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Quantum	Gravity,	or:	
	Give	me	more	
Observables!



What	is	quantum	gravity?
•	Quantum	gravity	is	the	puta%ve	fundamental	quantum	theory	
underlying	the	classical	field	theory	of	General	Rela%vity.	
!•	It	is	the	missing	piece	in	our	theore%cal	understanding	of	the	four	

fundamental	interac%ons.	
!•	We	do	not	know	whether	quantum	gravity	can/must	be	

understood	as	part	of	a	grand	unifying	dynamical	principle.		
!•	Applying	the	logic	of	Einstein’s	General	Rela%vity,	quantum	gravity	

should	also	describe	the	dynamics	of	space2me	on	all	scales.	
!•	The	length	scale	at	which	quantum	proper%es	of	the	gravita%onal	

field	must	be	taken	into	account	is	the	Planck	length

`Pl =

r
GN~
c3

⇡ 1.6⇥ 10�35m

(yes,	this	is	really	small;	gravity	is	special!)



Ques7ons	that	quantum	gravity	should	answer

triangulated	model	of	quantum	space

•		What	is	the	quantum	microstructure	of	
space%me?	Can	we	use	it	to	explain	the	observed	
large-scale	de	Si]er	nature	of	our	universe?	Can	
we	make	de	Si]er	space	“emerge”?

now

Big	Bang 13.7	bn	years	ago	

%me

•		What	was	the	quantum	behaviour	of	
the	very	early	universe?	
•		Are	space	and	%me	fundamental	or	
merely	emergent	on	macroscopic	scales?

•		Can	we	derive	gravita%onal	a]rac%on	
from	first-principles	quantum	dynamics	
@	ℓPl?	



Going	beyond	classical	geometry/GR

What	becomes	of	space%me	and	the	degrees	of	
freedom	of	gravity	at	the	Planck	scale	ℓPl	?		
!•	space%me	foam?	wormholes?	
• 	noncommuta%ve	space(%me)?	
• 	is	there	a	shortest	length	scale?	
• 	is	there	fundamental	discreteness,	“atoms	of	
space%me”?	(there	is	li]le	evidence,	but	plenty	
of	‘intui%on’	it	should	be	so)

zooming	in	on	a	piece	
of	empty	space%me

However,	the	world	is	quantum,	and	physics	
on	small	scales	is	highly	counterintui7ve!

Which	aspects	of	classical	geometry	and	gravity	will	survive?	
For	example,	what	happens	to	the	key	classical	no%on	of	“curvature”?



Quantum	gravity:	where	do	we	stand?

•	perturba%ve	quantum	gravity	“does	not	work”	(nonrenormalizable)	
!-		perturba%ve	ansatz		gμν	=	ημν	+	hμν	is	misguided?	
-		Minkowski	metric	ημν		is	the	“wrong	vacuum”?	
-		smooth	gμν	(hμν)	not	appropriate	in	quantum-fluctuating	regime?	
-		need	a	completely	different	“UV	(ultraviolet)	comple%on”	of						

							gravity	(grand	unified	theory,	stringy,	…)?		
!!•	we	have	several	nonperturba%ve	candidate	theories,	working	from	

different	premises	(some	are	more	promising	than	others	…)	
!•	they	are	too	incomplete	and/or	have	too	many	free	parameters	to	

make	any	solid	predic%ons;	comparing	them	is	also	(s%ll)	difficult			
!•	there	is	li]le	if	any	quantum	gravity	phenomenology	to	speak	of																																																																																			



How	should	we	proceed?

We	can	postulate	some	Planckian	degrees	of	freedom,	with	an	
associated	quantum	dynamics.	Two	extreme	examples:	
!
1.)	superstring	theory	(lots	of	“exo%c”	ingredients,	nonperturba%ve	
dynamics	unknown)	
!Problem:	“embarassment	of	riches”,	no	predic%ve	power	
!
2.)	causal	set	theory	(“bare	bones”	ingredients,	quantum	dynamical	
principle	unknown)	
!Problem:	what	does	this	have	to	do	with	gravity?		
issue	of	the	“classical	limit”									
!



