

Activities of the LNF LHCb group

54th LNF scientific committee meeting / November 13th-14th, 2017

Marco Santimaria on behalf of the LNF LHCb group

OUTLINE

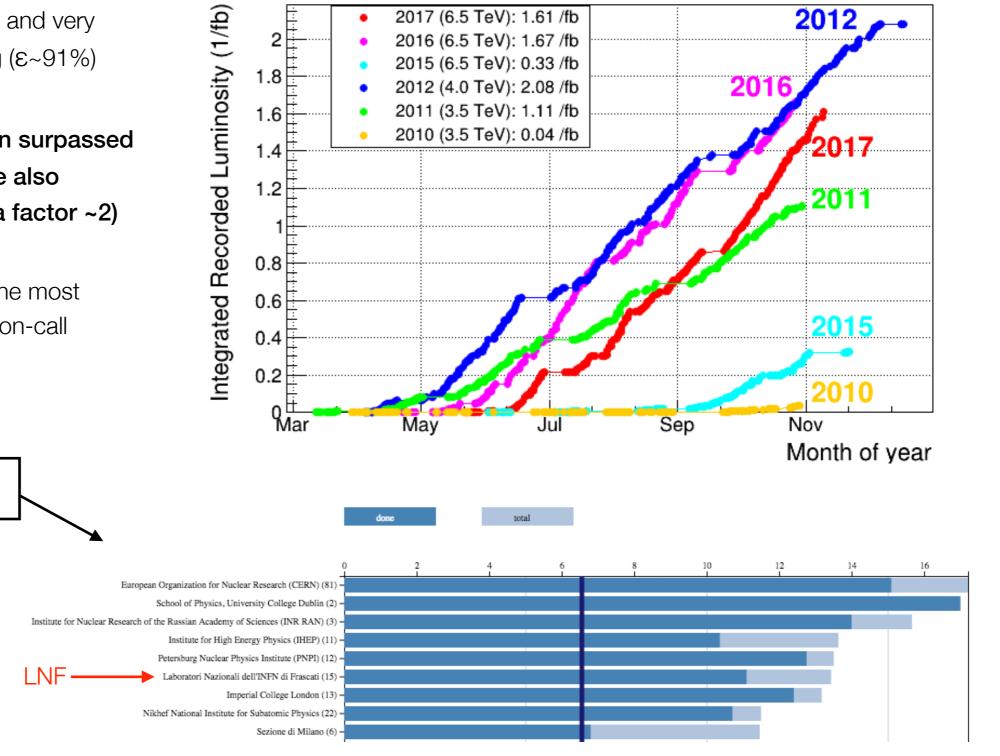
- 1. The group members and responsibilities
- 2. Physics analyses at LNF $B_{d,s} \rightarrow \mu^+ \mu^-$, $R(D_s)$, Λ^+_c
- 3. Upgrade MWPC, nODEs, trigger software
- 4. Future projects µ-RWELL, fixed target @ LHCb
- 5. Conclusions

1. the group

The LNF LHCb group

Large group with many responsibilities in the LHCb collaboration

-	Pietro Albicocco	[POST-DOC]
-	Giovanni Bencivenni	[STAFF]
-	Liliet Calero Diaz	[PHD STUDENT]
-	Pierluigi Campana	[STAFF]
-	Paolo Ciambrone	[STAFF]
-	Patrizia De Simone	[STAFF] (Muon reconstruction coordinator)
-	Pasquale Di Nezza	[STAFF] (SMOG2 coordinator)
-	Suzanne Klaver	[POST-DOC]
-	Gaia Lanfranchi	[STAFF]
-	Simonetta Liuti	[ASSOCIATE RESEARCHER]
-	Gianfranco Morello	[POST-DOC]
-	Matteo Palutan	[STAFF] (Muon project leader)
-	Marco Poli Lener	[STAFF]
-	Marcello Rotondo	[STAFF]
-	Marco Santimaria	[POST-DOC]
-	Alessio Sarti	[ASSOCIATE RESEARCHER]
-	Barbara Sciascia	[STAFF] (LNF group coordinator, deputy operation coordinator)


Run 2 data taking

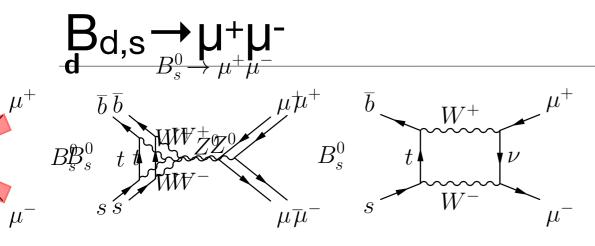
Very good LHC availability and very efficient LHCb data-taking (ϵ ~91%)

