

The Active Target for SPES

Low energy experiments The tape station for beam diagnostics

T. Marchi, 21 Nov 2017 LNL User Group Meeting

ATS – Active Target for SPES

ACTAR TPC Demonstrator chamber

Demonstrator runs with Bacchus Spectrometer at IPN Orsay, June/July 2015

Figure and photos from D. Suzuki

ACTAR TPC @ IPNO

 $^{12}C \text{ on } \text{He:C}_4\text{H}_{10}$

• 4-particle event

Fig.1 Analogy between f7/2 and p3/2 evolution of binding energies in the known Ca isotopes to what could be expected for the Sn isotopes approaching N=90. Figure adapted from¹³.

Possible setup and beams

Expected beam intensities @ 10 AMeV		
	SPES 1 st day	SPES full power
	(5 µA p beam)	(200 µA p beam)
¹³² Sn	7.8 10 ⁵	3.1 10 ⁷
¹³³ Sn	7.0 10 ⁴	2.8 10 ⁶
¹³⁴ Sn	1.2 10 ⁴	4.9 10 ⁵
¹³⁵ Sn	1.6 10²	6.2 10 ³
¹³⁶ Sn	-	0.9 10 ²

Fig. 5: Reconstructed kinematics plot for the different excited states populated in 133Sn for protons stopped in the gas at a pressure of 400 mbar. Note that the majority of protons populating the ground state escape the gas and the resolution is thus slightly degraded.

Stopped in gas: ~ 110 keV FWHM res

Fig. 6: Reconstructed kinematics plot for the different excited states populated in ¹³³Sn for protons stopped in the Si detectors (open circles) and stopped in the gas (closed circles).

Gas-Si (∆E-E): ~ 90 keV FWHM res

[D..Perez-Loureiro and G.F.Grinyer, ACTARsim Report (2013)]

100 Fig. 4: Sample digitized trace for a ¹³²Sn(d,p) reaction with 2x2mm² sized pads. The red line

corresponds to the fitted trajectory used for determining the range of the proton.

ACTAR_35

¹³²Sn(d,p)¹³³Sn @ 5 AMeV **400 mbar D**₂

Improving resolution with gamma-ray detectors

- γ -rays in PARIS-like detectors from population of 854, 1363, 2005 keV states in ¹³³Sn
- Statistics corresponding to 2 days of beam time at 10³ pps (total cross section 10 mb, photopeak eff 17%)

Issue: might reduce global efficiency

Benchmark: ¹³⁶Xe(d,p)¹³⁷Xe - inv kinem

B.P. Kay et al, PRC 84 0243325 (2011) HELIOS @ ANL

Beyond MagicTin: physics opportunities with an active target at SPES

[F. Gramegna, ACTAR TPC Kickoff meeting 2013]

Beyond MagicTin: physics opportunities with an active target at SPES

Two letters of intent for SPES endorsed by the SAC:

B. Fernandez Dominguez et al, Direct Reactions with exotic nuclei in the r-process using an active target R. Raabe, T. Marchi et al, Shell Structure in the vicinity of ¹³²Sn with an active target

Ongoing activities and plans

Actar demonstration installation at LNL

- Detector setup in the lab
- Runs with low energy beams at CN
- Energy loss measurement in different gases

Further detector R&D with heavy ions at 10 AMeV (proposal submitted to LNS PAC)

Infrastructure - Setting up a new experimental area for SPES

- Clearing out and cleaning up
- Services
- New beamline installation
- Setup installation

Outlook

ENSAR2 Network Activity: Gas Detection Systems

ENSAR

W.P. Leader: T. Roger (GANIL) Deputy Leader: F. Gramegna (LNL)

Task 1: ... gather together the GDS community ...

4 topical meetings

Task 2: GDS in strong and non-uniform magnetic fields

Task 3: Novel detection systems for high-intensity and heavy beams January 2018 at USC - Santiago De Compostela

Task 4: Rare gas target handling and recycling systems

Task 5: Auxiliary detectors

Low energy experiments The tape station for beam diagnostics

T. Marchi, 21 Nov 2017 LNL User Group Meeting

1+ area (A13) mainly devoted to β -decay related studies

- Study of β decay properties (T_{1/2}, P_n, BR, S_{β}.....)
 - → strong link to astrophysics
 - → inputs for r- and s-process
- Study of nuclear structure complementing data coming from
 - → selective tool
 - \rightarrow egs. Study of shape coexistence and exotic shapes
 - → evolution of magic numbers
- Exotic decay modes: PDR via β decay
- Fundamental questions: CKM unitarity via study of super-allowed decays

Going away from stability we have access to larger part of the decay strength

Study group for 1+ installation: M.Cinausero, G.Benzoni, D.Scarpa, T. Marchi, F. Gramegna 1+ area (A13)

3 main installations:

1-Beam diagnostic Tape station
2- β-decay station
+ E0 measurement
+ VANDLE/3HEN
3- MTAS (Oak Ridge)

Proposed setups for β decay studies

- SPES β decay station (β –DS)
 - \circ Plastic β detectors, covering large solid angle
 - HPGe detectors (Galileo triple clusters)
 - + LaBr3(Ce)

+ second decay chamber for E0 measurements (collaboration with INFN-Firenze and Universita' di Camerino)

- ModularTotalAbsorptionSpectrometer:
 - Nal covering 4π
 - Single crystal HPGe
 - β detector
- 3Hen:
 - 3He tubes
 - Single crystal HPGe
 - β detector

Tube color 🖓 🖉 Type B and R 🔵 Type I 🥚 Type K 😑 Type E 😑 Type N

SPES β decay station (β –DS)

- Cassette design adapted from BEDO @ ALTO
- Common element to beam diagnostic installations (STS1-STS2)
- Realization: LNL + Milano INFN Mechanical workshops
- Low level controls developed together with IThemba-LABS (South Africa)
- High level developed by electronic workshop in LNL
- → Delivery and commissioning Summer/Fall 2017
- Simulations for β and γ detectors:

Simulated efficiency with the Co-60 in the center: 7.0% @ 1332 keV Simulated P/T: 51.0 % Simulated β efficiency: 70%

- Design of the setup (Milano)
- Design of MOS and 2nd decay chamber (Milano/Camerino/Firenze)

→ Delivery in 2019

Joint collaboration with LNL + INFN-Mi + ALTO Orsay (France) + iThemba-Labs (South Africa) for mechanics/electronics/controls

2nd decay chamber

STS – SPES TAPE STATION

Mechanics

Cassette: Design completed (IPN Orsay) Cassette: Production completed (INFN-LNL INFN-MI) Cassette: Assembly and test in progress (LNL/MI/IPNO) Scattering Chamber: Design started (LNL)

Motion and Control

Beckhoff Hardware purchased Beckhoff Driver for EPICS system: test bench OK (iThremba/LNL) High level EPICS software: in progress (LNL)

Data Acquisition

ALL Hardware purchased (CAEN+WIENER+Servers+PC) EPICS compatible acq software: in progress (INFN-NA / LNL)

Detectors

3 HPGe detectors purchased (n-type, C window. Canberra - REGe) β-counter design in progress

Documentation

STS Project description delivered. DOC_0000050 Detailed design documentation in preparation Safety assessment with PILZ performed. Reply with partial corrections submitted. No major issues identified.

CE certification might be needed for the machine.