

SPARC_LAB Recent Results

- New cathode cleaning technique
- C-band commissioning
- Plasma Lens studies
 - A. Marocchino et al., Experimental characterization of the effects induced by passive plasma lens on high brightness electron bunches, Appl. Phys. Lett. 111, 184101 (2017)
- Capillary R&D
- Diagnostics with Betatron Radiation
 - Curcio, A., et al. "Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators." *Physical Review Accelerators and Beams* 20.1 (2017): 012801.

The photocathode surface has been machined by means of diamond milling and blown with nitrogen. The machining has been done without the use of any oil or cooling fluid (dry machining).

BEFORE MACHINING

Our cathode time life was about 6 years

AFTER MACHINING

BEFORE MACHINING

SEM HV: 10.00 kV SEM MAG: 2.72 kx Vac: HiVac

 WD: 39.65 mm
 L
 L

 Det: SE
 20 μm

 Date(m/d/y): 01/21/16

Atomic Force Mic. analysis after n-machining

Profile of image

Stati	stical pa	arameters:	
Min_v	alue:	-6,16 nm	
Max_	value:	5,60 nm	
Ra (S	a):	1,18 nm	
Rms (Sq):	1,501nm	

J. Scifo

Intrinsic Emittance measurements before and after n-machining

Parameters:

- Epeak= 84MV/m
- Working RF phase=30°
- Longitudinal length laser beam=5ps FWHM (Gaussian profile)
- Bunch charge≅ 6pC

	Before n-r	nachining	After n-machining							
E_acc (MV/m)	ε _x (mmmrad)	ε _y (mmmrad)	ε _x (mmmrad)	ε _y (mmmrad)						
84	0.24±0.04	0.28±0.04	0.13±0.017	0.15±0.02						

C-Band accelerating structure and PWFA chamber

Results of C-Band high power test and energy gain measurement

The high power test of the C-band has been performed in two windows between May 2017 and July 2017.

- Initially the klystron output was connected to a dummy load in order to test the system after the work performed on the ScandiNova modulator. With this set-up 8 MW of RF power have been reached at the klystron output with 150 us RF pulse length.
- In the second run the klystron was connected through the SLED to the accelerating structure. With the pulse compressor detuned and the power produced by the klystron directly feeding the structure: 15 MW of RF power have been reached with 200 ns pulse length and 8 MW with 1.2 us.
- Then the SLED has been tuned in order to run the klystron and the modulator at low power exploiting the power gain factor of the pulse compressor: **9 MW of RF power** at the klystron output have been reached with **1.2 us pulse length**, giving **26 MW peak power at the input of the accelerating structure**.

Results of C-Band high power test and energy gain measurement

With this last Set-Up an electron energy gain of about 30 MeV has been measured.

Future development:

- Further tests are foreseen in November/December 2017.
- To increase further the power and to reach the final nominal gradient in the C-band structure (50 MeV energy gain) a ScandiNova intervention has been requested to fix a couple of troubles we still have on the modulator.

Acknowledgements:

D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, R. Ceccarelli, P. Chimenti, R. Clementi, A. Gallo, C. Di Giulio, R. Di Raddo, L. Foggetta, L. Piersanti, L. A. Rossi, S. Strabioli on behalf of the Linac, RF and Vacuum groups.

Active Plasma Lens

Magnetic Field (\mathbf{B}_{φ}) vs Force on electrons (F)

Active Plasma Lens Experiment: 3 cm long, 0.5 mm radius, sapphire capillary

Passive Plasma Lens Experiment

Over-dense regime

The plasma is produced by a H₂-filled discharge capillary Passive lens effect also due to the plasma jets at both edges of the capillary

Study of the effect on emittance

A. Marocchino et al., Appl. Phys. Lett. 111, 184101 (2017)

Characterization of plasma jets

A. Marocchino et al., Appl. Phys. Lett. 111, 184101 (2017)

New experimental chamber in the Plasma_Lab

We mounted a new experimental chamber for further plasma studies, in particular plasma target for acceleration experiments.