Run 1 statistics has been surpassed in Run 2, whose data are also enriched in B-hadrons (a factor ~2)

The LNF group is one of the most active in taking shifts and on-call duties

LHCb Integrated Recorded Luminosity in pp, 2010-2017

LNF scientific committee 13/11/17


I NF

Event 5296728 Run 191749 Tue, 23 May 2017 16:45:50

physics analyses at LNF

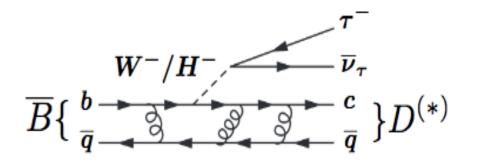
- In the SM, B_{d,s}→µ⁺µ⁻ decays can only occur via higher order FCNC and helicity-suppressed processes
- New particles entering the loop can affect the BF

Very clean probe of possible scalar and pseudo-scalar contributions: \rightarrow pr $B_s^0 \rightarrow \mu^{\pm}$ Mgle hadronic constant \mathcal{A} + Single M vilson coefficient \mathcal{A} + Single M vilson coefficient $\mathcal{B}(B_s^0)$ $\mathcal{B}(B_s^0)$ $\mathcal{B}(B$

→ precise prediction $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.65 \pm 0.23) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.06 \pm 0.09) \times 10^{-10}$ [Phys. Rev. Lett. 112 (2014) 101801]

ne clarged-current process; **c**, a - - $B_s^0 \rightarrow \mu^+ \mu^$ oces, which is forbidden in the $- - - B^0 \rightarrow \mu^+ \mu^$ ehanging neutral current avour ••••• Combinatorial nd g examples of process for $B \rightarrow h^+ h^ \begin{array}{ccc} & & & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \end{array}$ es, denoted as X^0 and X^{\ddagger} , can Candi $\rightarrow p\mu^{-}\overline{\nu}_{\mu}$ 10 -... $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$ 0 5000 5200 5400 5600 5800 6000 $m_{\mu^+\mu^-}$ [MeV/*c*²]

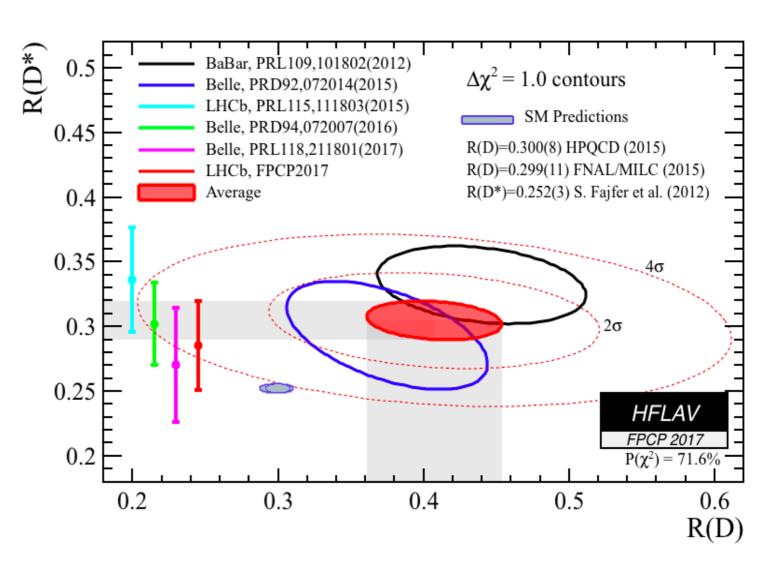
 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9} \\ \mathcal{B}(B^0_d \to \mu^+ \mu^-) < 3.4 \times 10^{-10} @~95\% \text{ CL} \end{aligned}$


- First single-experiment observation of the $B_s \rightarrow \mu^+ \mu^-$ decay
- World best measurement of the B_s→µ⁺µ⁻ BF and first measurement of its effective lifetime
- $B_d \rightarrow \mu^+ \mu^-$ limit approaching the SM prediction
- Published on [Phys. Rev. Lett. **118**, 191801]
- My PhD thesis!

