Recent advances in CMOS pixel sensors:

towards more applications

Lab. Nat. Frascati 2017 /11 / 29

J. Baudot (jerome.baudot@iphc.cnrs.fr)

- Basics of CMOS pixels
- Projects in HEP: sensors & systems
- Tracking at low energy
- Non-tracking projects

Basic of CMOS pixel sensors

→ The technology

→ Signal & Noise

→ Architectures

Main features

Industrial technology

- Integrated circuits (chips)
- Lithography feature size $\ll 1 \mu m \sim 1$
- Reticule limits = 25x30 mm²
- constantly
 improving

Useful thickness: 30 µm

Main features

- Small pixel size possible down to few µm²
- Signal processing on chip
 - In-pixel amplification → high SNR: "active"
 - No additional FEE readout: "monolithic"
- Sensitive layer
 - Thin
 - Resistivity (10 to 10³ Ω.cm)
 → drives charge collection
- possibly adapted to radiation type
- Operation at room temperature
- Invention of CMOS sensors for light
 - Early works late 60's
 - 1993 paper by E.Fossum

Speeding up the architecture

Tracking (4D-pattern recognition) works with very low occupancy Basic idea = send less information

Definitions:

Full read-out
 all pixel signals
 sent out

Sparse read-out
 = only pixel with
 "high" signal
 sent out

 need discrimination (thresholding)

Basic of read-out architectures

5

Initial pros & cons

Full detection chain

sens. layer 🖛 q-collect 🖛 ampli 🖛 analog treat 🖛 A-D conv 🖛 digital proc

Obvious advantages

- Early ampli
 - → high sensitivity
- Smartness
 - → limit data throughput
- Complete system on a chip
 easy to integrate
- Low fabrication cost

Some limitations

- Conflicting design parameters
 - ex: granularity vs speed
- I sensor = 1 system
 → no further optimization after fab.
- Development cost not small
- Same technology for all functions
 Mitigated by 3D integration

Spatial resolution performances

From many prototypes, the MIMOSA series from Strasbourg (for thin non-depleted sensitive layers)

Resolution (micror

Tracking in High Energy Physics

	SLD	CMS LHC	STAR	СВМ	ALICE	Belle-II	ILC	CLIC	ATLAS HL-LHC
Collision system	e⁺+e⁻	p+p	A+A p+p	A+A	A+A p+p	e⁺e-	e⁺e⁻	e⁺e⁻	p+p
Spatial resolution (µm)	2	13	< 10	~5	~5	< 10	≲ 3	≲ 3	
Material Budget (% X0)	0.4	~2	~0.3	~0,3	~0.3	~0.2	≲ 0.2	≲ 0.3	<1
Hit rate (10 ⁶ s ⁻¹ cm ⁻²)		O(20)	O(0,1)	O(1-10)	O(1)	100	O(0,2)	O(1)	O(200)
Time figure	0,2 s	25 ns	200 µs	~10 µs	<30 µs	~1 µs	O(10)µs	10 ns	25 ns
Radiotolerance (Mrad) (n _{eq} /cm²)	-	100 < 10 ¹⁵	O(0,2) O(10 ¹²)	O(30) < 10 ¹⁴	O(0.7) O(10 ¹³)	O(20) < 10 ¹³	O(0,1) < 10 ¹²	O(20) < 10 ¹⁴	500 <10 ¹⁷
Power dissipated (W/cm²)	-		0.1	1-2	~0.3	~2	0.1	0.1	

Requirements on sensing layers

Tracking in HEP: Sensors

→ Heavy-ion collisions

→p+p @ LHC

 $\rightarrow e^++e^-$ colliders

Heavy-ion collisions

STAR @ RHIC (2014)

- Material budget ~ $0.4 \% X_0$
- Single point resolution $\sigma_{point} \leq 10 \, \mu m$
- Only vertexing

ALICE @ LHC (2021)

- Higher rate $\Rightarrow \sigma_{\text{time}} \sim 10 \, \mu s$
- Single point resolution $\sigma_{\text{point}} \lesssim 5 \, \mu \text{m}$
- Vertexing & tracking (newITS)
 - Large surface → cost

Fixed target experiments

- Measurement of Xsections / hadrontherapy
- FIRST (GSI 2011-2012)
- FOOT (Italy, Germany, France)
- → See Eleuterio's talk

EIC (\$)