Tapered capillaries

Local control of the plasma density is required to match the laser/electron beam into the plasma. Tapering the capillary diameter is the easiest way to change locally the density.

Next experimental campaign in Plasma Lab.

3. Simulations: preliminary results of 2D simulations

Figure: Particular of the plasma temperature (colored map) and azimuthal magnetic field (contour lines) in proximity of the left electrode at 300ns from the start of the discharge.

- It is possible to compute the magnetic field as postprocessing
- Maps of other relevant quantities can be obtained
- The temperature reached by the plasma seems to be in qualitative agreement with what expected

Plasma source

We pre-ionize the capillary with a preformed plasma prior the main discharge. The initial plasma is formed in a short primary capillary by a high voltage pulse discharge. Part of this plasma and free electrons expanding into a long capillary that is connected to a high voltage capacitor. Since the discharge process follows the Paschen law, the breakdown threshold of the long capillary is lowered and the discharge can develop.

This strategy allow to ionize long capillaries with reasonable applied voltage in controlled and homogeneous way.

Plasma source

This scheme can be reproduced for tens-of-centimetre capillaries. This single unit can be integrated simply by adding more units obtaining up to tens of centimetre capillaries homogenously ionized and controlled independently one to each other, leading to the desired length of plasma (almost 30 cm) with the proper density (10¹⁷ cm⁻³) required for this project.

- We are going to investigate the possibility to implement up to tens of centimeters long capillaries for future plasma based accelerators.
- We have studied the possibility to use hydrogen-filled double capillaries to reduce the breakdown threshold and ensures long plasma channel. This solution will allow for multi-staging increasing the length of the plasma channel.
- Further studies are ongoing also for LWFA Laser guiding.

Up and Down Time 2017

Percentage of the working days in 2017 up to Oct. 31st

Activity in the 2nd half of 2017

Т3				T4			T1			T2			Т3				
lug	ago	set	ott	nov	dic	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic
C	-band co	onditioni	ng with \$	SLED: a.	~30 Me	V energy	y gain (v	vith C-ba	and SLE	D); b. 22	.6 MeV e	energy g	ain (with	out SLE	D)		
	Turbo	pumps	mainten	ance; Se	eding la	ser main	tenance	9									
	Insta	llation of	fmovabl	e PMQs	holder fo	or focal le	ength fir	ne adjust	ment								
	Sub-systems start up																
			Pla	sma lens	s experir	nent											
				Kly2 inte	erlock: c	onditioni	ng need	led; Dry	cooler o	ff; interlo	ck on ch	iller YAC	3 laser				
				S	ystemati	c on plas	ma lens	s for pres	serving t	beam qua	ality with	LOW C	URRENT	BEAM			
					_Syst	ematic o	n plasm	a lens fo	or preser	rving bea	m qualit	y with H	GH CUF	RENT E	BEAM		
					<u></u> 5	Single hig	gh curre	nt bunch	interac	tion WITH	I PLASI	MA for a	cceleratio	on studie	s		

New Vacuum Chamber to be installed in January

Planning 1st half of 2018

T1	T2	Т3	T4	T1	T2	Т3								
gen feb mar	apr mag giu	lug ago set	ott nov dic	gen feb mar	apr mag giu	lug ago set								
MACHINE Laser stu	E SHUT DOWN		1. 2. 3.	New interaction cham Scandinova work on t Photo-cathode laser p	iber; he modulator to reacl partial replacement	ו full power;								
Single t	ounch studies with injecti	on and extraction PMQs	triplets											
Beam	dynamics experimental	studies for PWFA WITHC	DUT plasma WITH C-ba	nd										
[+	Two bunch interaction with plasma structure													
Driv	er and witness beam ma	tching with plasma												
	Beam-plasma intera	ction												
	Witness bear	n characterization out of p	plasma											
	Plasn	na-based lenses studies f	or beam matching out o	f the plasma										
		Beam dynamics studies v	with multi-bunch train wi	th ramped charge without	plasma									
	(Multi-bunch inte	eraction with plasma											