LNF scientific committee 13/11/17

LFU test with semileptonic decays

$$\mathcal{R}(D) = \frac{\mathcal{B}(\bar{B} \to D\tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to Dl^- \bar{\nu}_l)}$$
$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D^* l^- \bar{\nu}_l)}$$

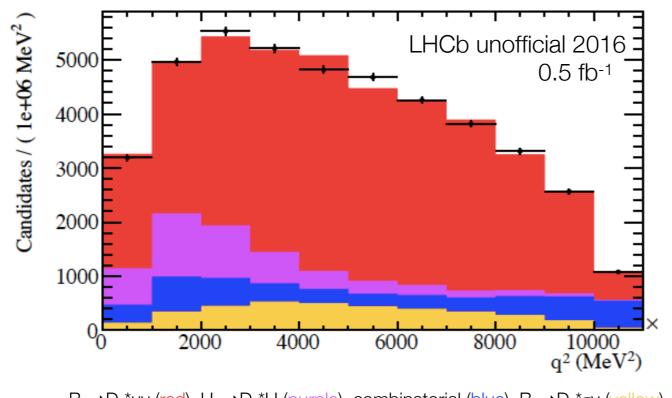

- Solid SM prediction (V_{cb} and FF uncertainties largely cancel)
- Sensitive to LFV contributions from e.g. 2HDM

- R(D): FNAL/HPQCD + BaBar and Belle FF
 R(D*): Recent (consistent) calculations
- LHCb contributes to R(D*) with leptonic (cyan) and 3-prong (red) tau decays.
 - \rightarrow 4 σ discrepancy wrt the SM

Many NP models to explain this difference point towards large LFU violation

2 σ deviation from SM recently observed in R(J/ ψ) from B_c decays @ LHCb [LHCb-PAPER-2017-035]

$R(D_s)$ - $R(D_s^*)$


$$\mathcal{R}(D_s) = \frac{\mathcal{B}(\bar{B} \to D_s \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D_s l^- \bar{\nu}_l)}$$
$$\mathcal{R}(D_s^*) = \frac{\mathcal{B}(\bar{B} \to D_s^* \tau^- \bar{\nu}_\tau)}{\mathcal{B}(\bar{B} \to D_s^* l^- \bar{\nu}_l)}$$

LFU: Exploit the abundant B_s production to study semitauonic B_s decays. Ongoing work on $B_s \rightarrow D_s \tau v$ and $B_s \rightarrow D^*_s \tau v$:

<u>PRO</u>: Small feed-down from excited Ds^{**} states in $B_s \rightarrow D_s^{**}\mu\nu$ <u>CON</u>: D_s^* hard to reconstruct in LHCb due to the photon

ANALYSIS ROADMAP:

1) Measurement of the $B_s \rightarrow D_s^* \mu \nu$ form factor

 $\frac{d\Gamma}{dq^2} = \frac{|V_{cb}|G_F^2}{48\pi^3} \cdot \mathcal{K}(q^2) \cdot \mathcal{F}^2(q^2)$

- FF is fundamental to allow for a reliable SM prediction of R(D*s). Inputs from LQCD at low recoil are ongoing
- Well advanced state of the measurement

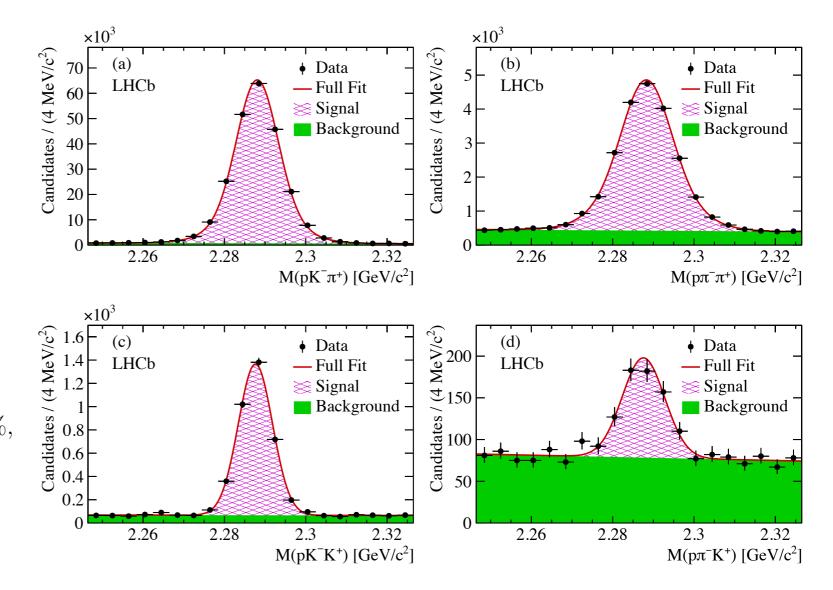
 $B_s \rightarrow D_s^* \mu v$ (red), $H_b \rightarrow D_s^* H$ (purple), combinatorial (blue), $B_s \rightarrow D_s^* \tau v$ (yellow)