Causal	Dynamical	Triangula7ons	(CDT)	is	an		
a]empt	to	bring	quantum	gravity	back	into	the		
fold	of	ordinary	quantum	field	theory,	without		
appealing	to	a	grand	unified	dynamical	principle.	
!Analogous	to	QCD	on	the	lajce,	CDT	uses	a	lajce	regulariza%on	to	define	
a	theory	of	quantum	gravity	nonperturba%vely.			However,	the	space%me	
lajces	are	dynamical	and	no	lajce/background	is	dis%nguished.		
!As	expected,	the	theory	has	divergences	in	the	con%nuum	limit	as	the	UV	
regulator	is	removed.	They	must	be	renormalized	appropriately.	
!Quan%ta%ve	results	so	far	are	in	a	highly	quantum	fluctua%ng	regime,	far	
away	from	(semi-)classicality,	apart	from	a	few	global	observables.	

part	of	a	(piecewise	flat)		
causal	triangula%on

Quantum	Gravity,	back	to	basics

nonperturba%ve	≈	large	fluctua%ons	on	small	scales



What	is	the	overall	outlook	of		
CDT	quantum	gravity?

!•	CDT	quantum	gravity	depends	on	a	minimalist	set	of	ingredients	and	
just	two(!)	free	parameters,	and	is	conceptually	simple.	
!•	Nevertheless,	understanding	its	nonperturba%ve	dynamics	is	not	easy.		
!•	We	have	been	able	to	extract	new	and	exci2ng	results	from	evalua%ng	
a	handful	of	nonperturba7ve	quantum	observables.	These	results	are	
robust	and	quan%ta%ve,	and	therefore	poten%ally	falsifiable.	
!•	causal	structure	plays	a	crucial	role	(“Euclidean	QG”	not	good	enough)			
!•	“discrete”	aspects	of	CDT	are	merely	an	intermediate	feature,	before	a	
con%nuum	limit	is	taken	(no	evidence	of	“fundamental	discreteness”)

(J.	Ambjørn,	A.	Görlich,	J.	Jurkiewicz	&	RL,	“Nonperturba%ve	Quantum	
Gravity”,	Physics	Report	519	(2012)	127	[arXiv:	1203.3591])	



The	Emergence	of	Classical	Space7me	from	
Causal	Dynamical	Triangula7ons	(CDT)

CDT	is	currently	the	only	candidate	quantum	
theory	of	gravity	which	can	generate	
dynamically	a	space%me	with	semiclassical	
proper%es	from	pure	quantum	excita%ons,	
without	using	a	background	metric.	

!•		crucial	role	of	causal	structure	
•		nonstandard	treatment	of	symmetries	and	observables	
•		scale-dependent	space%me	dimension	(2	→	4)	
•		nontrivial	phase	structure,	with	“classical”	phases	
•		second-order	phase	transi%ons	(unique!)	
•		applicability	of	renormaliza%on	group	methods

Other	key	results:



Quantum	Gravity	from	CDT
The	formal,	ill-defined	con%nuum	gravita%onal	path	integral	
!
!
!
!

is	turned	into	a	finite	regularized	sum	over	triangulated	space%mes,
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A	curved	d-dimensional	space%me	in	CDT	is	described	by	a	piecewise	flat	
manifold,	made	from	flat,	triangular	d-dimensional	building	blocks.			
!Geometry	is	described	uniquely	by	the	edge	lengths	of	the	d-simplices	and	
how	simplices	are	‘glued’	together.	No	coordinates	are	needed	(Regge,	1961)	
and	the	CDT	path	integral	has	no	coordinate	redundancies.	
!Curvature	is	located	at	“hinges”	τ	(subsimplices	of	dim.	d-2),	in	the	form	of	
deficit	angles	ε,	measured	by	parallel-transport	around	minimal	loops	L(τ).