STAR – MIMOSA-28

 Technology: AMS 0.35 μm

 Sensitive layer: 400 Ω.cm

Key elements

- In-pixel CDS → discri possible
- Column // read-out
 BUT one row at a time
- Synchronous digitization
 - discriminator (1bit)
- Synchronous zero-suppression
 - address pixels per group

Distinct features

- Read-out time = integration time
- Insensitive area aside the pixel matrix

 \Rightarrow Counting rate: > 10⁶ hits/cm²/s

MIMOSA-28 performances

STAR-PXL = the first MAPS detector

- 400 MIMOSA-28 sensors
- 360 10⁶ pixels
- Air flow cooling $T_{op} \lesssim 35^{\circ}C$
- σ_{s.p.} ≃ 4 μm
- mat. budget = $0.39 \% X_0$ / layer
- Read-out time ~ 190 µs
- → operated from 2014 to 2016

Detector developed by LBNL, U.Texas, CCNU

Cantilever support

STAR-PXL = the first MAPS detector

- 400 MIMOSA-28 sensors
- 360 10⁶ pixels
- Air flow cooling $T_{op} \lesssim 35^{\circ}C$
- σ_{s.p.} ≃ 4 μm
- mat. budget = 0.39 % X₀ / layer
- Read-out time ~ 190 µs
- → operated from 2014 to 2016

Detector developed by LBNL, U.Texas, CCNU

ALICE - ALPIDE

M.Mager, Nucl.Instr.Meth. A824 (2016) 434-438

ALICE - newITS

fater Jayers Based on high resistivity epi layer MAPS Middle layers 3 Inner Barrel layers (IB) 4 Outer Barrel layers (OB) Inner layers Radial coverage: 21-400 mm ~ 10 m² 12.5 Gpixels |n|<1.22 over 90% of the luminous region 0.3% X₀/layer (IB) 0.8 % X₀/layer (OB) Radiation level (IB, layer 0): TID: 2.7 Mrad, 1.7 x 1013 1 MeV n_{eq} cm-2 Installation during LS2 ALICE ITS Upgrade TDR CERN-LHCC-2013-024

ALICE - newITS

Expected tracking performances, from simulations

Improved impact parameter resolution

Track reconstruction efficiency

CBM - MIMOSIS

- Objective: Sensor equipping Micro-Vertex Detector (MVD) of heavy-ion CBM expt at FAIR/GSI
 - 4 double-sided stations equipped with 50 μm thin CPS, operated in vacuum at T $_{op} \sim$ -40 $^{\circ}$ C
 - MIMOSIS sensor: asynchronous read-out architecture derived from ALPIDE sensor (ALICE-ITS)
- Sensor target performances:
 - Spatial & Time resolutions \lesssim 5 μm & 5 μs
 - Radiation tolerance $\gtrsim 3~{
 m MRad} \oplus 3{
 m \cdot}10^{13}{
 m n}_{eq}/{
 m cm}^2$
 - Power: 200-350 mW/cm² (depending on distance to target)
 - Hit/Data rate capability: $1.5-7 \cdot 10^5$ /mm²/s \Rightarrow 1.6 Gbits/cm²/s
 - Technology: TowerJazz 0.18 µm
 - Sensitive layer:
 - >1kΩ.cm

- ~30.97 mm 504 x 1024 pixels organised in 16 Super-regions 1 Super-region has 4 Regions of 16 columns 13.55 mm Data-driven read out, all Regions work in // R e In a Region, 2 columns share 1 Data-driven read out Every double-columns is read out in serial 3.mm Digital Periphery + PAD ring **DC** coupling **AC** coupling (for depletion
- First small proto in 2017, engineering runs for 2018, 19, 20

see later)

Hadron colliders (ATLAS, CMS, LHCb)

Current LHC (2008-21)

- Beam-crossing every 25 ns
 - 40 collisions / beam crossing
 - Few 1000 tracks / event
- Radiation at 4-5 cm
 - 500 kGy / year
 - few $10^{14} n_{eq} (1 \text{ MeV})/\text{cm}^2$

High-luminosity LHC (>2024)

- Instantaneous lumi x10
 - Pile-up of 200-400 p+p collisions
- Radiation
 - 15 MGy / year
 - few 10¹⁶ n_{eq}(1 MeV)/cm²
- Improved track param. resolution
 - material budget ~ $\% X_0$
 - Single point resolution $\sigma_{point} \sim 10 \, \mu m$