2) Measurement of $R(D^*s)$ and other observables e.g. q^2 , D^*s polarisation

3) Combined $R(D_s)$ - $R(D^*_s)$ measurement, as done for B decays

$\Lambda_{c} \rightarrow phh'$ branching fractions

Hadronic decays of charmed baryons are a useful environment to study the interplay between weak and strong interactions

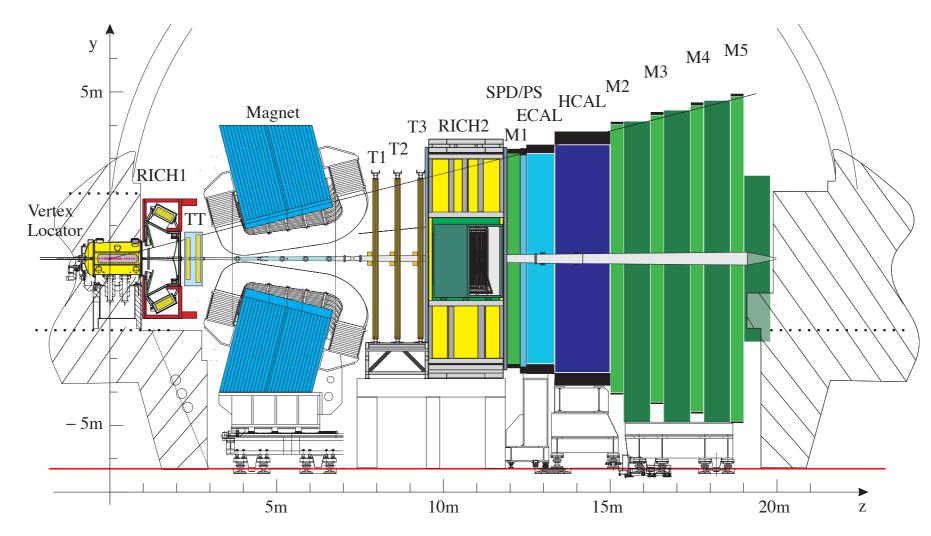

 \rightarrow B(DCS)/B(CF) measurements are crucial for understanding the contributions from W-boson exchange diagrams (external emission, internal emission, exchange)

- Λ_{c}^{+} reconstructed in $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \mu^{-} X$ (SL)
- Λ+c prompt sample as cross-check, separated via the impact parameter (IP)

Most precise measurement of the ratios:

 $\begin{aligned} \frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-\pi^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (7.44 \pm 0.08 \pm 0.18) \,\%, \\ \frac{\mathcal{B}(\Lambda_c^+ \to pK^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (1.70 \pm 0.03 \pm 0.03) \,\%, \\ \frac{\mathcal{B}(\Lambda_c^+ \to p\pi^-K^+)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} &= (0.165 \pm 0.015 \pm 0.005) \,\%, \end{aligned}$

• [ArXiv:1711.01157], submitted to JHEP



upgrade

The muon detector upgrade

<u>2019</u>: LHCb luminosity increase $4x10^{32} \rightarrow 2x10^{33}$ cm⁻²s⁻¹

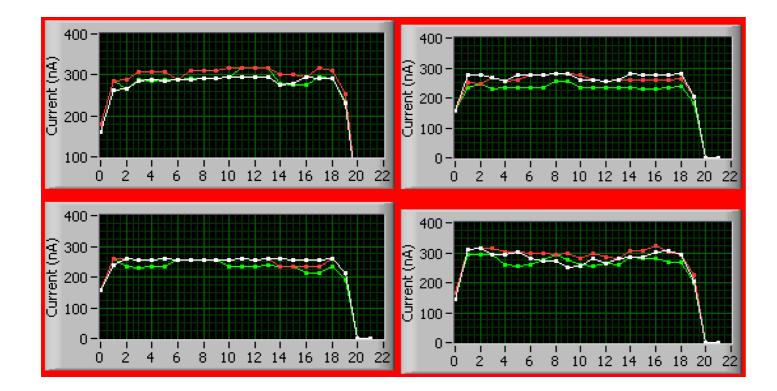
- The first muon station (M1) will be removed
- A tungsten shield will be installed in front of the inner part of M2 to mitigate the particle flux
- Data readout at 40 MHz (now 1 MHz)
- The hardware trigger will be removed: development of a fully software trigger

LNF has a fundamental role in the upgrade:

MWPC spare production, production of the new muon readout boards, trigger software development

MWPC production

LNF produced ~50% of the MWPC of LHCb in 2004.