Crucial:	“General	Rela7vity	without	coordinates”

d=3
red:	hinge	τ,	blue:	minimal	loop	L(τ)

ε✂

d=2

α1α2

…
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X

i

↵i

L(τ)

τ d=4
In	d=4,	each	hinge	τ	is	shared	by	a		
ring	of	four-simplices	(not	shown).



	represen%ng	curved	space%mes	by	piecewise	flat	triangula%ons	makes	
the	path	integral	well	defined	at	an	intermediate	(“regularized”)	stage

Key	ingredients	of	the	CDT	approach:

	crucial	to	obtain	a	semiclassical	limit:	
space%mes	must	have	causal	structure	
!	crucial	in	d	=	4:	nonperturba%ve	

comput.	tools	(Monte	Carlo	simula%ons)	
to	extract	quan%ta%ve	results

approxima%ng	a	given	classical	curved	
surface	through	triangula%on

simplicial	4d	building	blocks	of	CDT

%me
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Quantum	Theory:	approxima%ng	the	space	of	all	
curved	geometries	by	a	space	of	triangula%ons	

simplicial	4d	building	blocks	of	CDT

%me

instead:
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spacelike	edge,	squared	length	a2	
%melike	edge,	squared	length	-αa2,	α	>	0

instead:



Everything	we	have	learned	about		
“quantum	space7me”	in	CDT	comes	from		

measuring	quantum	observables.	



The	story	of	observables:	classical
•		Recall	that	four-dimensional	space%me	diffeomorphisms	(coordinate	
transforma%ons)	are	the	invariance	group	of	general	rela%vity.		
!•		Classical	gravita%onal	observables	are	diffeomorphism-invariant	(and	
therefore	nonlocal)	quan%%es.																																																																				
For	example,	gμν(x)	is	not	an	observable,		

																																		while																														is.	
!

•		In	con%nuum	approaches	to	quantum	gravity,	implemen%ng	
diffeomorphism	invariance	is	a	source	of	endless	problems,	e.g.	

		 • 		path	integral:	must	gauge-fix	à	la	Faddeev-Popov	
• 		canonical	quantum	gravity:	must	solve	the	quantum	constraints	

!•		In	causal	dynamical	triangula%ons,	what	are	quantum-gravita%onal	
observables	in	the	absence	of	diffeomorphisms?

�

M
d4x

�
g R(x) M

x

[health	warning:	“observable”	does	not	imply	a	direct	link	to	phenomenology]



The	story	of	observables:	quantum

geodesic	balls	BR	of	radius	R	in	2D

•		Observables	are	(s%ll)	formulated	in	terms	of	geometric	no%ons,	like	
geodesic	distances	and	volumes,	which	do	not	rely	on	smoothness.		
!•		A	quan%ty	“at	a	point”	is	s%ll	not	a	meaningful	concept,	and	must	be	
averaged	over	space%me,	in	addi%on	to	‘summing	over	geometries’.	
!•		We	are	interested	in	how	(the	expecta%on	values	of)	observables	
depend	on	scale,	because	we	want	to	quan%fy	their	quantum	
behaviour	and	their	classical	limit.																																																																				
!•		→	good	quantum	observables	are	(i)	geometric,	(ii)	scalable,	(iii)	
finite,	(iv)	computable,	and	(v)	have	a	classical	limit.	

!•	prototype:	Hausdorff	dimension	dH	of	space%me:
measuring	the	volume	of	geodesic	balls,		
!
																																																								
dH	in	general	depends	on	the	scale	R.

�Vol(BR)� � RdH,



Nonperturba7ve	“geometry”	behaves	strangely
Isn’t	it	obvious	that	by	gluing	together	four-dimensional	building	blocks,	
one	will	obtain	a	(quantum)	space%me	of	dimension	4?		
!No.	Generically	it	does	not	happen	when	quantum	fluctua%ons	are	large.	
!This	was	only	gradually	understood,	using	computer	“experiments”.	In	DT	
models	prior	to	CDT,	one	of	two	things	happened	to	“quantum	geometry”:

it	polymerized	(small	GNbare),	dH	=	2	 it	crumpled	(large	GNbare),	dH	=	∞

This	degenerate	behaviour	is	generic	for	(Euclidean)	DT	in	dimension	d	>	2.	
Branched	polymers	are	a	generic	finding	of	stat	mech	models	of	QG.	
!
Causal	DT	was	invented	to	cure	this	problem	and	appears	to	do	so!	

