The PRISMA magnetic spectrometer: present status and ongoing upgrades

F. Galtarossa for the PRISMA collaboration *INFN – Laboratori Nazionali di Legnaro*

LNL Annual User Meeting 21 November 2017

Recent upgrades: the second arm

A MWPPAC followed by a Bragg chamber in kinematic coincidence with PRISMA.

¹⁹⁷Au+¹³⁰Te @ 1.07 GeV in inverse kinematics. PRISMA coupled to the second arm to study the behavior of the heavy partner.

F. Galtarossa et al., submitted to Phys. Rev. C

Recent upgrades: a γ array based on LaBr₃:Ce scintillators

The array consists of six 2"x2" LaBr₃ scintillators with PM readout. Each scintillator is placed at 7 cm from the target and tilted by 45° with respect to the reaction plane, achieving a photopeak efficiency of about 1.3% for 1.33-MeV γ rays.

Timing and energy resolutions of **450 ps** and **30 keV** for 1.33-MeV γ rays.

Simulated γ -spectrum of ¹¹⁸Sn for the ²⁰⁶Pb+¹¹⁸Sn reaction at E_{lab}=1200 MeV obtained with GEANT4 package.

Experiments in backlog: ²⁰⁶Pb+¹¹⁸Sn in inverse kinematics

Probing nucleon-nucleon pairing correlations in the 206 Pb+ 118 Sn transfer reaction at far sub-barrier energy with the Pb beam delivered by the PIAVE-ALPI accelerator complex in an energy range E_{lab} = 950-1200 MeV.

The experiment was accepted by the PAC in 2015 and scheduled for the period May-June 2016 but then postponed due to problems occurred to the PIAVE injector

Experiments in backlog: ⁵⁴Fe+⁹²Mo at E_{lab} = 230 MeV

Nucleon-nucleon correlations in ⁵⁴Fe+⁹²Mo probed via γ-particle coincidences

T. Mijatović and F. Galtarossa, LNL PAC 2017

The experiment was accepted by the PAC in January 2017 and scheduled for the period June-July 2017 but then postponed due to problems occurred to the TANDEM

PRISMA coupled to the LaBr₃:Ce array to measure the strength of the ground-to-groundstate transfer 500 Counts/keV ⁵⁴Fe Simulations $2^+ \rightarrow 0^+$ 300 ⁹²Mo $4^+ \rightarrow 2^+$ 200 100 1800 2000 200 400 600 800 1000 1200 1400 1600 E[keV]

4

Lol for SPES: population of neutron-rich heavy nuclei

E. Fioretto, Third International SPES Workshop, October 2016

Lol for SPES: pairing in transfer with neutron-rich nuclei

Through transfer probabilities the onset of density-dependent forces and neutron density profiles can be studied.

L. Corradi, Third International SPES Workshop, October 2016

6

Possibilities offered by heavy beams (Pb, U, ...)

Nuclei close to Pb and U are receiving more and more attention. Their complete identification in A, Z and Q value is still a very complex task.

LNL Annual User Meeting 21 November 2017

F. Galtarossa – LNL

Collaborations

• {

F. Galtarossa – LNL