The production site at LNF has been setup again:

1. clean chamber:

production of 30 spare chambers is finished

2. radiation facility:

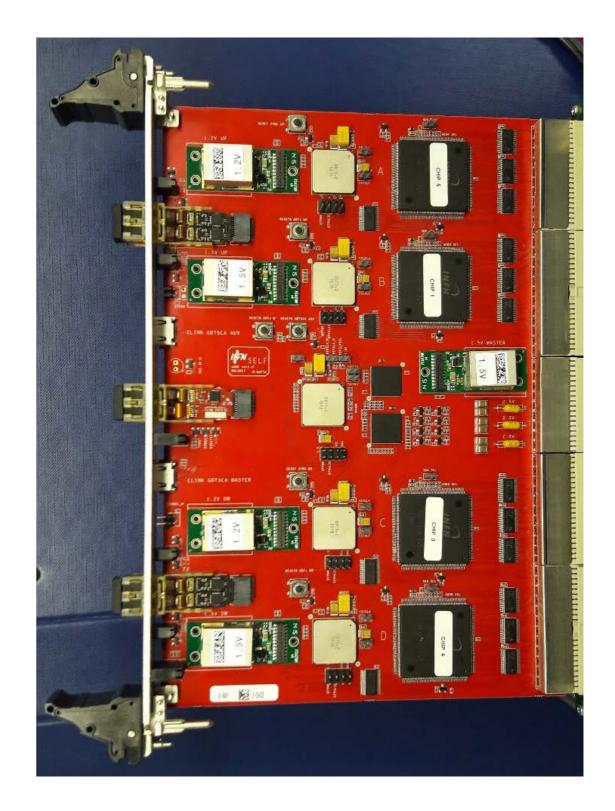
current profile measurement with Cs source

The chambers have been sent to CERN, where they are dressed with the electronics and finally tested (HV, gas, FEE)

The Off-detector readout electronics (ODE):

receive the front-end signals of the muon chambers and provide:

- L0 pipeline (removed in the upgrade)

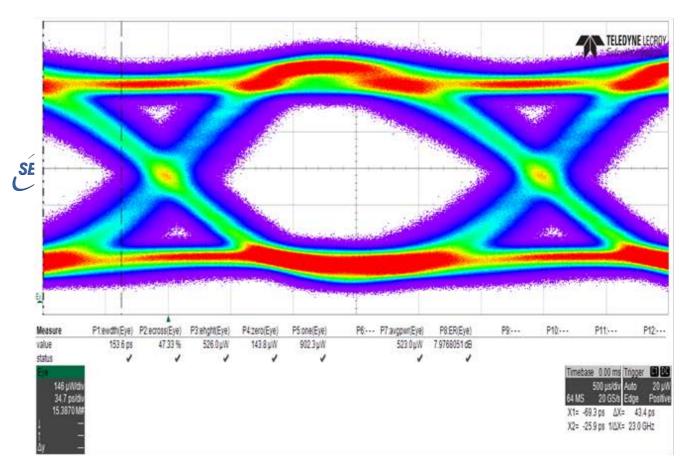

The nODE

- signal synchronisation and bunch-cross identification
- interface to trigger and DAQ (hit map + time information)

At the upgrade, the ODE output rate will increase from the present **1 MHz to 40 MHz:**

* The new ODE board (nODE) has been developed at LNF

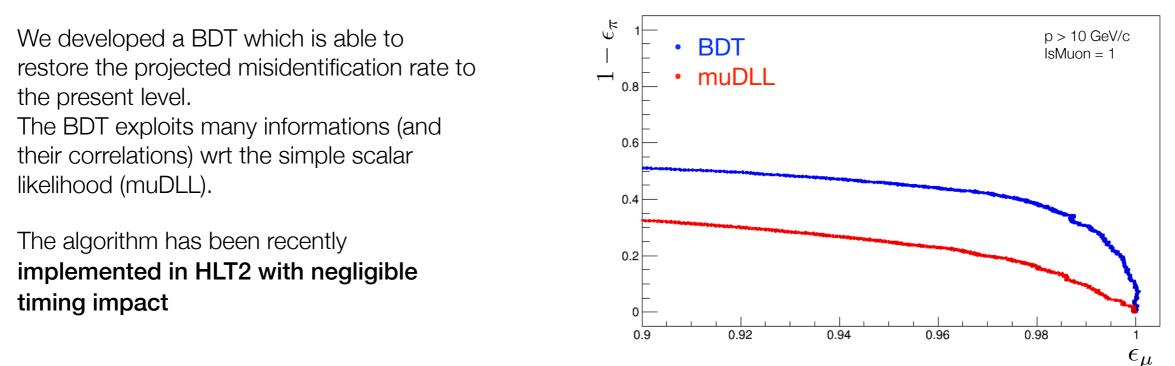
- 1 GBTx chip + 2 GBT_SCA chips + 1 VTRx transceiver for TFC and ECS stage
- 4 GBTx chips + 4 nSYNC chips for DATA stage
- flexible to different granularities
- backward compatible
- * A new custom ASIC (nSYNC) has been developed in Cagliari
 - 4 chips x 48 channels