Planning 2nd half of 2018

	T1 T2			T3			T4				T1			T2		Т3				
gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	gen	feb	mar	apr	mag	giu	lug	ago	set
	Multi-bunch interaction with plasma																			
							Witness	beam c	haracter	ization o	ut of pla	sma								
						-	Prepa	ration of	THz stre	eaking e	xperimer	nt								
								Mach	nine star	up and	installati	on of the	3 capil	laries se	tup for ir	nt., accel	l. and ex	tr.		
								Ор	timizatio	n of mul	ti-bunch	plasma i	nteracti	on						
								1	P	reliminar	y FEL st	udies wi	th plasn	na accel	erated b	eam				
									-	TH	z streak	er exper	iment: E	eam dy	namics s	tudies a	nd bunc	h length	measure	ment

Ti:Sa FLAME laser

Emittance measurement using Betatron Radiation

- First measurement of the emittance including the correlation term
- The beam profile is retrieved not simply the average dimensions
- An expression is given for the correlation function between the betatron oscillation amplitude and the divergence of the single accelerated electrons, i.e. the angle with respect the acceleration axis, in order to obtain the distribution of the electron divergences.

Curcio, A., et al. "Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators." *Physical Review Accelerators and Beams* 20.1 (2017): 012801.

Transverse Phase space reconstruction

- Normalized rms emittance (correlated): 0.6 mm mrad
- Normalized rms emittance (non correlated, upper limit): 1.6 mm mrad

FLAME status: EOS experiment

Main diagnostic is still EOS crystal.

The goal is to understand the scaling laws that governing particle acceleration from solid targets and the correlation between target shape and proton yield More diagnostic added:

CR39 films to measure proton energy and charge.

Electron spectrometer to measure electron energy.

FLAME status

In the last few months we have seen no signal from EOS experiments and this has been addressed to contrast ratio. At the beginning the contrast was low due to a damage on the booster crystal and even after replacing the crystal, contrast was worse than Amplitude specifications. What they claim is the ageing of the "Key components" (Pockel cells).

We have placed a new order to Amplitude for the Mazzler crystal which also include a regenerative cavity upgrade which should also improve contrast ratio (pre-pulses are now of the order of 10⁻⁶ and we expect to be able to bring them at the level of 10⁻⁸ as Amplitude specifications!).

FLAME status

After fire accident (Oct. 2016) FLAME has been recovered and now is in operation.

We are still waiting for the end of the upgrade of the last amplifier, which took much longer than expected (Amplitude problems with 2nd harmonic crystals). This is expected to end by December.

We are still running experiments with EOS to finalize the intensity scaling and 5 YAGs missing is an issue. At the moment, the maximum energy on target is a bit more than 1J (1.8 J before compression).

FLAME up-down time

Gantt Chart for FLAME operations

Tool News		Q2			Q3		Q4			Q1		Q2			Q3			Q4			Q1				
lask name) r	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb I	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
	Ö	e e	Ì ⊕,	7																					
 EOS Experiment - part 2 - intensity scaling 			1							EOS E	xperime	ent - pa	art 2 -	intens	ity sca	ling									
Amplitude visit for YAG installation - last one									Arr	plitude	visit for	r YAG	instal	lation -	last o	ne									
EOS experiment at full power										EOS e	xperime	ent at f	full pov	wer											
Mazzler installation and regenerative upgrade (at any time in this window)											Maz	zler in	nstalla	tion an	d rege	nerati	ve upg	rade (a	at any t	ime in	this wir	ndow)			
Capillary guiding for EXIN - set-up preparation											Сар	illary g	guiding	g for E	XIN - s	et-up	prepar	ation							
Capillary guiding for EXIN - guiding															Capilla	iry gui	iding fo	r EXIN	- guid	ing					
Order of the new interaction chamber											Orde	er of th	he nev	w inter	action	chaml	ber								
Deliver of the new interaction chamber anf vacuum test															Delive	r of th	e new i	interac	tion ch	amber	anf va	cuum t	est		
Installation of the new vacuum chamber in FLAME bunker															Inst	allatio	on of th	e new '	vacuur	n chan	nber in	FLAM	E bunk	ker	
Optics mount and fine alignment in the new vacuum chamber																Optics	mount	and fi	ne alig	nment	in the r	new va	cuum	chamb	er

FLAME status: what next

EOS experiment - phase 2.