Intermezzo / sensing layer engineering

Toward higher radiation tolerance

Impact of radiations

- Total Ionising Dose (TID)
 - Charges trapped at oxide/Si surfaces
 - Randomly released (I_{leak})
 → higher noise
 - Change transistor behaviours
 - Not sensor specific
- Highly ionising particle
 - Various Single Event Effects
 - Overcurrent, logic defaults...
 - Not sensor specific
- Non Ionising Energy Loss (NIEL)
 - Damage Si crystal
 - Trap charges → lower signal
 - Increases I_{leak} → higher noise

- Potential cures
 - Specific design rules
 - Not sensor specific
 - Lower temperature
 - Mitigate leakage current (I_{leak})
 - Focus charges on lower number of pixels
 - → Increases signal
 - With denser collection nodes
 ⇐ smaller pixels
 - With drift field
 - ⇐ depleted sens. volume

NIEL mitigation

Depleted ~ 1 GRad

Three ways to deplete MAPS

ATLAS – MAPS: full-depletion

Monopix

- L-Foundry 150 nm
 - High-res, Vbias ~100-300 V
- "large fill factor" diode
- Pixel size 250x50 µm²
 - 36 µW/pixel for 25 ns read-out

<u>MALTA</u>

- Tower Jazz 180 nm
- "small fill-factor"
- Derived from ALPIDE with process modif / depletion

W.Snoeys et al., CERN

<u>HV-CMOS</u>

Not discusses here, see Mu3e

<u>Currently</u>

- At the proto (1 cm²) level
- Demonstrated
 - Full depletion O(100) μm
 - Tolerance up to few $10^{15} n_{eq}/cm^2$

Leptonic e+e- collisions

<u>History (20th century <2010)</u>

- SLD had the first and only CCD-based vertex detector
- LEP introduced strips and pixel hybrid
- B-factories most precise vtx det. so far
- ~10-20 tracks /event, almost no radiation
 BUT need for tracking precision (~10 µm / point)
- SuperKEKB / Belle II (2018)
 - x100 luminosity $\Rightarrow \sigma_{\text{time}} \sim 10 \text{ ns}$
- Next linear colliders (~2030)
 - > 100 tracks / event
 - Single point resolution $\sigma_{\text{point}} \lesssim 3 \,\mu\text{m}$
 - Material budget 0.1 0.2 % X₀
 - Separating primary collision
 - ILC needs $\sigma_{\rm time} \sim 100~{
 m ns}$
 - CLIC needs σ_{time} ~10 ns

ILC – PSIRA

For Vertexing & SiTracker

- Evolution of MIMOSIS
 - Spatial resolution < 3 μm
 pitch 18x18 μm²
 - Power pulsing to reach ~ 30 mW/cm²
- Vertexing: $T_{integration} \lesssim 1 \ \mu s$
- Tracking: T_{Integration} 2-4 μs

- Target sensor readiness by 2025
 - Probably smaller feature-size 180 → 110 nm
 - Potentially other foundries than Tower-Jazz

CLIC Silicon tracker

M.Munker, LCWS 2017, Strasbourg

- Promising performance of studied HR-CMOS technology with respect to requirements of CLIC tracker
- Technology used in next phase of R&D to design a fully integrated chip for the CLIC tracker

CLIC Tracker Detector (CLICTD) - main idea/concept for elongated pixels/small strips:

- Design super pixel structures to maintain advantages of small collection diode (prompt and fully efficient charge collection) while reducing digital logic

Mu3e - MuPix

High Voltage - Monolithic Active Pixel Sensor (HV-MAPS)

- active sensor → hit finding + digitisation + zero suppression + readout
- high precision \rightarrow pixels 80 x 80 μ m²
- Iow noise ~ 40 50e → low threshold
- small depletion region of ~ 10 μ m \rightarrow thin sensor ~50 μ m (~ 0.0005 X₀)
- standard HV-CMOS process, 60 90 V → low production costs
- continuous and fast readout (serial link) → online reconstruction

27

Tracking in HEP: Systems

Proof that MAPS are easily integrated

Layers for the ILC-vtx

Single Arm Large Area Telescope

00000

Basic sensor 4x 3.8 cm² MIMOSA-28 thinned to 50 µm IPHC-Strasbourg Assembly **TAMITJU** stretching 50 µm-thin Mylar foil gluing 2 staggered sensors on each side ULTIMATE **JITIMATE** Jany 2011 IPHC-Strasbou 20.2 x 22.7 mr Janv 2011 IC-Strasbourg **Basic numbers** 3.6 Mpixels over 15.3 cm² 00000 190 µs integration time compo cracks = central vertical band about 100 μ m Telescope configuration Stretching frame Mylar foil