nODE production

June 2017: First prototype of the nODE

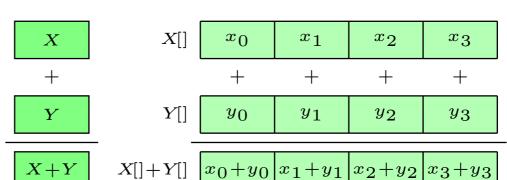
- nODE prototype fully tested and characterised:
 - Local configuration
 - GBTx master & slave optical links
 - TFC & ECS interfaces
 - E-fuse procedure
 - nSYNC data e-links
- Passed all tests without major issues
 - Good optical link quality, BER < 10⁻¹³ @ 99% CL
 - PRR @ CERN passed
- * Ready for production
 - nSYNC production will start next month
 - 190 nODEs (148 on detector + spares)
 - 20 nODE preproduction in spring 2018 followed by the full production after testing



MuonID software for the upgrade

At the upgrade luminosity, a factor ~2 more background is foreseen after HLT1 (IsMuon), i.e. the binary choice based on particle penetration through the iron absorbers.

 \rightarrow We want to ensure the proper background rejection at the upgrade.

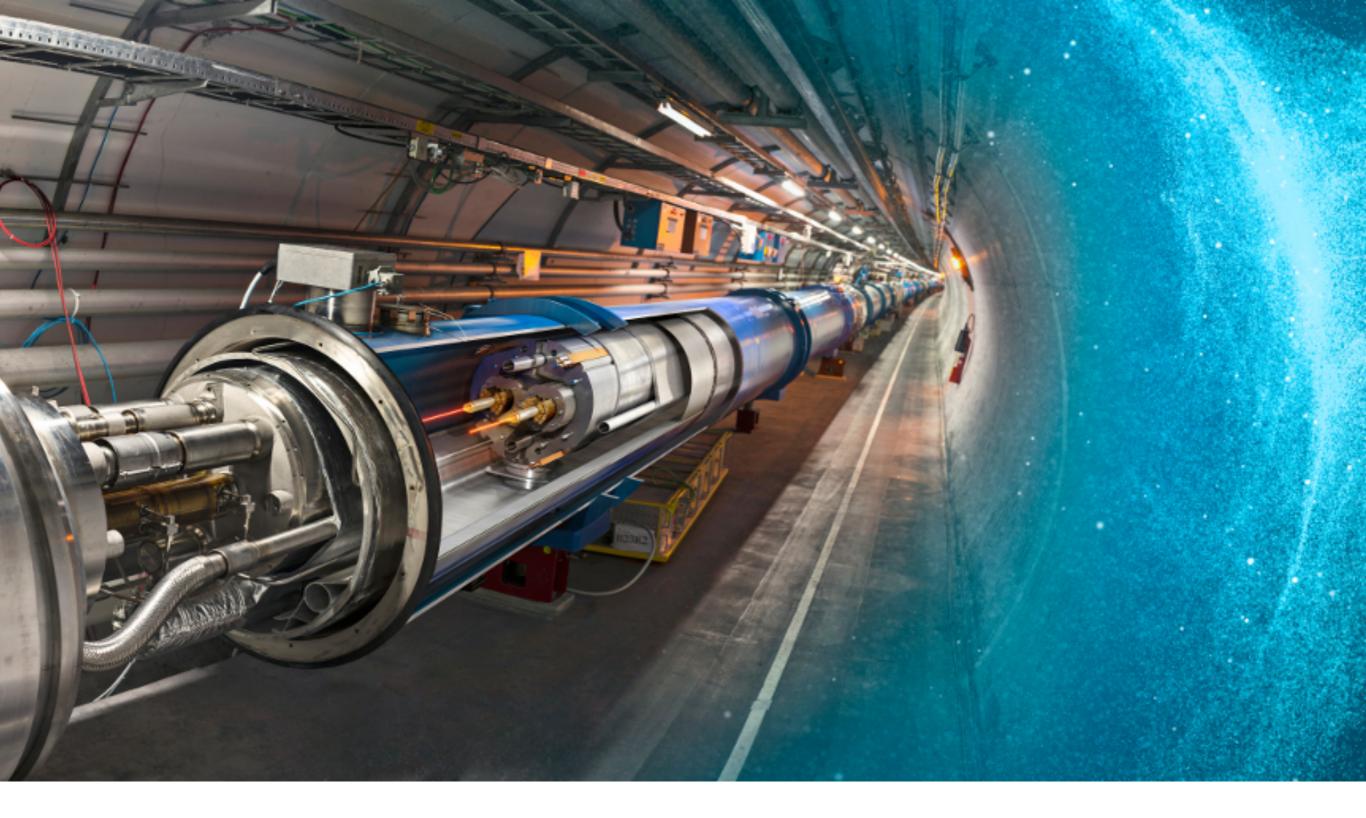

Development of many other algorithms is ongoing to redefine the muon trigger:

- χ^2 with multiple scattering information (already implemented), cluster size, isolation \rightarrow low p_T MVC

PARADIGMS OF THE NEW TRIGGER CODE

Embedded in the new functional framework (Gaudi-Hive) Thread safety, Vectorisation, C++11 and C++14 standards Performance evaluation (e.g. callgrind)

 \rightarrow Fast execution time (~1 ms/event)



Next: run the algorithms without L0 (upgrade scenario) on minimum bias events

LNF scientific committee 13/11/17

Marco Santimaria

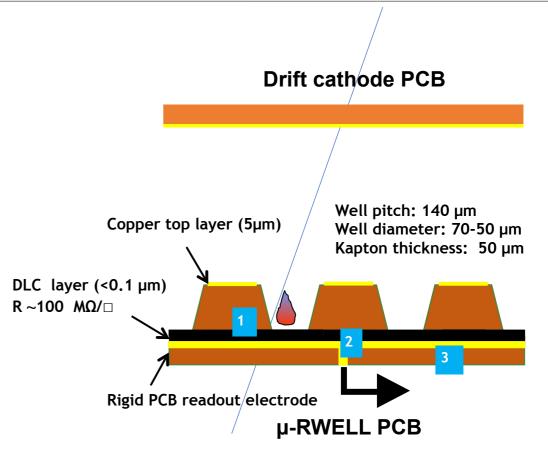
Single Instruction Multiple Data

future projects

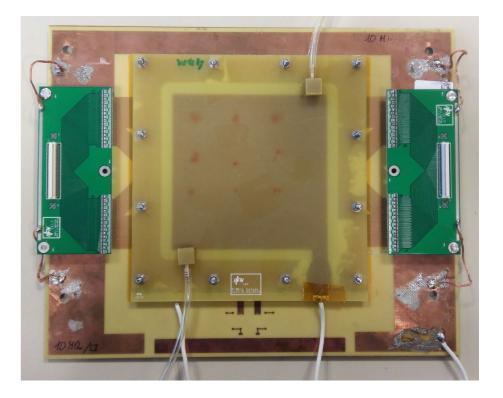
The µ-RWELL detector

Giovanni Bencivenni, Gianfranco Morello, Marco Poli Lener

The **R&D on \mu-RWELL** (supported by INFN group 1 and 5)

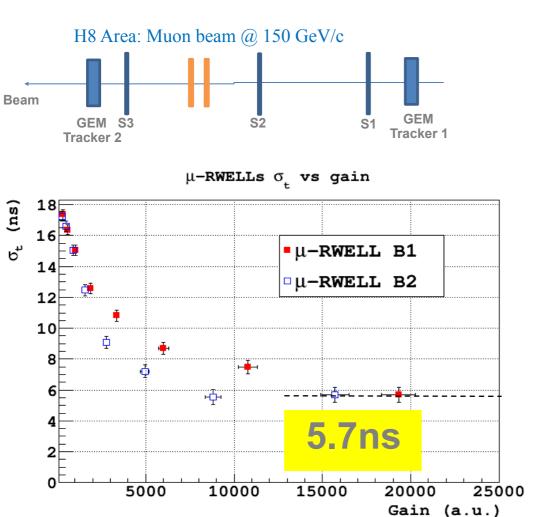

is mainly motivated by the wish of

- improving the stability under heavy irradiation
- simplifying the construction/assembly procedures


The μ -RWELL is composed by two elements: the μ -RWELL PCB and the cathode.