The aim of this experimental campaign is to add more diagnostic to the previous experimental campaign. Diagnostic included in this experimental campaign are electron charge and energy.

Moreover, a more comprehensive study of the potential barrier will be carried out.

Capillary guiding for EXIN

The goal of the experiment is to guide high power laser in a capillary in order to prepare the wakefield for the external injected electrons.

During the experimental campaign overseen in FLAME, we aim to understand which is the best capillary choise (between monomode capillaries and preformed plasma capillaries) and to grow knowledge on the capillary alignment as well as the diagnostic of laser not only for the interaction but also for the post-interaction.

FLAME status: what next

The new interaction chamber has been designed: it guarantees the maximum flexibility and space for diagnostic.

The order for the new interaction chamber will be placed soon (in January) and the chamber will be delivered in INFN in March (and we will test it) and will be installed in the bunker hopefully before summer.

FLAME publications - 2017

- Fabrizio Bisesto, Maria Pia Anania, Mordechai Botton, Enrica Chiadroni, Alessandro Cianchi, Alessandro Curcio, Massimo Ferrario, Mario Galletti, Riccardo Pompili, Elad Schleifer, Arie Zigler; Novel Single-Shot Diagnostics for Electrons from Laser-Plasma Interaction at SPARC_LAB.
 Quantum Beam Science 10/2017; 1(3)., DOI: 10.3390/qubs1030013
- A Curcio, M Anania, F. Bisesto, E Chiadroni, A Cianchi, M Ferrario, F Filippi, D Giulietti, A Marocchino, M Petrarca, V Shpakov, A Zigler: Trace-space reconstruction of low-emittance electron beams through betatron radiation in laser-plasma accelerators. Physical Review Special Topics - Accelerators and Beams 01/2017; 20(1)., DOI:10.1103/PhysRevAccelBeams.20.012801
- A Curcio, M Anania, F Bisesto, E Chiadroni, A Cianchi, M Ferrario, F Filippi, D Giulietti, A Marocchino, F Mira, M Petrarca, V Shpakov, A Zigler; Single-shot non-intercepting profile monitor of plasma-accelerated electron beams with nanometric resolution. Applied Physics Letters 09/2017; 111(13)., DOI: 10.1063/1.4998932
- FG Bisesto, Maria Pia Anania, A Cianchi, E Chiadroni, Alessandro Curcio, Massimo Ferrario, Riccardo Pompili, Arie Zigler; Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME. Journal of Physics: Conference Series 07/2017; 874(1); DOI: 10.1088/1742-6596/874/1/012035

FLAME publications - 2017

- FG Bisesto, MP Anania, E Chiadroni, A Cianchi, G Costa, A Curcio, M Ferrario, M Galletti, R Pompili, E Schleifer, A Zigler; Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME. Proc. SPIE 10240, Laser Acceleration of Electrons, Protons, and Ions IV, 102400K; 07/2017; DOI: 10.1117/12.2265691
- A Curcio, M Anania, F Bisesto, E Chiadroni, A Cianchi, M Ferrario, F Filippi, D Giulietti, A Marocchino, F Mira, M Petrarca, V Shpakov, A Zigler; First measurements of betatron radiation at FLAME laser facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 03/2017; 402; DOI: 10.1016/j.nimb.2017.03.106
- 7. Riccardo Pompili, Maria Pia Anania, Marco Bellaveglia, Fabrizio Bisesto, Enrica Chiadroni, Alessandro Cianchi, Alessandro Curcio, Domenico Di Giovenale, Giampiero Di Pirro, Massimo Ferrario, Arie Zigler; Electro-Optical Methods for Multipurpose Diagnostics. 5th Int. Beam Instrumentation Conf. **(IBIC'16)**, Barcelona, Spain, Sept. 13-18, 2016. JACOW, Geneva, Switzerland, 2017