Hausdorff	
dimension



Totally	unexpected:	space%me	dimension,	a	“pregeometric”	property,	
becomes	dynamical	in	the	presence	of	large	curvature	fluctua%ons.	
!The	absence	of	any	regime	where	the	dimension	at	large	scales	is	equal	
to	4	is	enough	to	rule	out	a	candidate	theory	of	quantum	gravity!		
!Besides	the	Hausdorff	dimension,	one	can	also	measure	the	quantum	
geometry’s	spectral	dimension	(by	sejng	up	a	diffusion	process).

Dimension	is	not	what	it	used	to	be	…

Also	in	CDT	quantum	gravity,	the	dimension	is	dynamical,	but	in	a	part	of	
phase	space	it	is	now	equal	to	4,	within	measuring	accuracy!

“Dimension”	in	nonperturba%ve	quantum	gravity	is	no	longer	fixed	a		
							priori,	but	reflects	a	par%cular	quantum	dynamics.	It	is	not	pre-		
	determined	by	the	dimensionality	of	the	triangular	building	blocks	used.	



Phase	diagram	of	CDT	quantum	gravity
Phases	are	characterized	by	their	“volume	profiles”													.	In	the		
de	Si]er	phase	CdS	and	the	bifurca%on	phase	Cb		the	large-scale	
dimension	of	the	dynamically	generated	“quantum	space%me”	
appears	to	be	4	and	therefore	compa%ble	with	General	Rela%vity.

(data	taken	at	N4=80.000)

first-order 	
phase transition line

Cb
CdS

second-order phase transition line

newly discovered  
phase transition line

hV3(t)i

time t

V3(t)



The	measured	average	volume	profile	<V3(t)>	of	the	universe,	as	
func%on	of	Euclidean	proper	%me	t,	matches	to	great	accuracy	a	
corresponding	minisuperspace	calcula%on	derived	from	GR.

“CDT	Classic”:	universal	de	SiTer-like	volume	
profile	in	phases	C
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In	addi%on,	expanding	the	minisuperspace	ac%on	around	the	de	Si]er	solu%on,

Seu(V3) = S(V dS
3 ) + ⇥

�
dt �V3(t)Ĥ�V3(t)

the	eigenmodes	of					match	well	with	those	extracted	from	the	simula%ons:
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(N.B.:	no	further		
fijng	necessary)

The	classical	line	element	of	Euclidean	de	Si]er	space,	derived	by	assuming	
homogeneity	and	isotropy	a	priori,	as	func%on	of	Euclidean	proper	%me	t=iτ,	is

ds2 = dt2 + a(t)2d�2
(3) = dt2 + c2 cos2

�
t

c

⇥
d�2

(3)
volume el. S3

(J.	Ambjørn,		A.	Görlich,	J.	Jurkiewicz,	RL,	PRL	100	(2008)	091304,	PRD	78	(2008)	
063544,	NPB	849	(2011)	144	(with	J.	Gizbert-Studnicki,	T.	Trzesniewski))

scale factor

Ĥ



For	suitable	choice	of	couplings,	CDT	quantum	gravity	
dynamically	produces	a	“quantum	space%me”,	that	is,	
a	ground	state	(“vacuum”),	whose	macroscopic	scaling	
proper%es	are	four-dimensional	and	whose		
																														macroscopic	shape	is	that	of	a	well		
																														known	classical	cosmology,	de	Si5er				
																														space.	The	matching	of	shapes	(incl.		
																														their	quantum	fluctua%ons)	is		
																														excellent.	In	nonperturba%ve,		
																														background-independent	
																														gravity,	this	is	unprecedented.

Dynamical	emergence	of	space7me	
(out	of	“quantum	foam”)

%me

		snapshot					of	the	
universe’s					3-volume

Willem	de	Si]er (ensemble	average	
gives	the	“shape”)

The	region	in	phase	space	where	we	see	interes%ng	physics	is	far	away	from	
the	perturba%ve	regime.	Quantum	fluctua%ons	are	large	and	local	geometry	is	
highly	nonclassical	(N.B.:	these	fluctua%ons	are	not	shown	in	the	snapshot).



Can	we	probe	more	local	geometric	features,		
by	using	suitable	observables?