00000

Sensing area =

Mu3e – VTX concept

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Non tracking applications

- → Calorimetry !
- → Molecular imaging
- → X-ray counting & spectrometry
- → Autoradiography

Sensitivity to radiations

FOCAL

T.Peitzman et al., arXiv:1708.051

- High-Granularity digital electromagnetic calorimetry
 - Stack of (tungsten + MAPS) layers

24 layer pixel detector

Pad layer integration

Several groups involved: Full prototype with pixel detectors CMOS (MIMOSA) 39M pixels, 30µm pitch use synergy with R&D for ALICE ITS upgrade Full prototype with pad readout

Performed systematic tests: Test beam data from 2 to 250 GeV (DESY, PS, SPS) Cosmic muons

- response to electrons from SPS test beam

 calculated from per-event hit density distributions

Utrecht/Nikhef (Netherlands), Bergen (Norway),

 Tsukuba, Nara, Hiroshima (Japan),

 ORNL (US)

 VECC Kolkata,

 BARC Mumbai (India)

 R&D Activities with Si-pad/W Calorimeter Prototypes (Japan/ORNL, India) not covered here

Charged particles dosimetry

Molecular imaging with β+ emitters in moving rodent

- MAPSSIC: extreme integration in specific environment
 - Constraint on size and power dissipation
 - IMNC, IPHC, CPPM, CERMEP, NeuroPSi
- Exploit CMOS sensors derived from ALICE
 - One active probe = $160 \mu W$
 - For few counts / s
 - Wireless connection

Depletion on prototype sensors

PIPPER-1 (2014), PIPPER-2 (2016), PIPPER-3 (2017)

- Prorotype chip 32 x128 pixels
- Analog outputs
- Pixel size 22x22 µm
- AC coupled collecting diode
- Produced on two substrates:
 - Epitaxial layer 18µm
 - Czochralski substrate

⁵⁵Fe irrad. function of diode bias (1-19V)

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Energy resolution

After clustering → Seed pixel distribution

Energy resolution dominated by collection fluctuation on charge coll. (full thickness sensor)

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Engineering the sensitive layer

nwell

Back Side Processing

Goal: « costless » BSI sensor

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Photon counting?

<u>2D architecture</u>

- 1 sensor = SYNAPS-2D
- Rolling shutter with // columns analogue signal readout
 - 100-200 ns readout per row
 - About 512 rows
- Digitization (binary) at column end with <u>energy window</u>
- Dynamic range 1-2x10⁴ photons/pixel/s
- Mid-term -> 3D architecture
 - 1 sensor + 1 DSP chip = **SYNAPS-3D**
 - Local rolling-shutter within submatrix
 - 1 µs readout per submatrix
 - ~10 photons (5 keV) dynamic per pixel
 - Digitization + Memory in DSP
 - Dynamic range 1-10⁷ photons/pixel/s

Prototype small pixel X-ray counter

Counting Low energy X-ray - Mimosa 22SX

Requirements:

- X-Ray Energy Range [few 100 eV 5 keV] with 100% QE
- Counting Dynamic [1-10⁷] ph/pix/s
- High Spatial Resolution (pixel pitch ~ 20 $\mu m)$

A spin-off application for M22SX

Dose Monitoring by counting

CYRCé Cyclotron at IPHC:

• 24 MeV protons

• Millimetre beam size for small animal proton therapy

Motivation:

Monitor dose for small beam size (problematic with current detector)

First tests with Mimosa 22SX

- Linear behaviour in the measured fluence range
- At least 1000 protons/pix/s possible

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

DREAM of electronic emulsion

Conclusion

Historical perspective

- CMOS Image sensors started ~60 years ago
 customisation into the Si sensor world
- Scientific version of CIS (sCMOS) started ~ 20 years ago
- CMOS pixel sensors (MAPS) for charged particle tracking started ~ 20 years ago
 - Very few labs in the high-energy physics community

Currently a lot of activities

- CMOS processes are evolving quickly
 + corresponding integration technologies
- Many labs and design companies are pushing various performances
 - Ex: spectrometry, electron multiplying CMOS, ...
- In Strasbourg, 2 architectures emerging:
 - 1. Fast binary outputs
 - 2. Energy deposited measurement outputs

Outlooks

- More applications to be expected
- Complex landscape, time to know what you want (cost, specs, ...)