EuPRAXIA and SPARC_LAB

Massimo.Ferrario@lnf.infn.it

LNF SciCom –14 November 2017

- D. Alesini, M. P. Anania, R. Bedogni, M. Bellaveglia, A. Biagioni, F. Bisesto, E. Brentegani, B. Buonomo, P.L. Campana, G. Campogiani, S. Cantarella, F. Cardelli, M. Castellano, E. Chiadroni, R. Cimino, R. Clementi, M. Croia, A. Curcio, G. Costa, S. Dabagov, M. Diomede, A. Drago, D. Di Giovenale, G. Di Pirro, A. Esposito, M. Ferrario, F. Filippi, O. Frasciello, A. Gallo, A. Ghigo, A. Giribono, S. Guiducci, S. Incremona, F. Iungo, V. Lollo, A. Marcelli, A. Marocchino, V. Martinelli, A. Michelotti, C. Milardi, L. Pellegrino, L. Piersanti, S. Pioli, R. Pompili, R. Ricci, S. Romeo, U. Rotundo, L. Sabbatini, O. Sans Plannell, J. Scifo, B. Spataro, A. Stecchi, A. Stella, V. Shpakov, C. Vaccarezza, A. Vannozzi, A. Variola, F. Villa, M. Zobov.
- INFN Laboratori Nazionali di Frascati
- A. Bacci, F. Broggi, C. Curatolo, I. Debrot, A. R. Rossi, L. Serafini. INFN Sezione di Milano
- D. Cirrincione, A.Vacchi. INFN Sezione di Trieste
- G. A. P. Cirrone, G. Cuttone, V. Scudieri. INFN Laboratori Nazionali del Sud
- M. Artioli, M.Carpanese, F.Ciocci, D.Dattoli, S.Licciardi, F.Nguyen, S. Pagnutti, A.Petralia, E. Sabia. ENEA Frascati and Bologna
- L. Gizzi, L. Labate. CNR INO, Pisa
- R. Corsini, A. Grudiev, N. Catalan Lasheras, A. Latina, D. Schulte, W. Wuensch. CERN, Geneva
- C. Andreani, A. Cianchi, G. Festa, V. Minicozzi, S. Morante, R. Senesi, F. Stellato. Universita' degli Studi di Roma Tor Vergata and Sezione INFN
- V. Petrillo, M. Rossetti. Universita' degli Studi di Milano and Sezione INFN
- G. Castorina, L. Ficcadenti, S. Lupi, M. Marongiu, F. Mira, A. Mostacci. Universita' degli Studi di Roma Sapienza and Sezione INFN
- S. Bartocci, C. Cannaos, M. Faiferri, R. Manca, M. Marini, C. Mastino, D. Polese, F. Pusceddu, E. Turco. Università degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero
- M. Coreno, G. D'Auria, S. Di Mitri, L. Giannessi, C. Masciovecchio. ELETTRA Sincrotrone Trieste
- A. Ricci. RICMASS, Rome International Center for Materials Science Superstripes
- A. Zigler. Hebrew University of Jerusalem J. B. Rosenzweig. University of California Los Aangeles