A	new	observable:	quantum	Ricci	curvature

•	Curvature	is	a	crucial	property	of	classical	space%me,	but	compu%ng	
the	Riemann	tensor	Rκλμν[g,∂g,∂2g;x)	requires	a	smooth	metric	g.		
!•	Finding	a	meaningful	“quantum	curvature”	observable,	applicable	in	

nonperturba%ve	quantum	gravity,	has	so	far	received	li]le	a]en%on.	
!•	We	adapt	a	classical	characteriza%on	of	curvature	to	construct	a	

scalable,	robust	and	computable	no%on	of	quantum	Ricci	curvature.			

dp

Sp
Sp’

p’

d
_

!•		key	is	the	sphere-distance	criterion:	
“On	a	metric	space	with	posi2ve	
(nega2ve)	Ricci	curvature,	the	distance	
d	of	two	nearby	spheres	Sp	and	Sp’	is	
smaller	(bigger)	than	the	distance	d	of	
their	centres.”



Our	variant	uses	the	average	sphere	distance	of	two		
spheres	of	radius	δ	whose	centres	are	a	distance	δ	apart,	

which	is	defined	purely	in	terms	of	volume	and	distance	measurements		
and	therefore	can	be	implemented	on	general	metric	spaces.		
!The	“quantum	Ricci	curvature	Kq	at	scale	δ”		is	then	

d̄(S�
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1
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�
= cq(1�Kq(p, p

0)), � = d(p, p0), cq > 0,

where	cq	is	a	non-universal	constant	depending	on	the	space	under	
considera%on.	We	have	evaluated	Kq	on	classical	model	spaces,	and		
tested	it	on	a	variety	of	mainly	2D	PL	spaces	(=	triangula%ons),	and	
computed	it	in	nonperturba%ve	2D	Euclidean	quantum	gravity.

(N.	Klitgaard	and	RL,	“Introducing	Quantum	Ricci	curvature”,	on	arXiv,	
“Quan%zing	Quantum	Ricci	curvature”,	to	appear)

δ δ
δ



Quantum	Ricci	curvature	in	ac7on

reference	curves	for	the	normalized		
average	sphere	distance								on	2D	
constantly	curved	con%nuum	spaces	
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flat	space:	Kq	=	0

hyperbolic	space:	Kq	<	0
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!

in	2D	DT	quantum	gravity	
show	that	its	curvature	is	best	
matched	by	that	of	a	4D(!)	
con%nuum	sphere.	
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Summary

•	the	emergence	of	semiclassical	4D	de	Si]er	space	from	
Planckian	“quantum	foam”	(without	a	priori	background),	and	
!•	the	presence	of	second-order	phase	transi%ons,	which	provide	
natural	candidates	for	taking	a	scaling	limit.		

CDT	quantum	gravity	comes	with	a	simple	set-up,	only	two	tunable	
couplings	and	advanced	computa%onal	tools.	So	far,	this	approach	has	
been	very	frui}ul.	By	studying	a	handful	of	observables,	one	has	
obtained	remarkable	and	unique	nonperturba%ve	results,	including	

More	quantum	observables	are	needed	to	understand	the	nature	of	the	
newly	found	phase	transi%on	and	of	the	(Planckian)	physics	near	the	2nd-
order	phase	transi%ons,	and	to	improve	the	exis%ng	RG	analysis	(looking	
for	evidence	of	asympto%c	safety).	
!In	a	way,	this	is	all	good	old	quantum	field	theory,	but	with	a	twist	…



Out-of-the-box	Idea

Classical	gravity	has	an	“unusual”	invariance	group,	which	is	in%mately	
%ed	to	the	representa%on	of	space%me	as	a	smooth	con%nuum,	and	
which	we	do	not	expect	to	be	relevant	at	the	Planck	scale.	
!To	understand	quantum	gravity	at	a	fundamental	level,	we	must	in	more	
radical	ways	“let	go	of	gμν(x)	and	associated	smooth	structures”	and	
think	more	in	terms	of	geometric	observables.		
!The	lessons	learned	so	far	from	CDT	quantum	gravity,	a	con7nuum,	
non-smooth	approach,	are	encouraging	and	show	that	this	possible!		



 Thank you!

Frasca%,	19	Dec	2017

Quantum	Gravity,	or:	
	Give	me	more	
Observables!