ADDITIONAL SLIDES

CMOS Image Sensor (CIS)

Main markets

- Customers
 (camera, smartphone, ...)
- Industry (machine, automotive,...)
- Medical imaging

Pixel size 1-2 µm • Frame rate ~ video Integration camera (single quanta)

Main markets = technology drivers

<u>CCD vs CMOS</u>

99% in 2020

20% in 2012

CMOS

CMOS+CCD

- CMOS camera yield > few billions/year
- Main reason: cost and now performances

Foundry examples

- SONY
 - Main world player
 - Ex: Backside illuminated sensor "stacked" camera (sensor + readout)
 - 60000 wafers / month
- Tower-Jazz
 - Small & very focused player
 - Ex: Medical application sensor
 - Few 1000 wafers / year

X-ray detection

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Hybrids (strips & pixels)

THE standard approach in HEP

- Implement powerful processing
 - Pre-ampli + shaper \Rightarrow time & energy resol.
- Radiation hardness
 - Si type adapted
 - 3D sensors
- Recently edgeless sensors

<u>"limitations" / pixels</u>

- Relatively large pixel size
 - Limited by bump-bonding & processing
 - Current ATLAS 50x250 $\,\mu m^2,\,CMS$ 100x150 $\,\mu m^2$
- Relatively thick ⇐ 2 thickness of silicon
- Sensitivity to low ionizing particles
 - Typical minimal threshold ~1000 e-

Developments / CLIC

- targets pitch 25x25 µm²
- with thickness 50 μm (ASIC) + 50 μm (Sensor)
- Some functional prototypes

DEPFET

<u>A "monolithic" approach</u>

- Driven by imaging (X-rays, electrons)
- Amplification in-pixel but no processing
- Fully depleted volume 300 to 50 µm (thinned)

First detector for HEP in 2018

- Belle II vertex detector (PXD)
- The thinnest detector 0.18 % X_0 / layer
- Pitch not crucial: 70 µm
- 20 µs integration/read-out time

Toward ILC

• Smaller pixel 20 µm

Pixel detectors in HEP (except MAPS)

<u>CCD</u>

- Very seldom used
- Too slow & weak / TID, NIEL

DEPFET

- First application on-going
- Small pixels possible
- Fully depleted sens. Layer
- Internal amplification BUT
 - needs read-out chipS
 - speed limited
- Production site limited

Silicon On Oxide (SOI)

- Never used yet
- Small pixel possible
- Fully depleted sens. Layer
- Embed processing
- Sens volume decoupled from processing layer
- TID issue solved (?)
- Costly (?) process

Hybrid pixel

- THE standard way
- Small pixel hardly possible
- Fully depleted sens. Layer
- Sens volume decoupled
 from processing layer
 - Sensitivity limited
- FEE on top of sensor
 - Increased mat. budget
 - BUT powerful processing
 ⇒ FAST
- Bump bonding costly

SOI

<u>A monolithic-hybrid ?</u>

- Includes fully depleted sensitive layer 50-700 µm
- Includes processing power
 - less constraint / CMOS sensors
- Large SNR
- Relatively weak to radiation
 - thick oxide

(X-ray, Electron, Alpha, Charged Particles, ...)

- Current usage
 - Mostly for imaging (X-rays)
 - Synchrotron, medical, astronomy, ...

Project in HEP: ILC

- Enhanced signal treatment within 20 µm pixel
 - Spatial & time resolution
- Still prototyping

Non depleted MAPS

Preliminary remark: read-out

■ <u>Std imaging sensors ⇔ usually INTEGRATION</u>

- One channel signal = several quanta of radiations
- Key parameters:
 - dynamic (full well), point spread function, noise
- Single frame ~100% occupied
 - read-out relatively slowly (~video rate)

<u>Tracking sensors \infty COUNTING single particles</u>

- One quanta = several channels
- Key parameters:
 - resolution (E, t, position), SNR, dark count
- Single frame ≤1% occupied
 - read-out @ high-frequency (< 10 kHz)
- ➡ Both can build image...with various qualities
 - Strong impact on read-out electronic design

Tracking in High Energy Physics

Multi-layers are needed

- Material budget (thickness) to be limited

 1 % radiation length(X₀)
- Power dissipation is a problem

Events are complex...