	WG 0 – Project Management	
	0.1 Executive summary	(M. Ferrario)
	WG 1 – Electron beam design and optimization	
	1.1 Advanced High Brightness Photo-injector	(E. Chiadroni)
	1.2 HB Linac technology,	(A. Gallo)
	1.3 Linac design and parameters	(C. Vaccarezza)
	WG 2 – Laser design and optimization	
	2.1 FLAME upgrade	(M. P. Anania)
	2.2 Advanced Laser systems	(L. Gizzi)
	WG 3 – Plasma Accelerator	
	3.1 PWFA beam line	(A. Marocchino)
	3.2 LWFA beam line	(A. R. Rossi)
	3.3 Plasma and Beam Diagnostics	(A. Cianchi)
CDR O	WG 4 - FEL pilot applications	
	4.1 Conventional and Plasma driven FEL	
deliverv	4.2 Photon hoom lines	
	4.5 Filoton beam miles	(F. VIIIa)
expected /	4.4 FEL USER applications	(r. biellato)
1	WG 5 – Radiation sources and user beam lines	
by end of	5.1 Advanced (dielectric) THz source	(S. Lupi)
the mean	5.2 Compton source	(C. Vaccarezza)
rue year.	5.3 Secondary Particle Sources	(LNS)?
	5.4 Laser-driven neutron source	(Cianchi)
	5.4 User beam lines	(P. Valente)
	WG 6 – Low Energy Particle Physics	
	6.1 Advanced positron sources	(A. Variola)
	6.2 Fundamental physics experiments, LabAstro	(U. Gatti)
	6.5 Plasma driven photon conder	(L. Seraini)
	WG 7 – Infrastructure	
	7.1 Civil Engineering and conventional plants	(U. Rotundo)
	7.2 Control system	(G. Di Pirro)
	7.3 Radiation Safety	(A. Esposito)
	7.4 Machine layout	

- Candidate LNF to host EuPRAXIA (1-5 GeV)
- FEL user facility (1 GeV 3nm)
- Advanced Accelerator Test facility (LC) + CERN

- 500 MeV by RF Linac + 500 MeV by Plasma (LWFA or PWFA)
- 1 GeV by X-band RF Linac only
- Final goal compact 5 GeV accelerator

Accelerator (X-band EU frequency – 100 Hz?)

												10.5r	n	
							62.5 m RF & power supplies							7.5m
					1. A.		55 m				222			
	\sim	11.3	m	>< {	3.8 m	×	12 m	<		13.9 m	>	5 m	> '	
8n		Injecto)r	Li	inac 1		Compressor		P					
	2.2	8-8-8	-2-2-						2.2		2-2-2			

- Injector:
 - Gun+solenoid
 - 3x 3m s-band sectons
- Linac 1:
 - 8x 0.5m x-band sections
 - Matching Quads

- Compressor:
 - 2.19° deflection
- Linac 2:
 - 14x 0.5m x-band sections
 - Matching Quads
- Plasma:
 - PMQ matching
 - 0.6 m capillary

30 pC beam Start To End Simulations

FEL driven by LWFA

Tstep simulation for the driver +witness (30pC-2kA) up to the X-band linac entrance

Trailing bunch @Photoinj.Exit										
E [MeV]	98.85									
ε _{x,y} [mm mrad]	0.73									
σ _{z-FWHM} [μm]	~ 3.0									
σ _{z-rms} [μm]	6.0									
ΔΕ/Ε [%]	0.15									
σ _{x-rms} [μm]	89									
I _{peak [FWHM]} [kA]	3									

@photoinjector exit

FEL driven by PLASMA

	Units	1 GeV PWFA	1 GeV LWFA
		with Undulator	with Undulator
		Tapering	Tapering
Bunch charge	nC	29	26.5
Bunch length rms	fs	11.5	8.4
Dunch Kingen This Dook curront	13 12 A	26	3 15
I Cak cui i ciit		10	10
Rep. rate	HZ 0/	10	10
Kms Energy Spread	°∕0	0.73	0.81
Slice Energy Spread	%	0.022	0.015
Average Rms norm. emittance	μm	0.6	0.47
Slice norm. emittance	μm	0.39-0.309	0.47
Slice Length	μm	1.39	1.34
Radiation wavelength	nm	2.79	2.7
ρ	x 10 ⁻³	2	2
Undulator period	cm	1.5	1.5
K		0.987	1.13
Undulator length	m	30	30
Saturation power	GW	0.850-1.2	1.3
Energy	μJ	63	63.5
Photons/pulse		8.8 x 10 ¹¹	8.6 x 10 ¹¹
Bandwidth	%	0.35	0.42
Divergence	µrad	49	56
Rad. size	μm	210	160
Brilliance per shot	(s mm ²	$0.83 \ge 10^{27}$	$1.22 \text{ x} 10^{27}$
	$mrad^2bw$ (‰)) ⁻¹		

