K-EUSO	(2023)
also POEMMA	(2025 +)

Fluorescence radiation detection from space

K-Euso - ISS

- approved by Russian Space Agency
- it is a concrete mission at a fraction of the cost of JEM- EUSO

uniform full sky coverage with large exposure

M. Casolino PoS (ICRC2017) 370

OUTLOOK

- successful implementation of the hybrid technique (FD+SD) but still many open issues
 - UHECRs are of extragalactic origin
 - there is some level of anisotropy but what are the sources?
 - UHECRs are not only protons. What is the mass composition at the cut-off? ankle and cut-off interpretation?
 - hadronic interaction models?

> Auger and TA will take data in the next decade

- \circ 6000 km² with full sky coverage
- mass sensitivity at the highest energies

> next generation experiments

- o fluorescence detection from space
- current UHECRs observatories are the ideal place where to develop new detection techniques (radio ...)

new LHC data

THANKS

COMPARISON OF THE ENERGY SPECTRA IN THE COMMON DECLINATION BAND

- common declination band $-15.7^0 < \delta < 25^0$
- account for the different shapes of the directional exposure

 \rightarrow better agreement than in the full declination band

 \rightarrow still some discrepancy that has to be due to experimental effects

Auger + TA Proceedings of UHECR2016 PoS (ICRC2017) 498

U. Cacciari, PoS (ICRC2017) 484

Anisotropies at intermediate scale - Auger

U. Cacciari, PoS (ICRC2017) 484

3.9 σ

post-trial significances (energy scan)

2.7 σ

OBSERVATION OF A LARGE SCALE ANISOTROPY

Auger, Science 57 (2017) 1266-1270

X_{max}: Auger vs TA

X_{max} distributions distorted by the FD field of view

- Auger: cuts to obtain unbiased X_{max} distributions
- TA: X_{max} distributions folded with detector effects (maximize the statistics)

Calibrate SD mass estimator againts X_{max} from FD

Auger arXiv:1710.07249 $\langle \ln A \rangle$ $\langle \ln A \rangle$ ICRC 201 ICRC 201: Δ_s 1500 m array Δ_s 1500 m array Δ. 750 m arrav Δ. 750 m arrav rise time in SD signals sensitive to mass composition but its interpretation is not consistent with the one from X_{max} OGSJetII-04 EPOS-LHC calibrate it against X_{max} from FD 10^{2} 10 E [_V] E [eV] 900 $\langle \mathrm{X}_{\mathrm{max}} \rangle$ [g cm⁻²] 1500 m array 850 750 m array 1100 X_{max} [g cm⁻²] □ X_{max} ICRC 2015 1500 m array 800 rise of mass 1000 composition 900 750 **X**_{max} > 50 EeV 800 seems to 700 FD 700 stop 650 600 EPOS-LHC Correlation = 0.46600 500 QGSJetII-04 -4 -3 -2 -1 0 2 3 4 Δ_{s} 550 17.5 18 18.5 19 19.5 20 17 $\Delta_{\rm s}$ **SD** 54 log(E/eV)

C.Jui, Highlight TA ICRC15

TA data compared to QGSJet-II.3

SPECTRUM INTERPRETATION Auger, JCAP04 (2017) 038

predict the energy spectrum at Earth assuming that CRs are of extragalactic origin

fit (f_A, γ, R_{cut}) at sources $\Phi_A \propto f_A E^{-\gamma} f_{cut}(E, Z_A, R_{cut})$

do we observe the cut-off at the sources?

HADRONIC **INTERACTIONS**

T. Pierog PoS (ICRC2017) 1100

predictions	pre LHC	post LHC
<x<sub>max></x<sub>	$\sim 70 \text{ g/cm}^2$	$\sim 40 \text{ g/cm}^2$
elongation rate	different	similar

generalized Heitler model

J. Matthews, Astropart. Phys. 22 (2005) 387

post LHC

pre LHC

HADRONIC INTERACTIONS

Auger, PRD 91 (2015) 032003

hybrid showers inclined at large zenith angle

10

 R_{μ}

muon

size

Fit: $\langle R_{\mu} \rangle = a (E/10^{19} \, \text{eV})^b$

174 Auger hybrid events

events 15

 $^{-1}$

stdev 0.20 ± 0.01

 $\begin{array}{c} 0 \\ (R_{\mu} - \langle R_{\mu} \rangle) / \langle R_{\mu} \rangle \end{array}$

muon excess ~ 30%-80% for mass composition from X_{max}

HADRONIC INTERACTIONS

Auger, PRL 117 (2017) 192001

 $\begin{array}{ll} Auger \ hybrid \ events \\ E \sim 10^{19} \ eV \qquad \theta \leq 60^{0} \end{array}$

- simulate showers matching FD data
- compare simulated signal at ground with SD data

match the data

<u>evidence of muon</u> <u>excess not</u> <u>sensitive to energy</u> <u>scale uncertainty</u>

Expected cosmogenic vs with the Auger exposure E. Zas PoS (ICRC2017) 972

Diffuse flux neutrino model	Expected events
	(1 Jan 04 - 31 Mar 17)
Cosmogenic - proton - strong source evolution	n
Cosmogenic - proton, FRII evol. (Kampert 2012)	~ 5.2
Cosmogenic - proton, FRII evol. (Kotera 2010)	~ 9.2
Cosmogenic - proton - moderate source evoluti	on
Cosmogenic - proton, SFR evol (Aloisio 2015)	~ 2.0
Cosmogenic - proton, SFR evol, $E_{\text{max}} = 10^{21}$ eV (Kotera 2010)	~ 1.8
Cosmogenic - proton, SFR evol. (Kampert 2012)	~ 1.2
Cosmogenic - proton, GRB evol. (Kotera 2010)	~ 1.5
Cosmogenic - proton - normalized to Fermi-LAT Ge	$\mathbf{V} \ \gamma \textbf{-rays}$
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{19} \text{ eV}$ (Ahlers 2010)	~ 4.0
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{17.5}$ eV (Ahlers 2010)	~ 2.1
Cosmogenic - mixed and iron	
Cosmogenic - mixed (Galactic) UHECR composition (Kotera 2010)	~ 0.7
Cosmogenic - iron, FRII (Kampert 2012)	~ 0.35
Astrophysical sources	
Astrophysical - radio-loud AGN (Murase 2014)	~ 2.6
Astrophysical - Pulsars - SFR evol. (Fang 2014)	~ 1.3

EXCLUDED (> 90% CL), **DISFAVORED** (85% < CL < 90%), **ALLOWED**

Constraints on Cosmogenic neutrinos from proton-dominated sources

Above bInjection spectra $dN/dE^{-\alpha}E^{-\alpha}CL$ by IceCube (7 yrs of data) – PRL 2016 Above white line – excluded at 90% CL by Auger 2016 (8.4 yrs of full Auger)

