eASTROGAM Optimizations and polarization study of eAstrogam

Gonzalo Rodriguez, Aldo Morselli Sezione INFN di Roma II

14/07/2017

COSIMA INPUTS:

Number of triggers: 500000 x 8

Mono Spectrum:

Energies: 300, 500, 1000, 1500, 2000, 2500, 3000, 5000 keV Zenith angles: 0, 30, 60, 90 degrees

COSIMA INPUTS:

Number of triggers: 500000 x 8

Mono Spectrum:

Energies: 300, 500, 1000, 1500, 2000, 2500, 3000, 5000 keV Zenith angles: 0, 30, 60, 90 degrees

Optimization parameters:

- Thickness: 100, 250, 400, 450, 500, 550 μm
- Number of Layers: 56, 70, 112
- Distance between Layers: 0.5, 0.75, 1.0 cm

Thickness(μ m), Layers, $\Delta Z(cm)$

250, 112, 0.5 400, 70, 0.75 \longrightarrow 0.3 X₀ on axis 500, 56, 1.0

COSIMA INPUTS:

Number of triggers: 500000 x 8

Mono Spectrum:

Energies: 300, 500, 1000, 1500, 2000, 2500, 3000, 5000 keV Zenith angles: 0, 30, 60, 90 degrees

Optimization parameters:

- Thickness: 100, 250, 400, 450, 500, 550 μm
- Number of Layers: 56, 70, 112
- Distance between Layers: 0.5, 0.75, 1.0 cm

MIMREC INPUTS:

- No cuts for Energy Resolution.
- Compton events for ARM resolution:
 - All events
 - No electron tracking
 - Electron tracking

MIMREC INPUTS:

- No cuts for Energy Resolution.
- Compton events for ARM resolution:
 - All events
 - No electron tracking
 - Electron tracking

Compton event

MIMREC Results:

- Energy Resolution -> NO CUTS

PhotoPeak Energy Resolution, Layers=56

PhotoPeak Energy Resolution, Layers=56

PhotoPeak Effective Area, Layers=56

PhotoPeak Effective Area, Layers=56

MIMREC Results:

Angular Resolution: Comptons events -> NO CUTS

ARM Effective Area, Layers=56

ARM Effective Area, Layers=56

ARM Effective Area, Layers=56

MIMREC Results:

Energy & Angular Resolution:

Comptons events: - electron tracking - no electron traking

PhotoPeak Energy Resolution, Layers=56

PhotoPeak Energy Resolution, Layers=56, Theta=0⁰

PhotoPeak Energy Resolution, Layers=56, Theta=0⁰

Angular Resolution, Layers=56, Theta=0⁰

Angular Resolution, Layers=56, Theta=0⁰

Angular Resolution, Theta=0°

Angular Resolution, Theta=0⁰

Angular Resolution, Layers=56, Theta=0⁰

Angular Resolution, Theta=0⁰

ARM Effective Area, Layers=56, Theta=0°

ARM Effective Area, Theta=0⁰

MIMREC Results:

Polarization response

Geometry corrected polarization signature

Polarization response, Energy range (500,2000) keV

- Using Geant4/MEGALib we have simulated the mass model for eASTROGAM telescope.
- The main objective is the optimization of the Si-tracker geometry parameters:
 - Thickness
 - Number of Layers
 - Distance between Layers
- We have studied in the compton regime:
 - The energy & angular resolution
 - The effective area
 - Polarization response

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - Where E₀ depends on the thickness.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found that the polarization responses does not depend on the geometry parameters

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - Where E₀ depends on the thickness.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found that the polarization responses does not depend on the geometry parameters

- The energy resolution is independent of the geometry parameters choices.
- For the angular resolution:
 - We have to apply rec. CUTs to obtain a good AR.
 - Without e⁻ tracking approx. $E_0 \ll 1.5 \text{ MeV}$
 - With e⁻ tracking approx. $E_0 > \approx 1.5 \text{ MeV}$
 - Where E₀ depends on the thickness.
 - We have found better performance when we keep the radiation lenght constant $(0.3 X_0)$ almost independent of the geometry.
- We have found that the polarization responses does not depend on the geometry parameters

TOBE DONE

- Repeat the analysis using the SensitivityOptimizer to obtain
 - The energy & angular resolution
 - The effective area
 - Background rate
 - Sensitivity
- Move to the Science simulations.
- Perform same analysis for the pair-production regime