FEL simulation with linac accelerated electron beams, high flux case

Courtesy of V. Petrillo

C. Vaccarezza

3rd EAAC 17, 24-30 September 2017, La Biodola, Isola d'Elba

FEL driven by X-band only

	Units	1 GeV with X- band linac only 100 pC	1 GeV with X- band linac only 200 pC
Bunch charge	pC	100	200
Bunch length rms	fs	38.2	55.6
Peak current	kA	2.	1.788
Rep. rate	Hz	10	10
Rms Energy Spread	%	0.1	0.05
Slice Energy Spread	%	0.018	0.02
Average Rms norm.	μm	0.5	0.5
emittance			
Slice norm. emittance	μm	0.35-0.24	0.4-0.37
Slice Length	μm	1.25	1.66
Radiation wavelength	nm	2.4 (0.52 keV)	2.87(0.42 keV)
ρ	x 10 ⁻³	1.9(1.7)	1.55(1.38)
Undulator period	cm	1.5	1.5
K		0.987	0.987
Saturation length	m	15-25	16-30
Saturation power	GW	0.361-0.510	0.120-0.330
Energy	μJ	48-70	64-177
Photons/pulse		5.9-8.4 x 10 ¹¹	$9.3-25.5 \times 10^{11}$
Bandwidth	%	0.13-2.8	0.24-0.46
Divergence	µrad	17.5-16	28-27
Rad. size	μm	65-75	120-200
Brilliance per shot	(s mm ²	$Fx3.8-2.2\ 10^{28}$	Fx2.5-1.4 11 ²⁷
	$mrad^2bw$ (‰)) ⁻¹		

Technological Aspects

X-band Linac

New EU Design Study Approved

3 years – 3 MEuro (→212 kEuro INFN) Coordinator: G. D'Auria (Elettra)

The key objective of the CompactLight Design Study is to demonstrate, through a conceptual design, the feasibility of an innovative, compact and cost effective FEL facility suited for user demands identified in the science case.

EuPRAXIA@SPARC LAB X-band linac optimization

The accelerating structures have been optimized tapering the irises apertures and maximizing the effective shunt impedance that takes into account also the RF pulse compression from the SLED. Different structure lengths have been also considered. $\times 10^4$

3.6

3.4

3.2

2.8 2.6

2

1.8

1.6

0

3

 $G(t_{f},z)/\sqrt{P_0}$

Figure: normalized gradient profile along the structur *Eigubern* ffective shunt impedance per unit lenge

The **best compromise** in term of structure efficiency and final layout configuration has been found with accelerating cavities of 0.5 m.

Ti:Sa FLAME laser

Parameters of the 500 TW laser

Parameters	FLAME today	FLAME upgrated
Wavelength [nm]	800	800
Bandwidth [nm]	60-80	60-80
Repetition rate [Hz]	10	1-5
Max energy before compression [J]	7	20
Max energy on target [J]	4	13
Min pulse length [fs]	25	25
Max power [TW]	250	500
Contrast ratio	10 ¹⁰	10 ¹⁰

Comparison between the parameters of the actual FLAME system and the upgraded FLAME system.

Eupraxia@SPARC_LAB synchronization system

Synchronization system: A fine temporal alignment among all the relevant sub-system oscillators that guarantees temporal coherence of their outputs (precision ~10fs)
Tasks: triggers to sub systems (RF pulses, laser amplifiers, BPM, injection/extraction kickers), event tagging
Layout: 1 Electrical and 1 Optical Master Oscillator, 3 RF extractors, 2 optical link ends (diagnostics and users)

• 500 MeV by RF Linac + 500 MeV by Plasma

• 1 GeV by RF Linac only (EuSPARC)

KYMA Δ undulator: designed by ENEA Frascati, constructed by Kyma Trieste, tested on beam at SPARC_LAB

• DELTA like undulator $\lambda_u = 1.4$ cm, gap g = 5mm, Br = 1.22T.