The μ -RWELL PCB is realised by coupling:

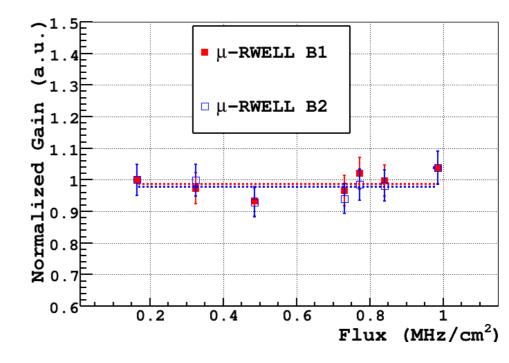
- 1. A "WELL patterned kapton foil" as single amplification stage
- A resistive stage for the discharge suppression
 & current evacuation. 2 schemes:
 - i. "Low particle rate" (LR) << 100 kHz/cm²: single resistive layer with surface resistivity ~100 MΩ/□ (CMS-phase2 upgrade, SHIP)
 - ii. "High particle rate" (HR) > 1 MHz/cm²: more sophisticated resistive scheme is under study (suitable for LHCb-Muon at L > 10³⁴ cm⁻²s⁻¹)
- 3. A standard readout PCB


[G. Bencivenni et al., 2015 JINST 10 P02008]

The µ-RWELL performances

2 prototypes tested:

- 10x10 cm²
- 40 and 35 M Ω / \Box
- HR scheme
- 400 µm strip pitch
- Ar/CO2/CF4 45:14:40

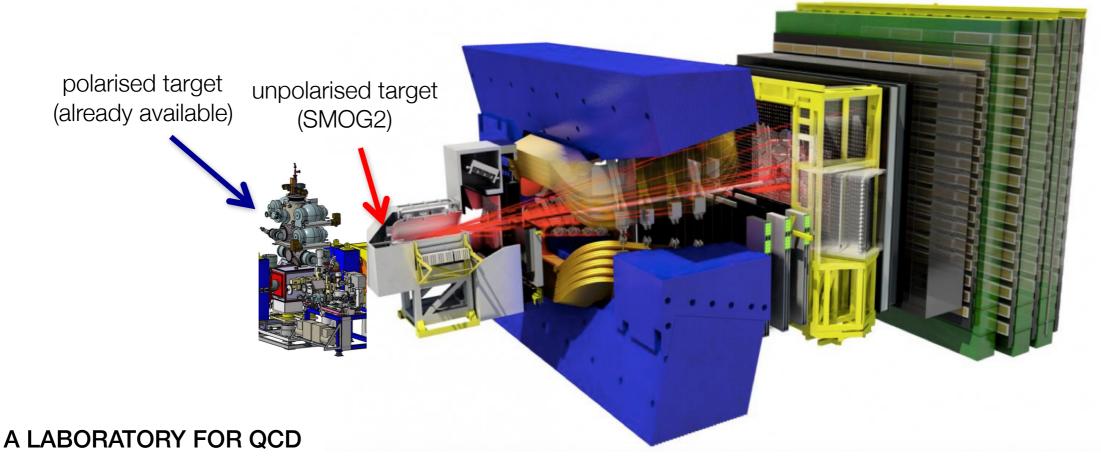


The saturation at 5.7 ns is dominated by the FEE (VFAT2)

Gain (a.u.) ndf 43.5 / 27 10⁴ χ² 1.203 ± 0.03392 b 0.0105 ± 0.0005438 а ß 4.725 ± 0.08028 10³ α 0.0001668 χ² 90.73 / 27 1.267 ± 0.03599 b 0.01272 ± 0.0005783 10² -4.77 ± 0.0846 β α 0.02309 ± 0.0001747 μ-RWELL B1 10 μ-RWELL B2 1 100 200 300 400 500 600

Gain in Ar:CO₂:CF₄ 45:15:40

X-rays: **Gas gain > 10**⁴ with a single amplification stage



 ΔV_{RWELL} (V)

Detectors rate capability up to 1 MHz/cm² @ gain=10⁴

Fixed target at LHCb

aims to bring unpolarised and polarised physics at the LHC, by LHCb, in parallel fixed-target and collider data taking (under test in the ongoing Run @ 5 TeV)

- Broad physics program for both unpolarised and polarised cases: 3D (tomography) nucleon structure, quark and gluon orbital angular momenta, fundamental QCD tests, spin with quarkonia production, low-p_T Higgs sector
- Wide range of reactions: pp , pA, PbA (A=p, d, ^{3,4}He, ... all noble gasses up to Xe)
- Synergic run p-target and pp-collider modes
- Negligible impact on the LHC beam (1/e beam life-time ~74 days)
- Target technology is well established for more than 10 years at DESY
- FITPAN: LHCb+LHC panel is giving positive feedback to the project

Leading role of LNF as responsible of the SMOG2 upgrade (LS2) and proponents of LHCSpin (LS3)

5. conclusions

- We are a large group with important responsibilities within the LHCb collaboration
- Involved in fundamental physics analyses
- We bring a large contribution for the hardware and software upgrade (2019)
 - \rightarrow 10th LHCb computing workshop for the upgrade will be held at LNF (20-24 November 2017)
- Very promising projects for the longer future (LS3)