- Spatial resolution (2-20 µm)
- Time resolution (ns to µs)

... BUT (almost) EMPTY wrt sensors

sCMOS versus MAPS

Scientific CMOS (sCMOS)

- Improved CIS
- Essentially integrating detectors
 - Increased dynamic (full well)
- Target generic applications
- Keep small pixels (few µm pitch)
- Speed up to 1000 kframes/s
- Sensitivity with equivalent noise ~ few e-

<u>MAPS</u>

- Monolithic Active Pixel Sensor
- Only counting detectors

 single quanta
- Target specific experiment
- Pixel size adapted to desired resolution
- Speed adapted to occupancy
- Equivalent noise ~ 10-30 e-

Signal & Noise build-up

Signal

- Nb of charges on coll. diode depends on
 - Sensitive thickness
 - Potential distribution
- Conversion factor (capa)

- <u>Noise</u>
 - Capacitance
 - Leakage current

TID mitigation

ALICE - ALPIDE

6 GeV/*c* π⁻

ALICE - ALPIDE

6 GeV π^{-}

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

The PICSEL group in Starsbourg

Complementary expertise

General web site: iphc.cnrs.fr/picsel

- Physicists: 4 staffs, 1 post-doc, 3 PhD students
- Micro-electronics design: 11 staffs, 1 Post-docs, 2 PhD students
- (Micro-)electronic test : 5 staffs

Scientific production since 1998

- ~70 publications, ~50 proceedings, ~14 PhD defended
- ~50 CMOS Pixel Sensors (CPS) designed and characterized

Partners

- Academics:
 - CERN, , KEK (Japan), DESY (Hamburg), LNF (Frascati)
 USA (Berkeley, Brookhaven), IHEP in China, many University groups
- CMOS foundries:
 - AMS (Austria), Tower-Jazz (Israel), TSMC(Taiwan), STM (France), ESPROS (Switzerland)

Scientific drivers for the PICSEL group

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

Standard "undepleted" MAPS

<u>3 different E-field zones</u>

- Zone extensions driven by
 - anode dimensions & spacing
 - anode/cathode potentials

Depletion drives performances

- Deeper depletion =
 - Shrinks charge sharing / pixels
 - Increases signal/Noise per pixel
- Optimization required /
 - Detection sensitivity
 - Detection efficiency
 - Impact counting
 - Spatial resolution (or PSF)
 - Energy resolution

Impact parameter resolution

Tracking with doublets

J.Baudot - Recent advances in CMOS pixel sensors - LNF - November 2017

MAPS are foldable !

B.Guenter et al., https://doi.org/10.1364/OE.25.013010

Fig. 1. A) The eye focuses onto photosensitive cells arranged along the curved focal surface inherent of a thick lens. Typical optical lenses require more elements and complexity to focus on flat focal planes and correct the aberrations these compensating elements introduce, losing performance compared to a curved focal plane. B) Functional, 18 megapixel (1/2.3" 7.6 mm x 7.7 mm die) BSI CMOS curved image sensor bonded to a precise 18.74 mm curved mold surface.

Own trial (IPHC, CERN)

Determination of the depletion depth Using the ⁵⁵Fe calibration peaks – HR-18 vs. CZ

Counts in range 4.9 keV – 7 keV

- Depth determined from relative attenuation of HR-18 at 30 V
- Maximum depleted depth 21 µm
- Compared to TCAD simulations
 - Resistivity of $2 k\Omega \cdot cm$

Determination of the depletion depth

Using the ⁵⁵Fe spectrum

- Total counts in spectrum after selection of hits in clusters > 110 ADCu
 - Depth determined from relative attenuation to HR-18 at 30 V
 - HR18: Quick saturation around 12.5 µm
 - CZ: Depth increasing up to 46 µm (81 % attenuation for Mn-K α)
 - → Reaching the limit of sensitivity of ⁵⁵Fe

- Total counts in spectrum after selection of hits in clusters > 110 ADCu and with 90 % of the charge on seed pixel
 - Depth determined from relative attenuation to HR-18 at 30 V
 - Same behavior than 4.9-7 keV method
 - → HR18: depth reaching 13.25 µm
 - → CZ: depth reaching 22 µm

X-counting trial with previous tech.