Undulator tested in two stage SASE-FEL: 630nm to 315 nm

L'iniziativa EuPRAXIA@SPARC_LAB è valutata, quindi, di grande rilevanza scientifica per Elettra, che la considera sinergica con le proprie attività di ricerca.

Con la presente lettera Elettra intende esprimere, perciò, il proprio interesse a collaborare con INFN alla preparazione del TDR di EuPRAXIA@SPARC_LAB, con particolare attenzione allo sviluppo del linac in banda X, alla concezione di ondulatori compatti, allo studio degli schemi FEL più adatti allo scopo e alla progettazione delle relative linee di luce. Allo scopo di favorire la collaborazione con INFN in questi campi, Elettra potrà rendersi disponibile ad ospitare giovani ricercatori per brevi periodi di training.

Cordiali saluti

Il Presidente e Amministratore Delegato Prof. Alfonso Franciosi

Photon beam line

Defininig aperture

Coherent Imaging @ EuSPARC/EuPRAXA

2 key issues: brilliance and coherence of the FEL radiation

1 experimental station performing coherent imaging experiments

Many applications, ranging from biological systems to condensed matter physics

Coherent Diffraction Pattern

Water Window Coherent Imaging of biological systems

Energy region between oxygen and carbon K-edge 2D and 3D images of biological samples will be obtained

viruses, cells, organelles, protein fibrils...

Metal-insulating transitions

Colossal magnetoresistance

Skyrmions, spintronics

Nanoparticles and plasma

Condensed-matter

phenomena

High Temperature superconductors

Colossal Magnetoresistance 3d Orbital Types

The Experimental Endstation

Parameters	Expected values								
R a d i a ti o n	2-4 nm (310-620								
wavelength	eV)								
Photons per pulse*	1-7 x 10 ¹¹								
Pulse length 10-50 fs									
(FWHM)									
Repetition rate	10-100 Hz								
Bandwidth (FWHM)	1 eV								

A versatile, state-of-the art, fully equipped experimental station (and a transport line) will be necessary to exploit the brilliant, ultra-short and coherent FEL pulses

EuPRAXIA@SPARC_LAB

EuPRAXIA@SPARC_LAB timeline

Year	2017			2018			2019			2020				2021				2022				2023						
Month	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
EuPRAXIA																												
Design Study & ESFRI																												
Preparatory Phase																												
EuPRAXIA@SPARC_LAB																												
Machine Conceptual Design Report																												
Machine Technical Design Report																												
New building design																												
New building authorisation requests																												
New building tender																												
New building construction																												
X-band R&D																												
X-band LINAC tender																												
X-band LINAC realization and test																												
X-band LINAC installation and comm	issio	ning																										
Plasma Accelerator R&D																												
Plasma Accelerator Tender																												
Plasma Accelerator Installation																												
Plasma Accelerator Commissioning																												
FEL undulator, optics and user tender																												
FEL undulator characterisation																												
FEL installation in the new building																												
FEL commissioning																												
User Beam Line R&D																												
User Beam Line Tender and Construct	ion																											
User Beam Line Installation																												
User Beam Line Commissioning																												
FLAME upgrade tender																												
FLAME components test																												
FLAME installation in the new building	ıg																											
FLAME commissioning up to 500 TW	V																											

Eupraxia@Sparc_Lab

- X-band RF technology implementation, -> CompactLight
- Science with short wavelength Free Electron Laser (FEL)
- Physics with high power lasers and secondary particle source
- R&D on compact radiation sources for medical applications
- Detector development and test for X-ray FEL and HEP
- Science with THz radiation sources
- Nuclear photonics with γ-rays Compton sources
- R&D on polarized positron sources

- Quantum aspects of beam physics, Quantum-FEL development
- R&D in accelerator physics and industrial spin off