Qubit Losses in Topological Color Codes

Davide Vodola Department of Physics, College of Science Swansea University

Bologna, 24-25/11/2017 Physics and Geometry Remembering Giuseppe Morandi

Outline of the talk

1 - Introduction to standard quantum error correction (QEC)

- 2 Introduction to topological codes
 - General properties
 - Topological error correction

- 3 Losses in topological codes
 - Toric code
 - New results for the color code

A quantum computer is ...

- quantum superposition principle
- quantum mechanical entanglement

Basic unit in **classical** information: the bit

Basic unit in **quantum** information: two-level system = quantum bit (**qubit**)

$$|\psi\rangle = c_0|0\rangle + c_1|1\rangle$$

with $c_0, c_1 \in \mathbb{C}$ $p_0 = |c_0|^2, \ p_1 = |c_1|^2$

Why should we build a large-scale and fault-tolerant quantum computer?

prime factoring (Shor's alg.)

universal quantum simulator

Operations on qubits

An arbitrary single qubit gate and CNOT form an universal set of quantum gates

Two-qubit gates

Main obstacle towards quantum computers: decoherence & errors

• other channels: amplitude damping, qubit loss, ...

Need for error correction: naive approach ... fails

 $\exists U$

 $|\psi\rangle$

not possible in this straightforward way: no-cloning theorem for quantum states

quantum states can't be copied, but keep idea of redundancy and majority vote...

Quantum error correcting codes

- 3-qubit bit-flip code
- use two ancilla qubits
- code corrects 1 bit-flip error

Encoding

$$|0\rangle \rightarrow |0_L\rangle = |000\rangle$$

 $|1\rangle \rightarrow |1_L\rangle = |111\rangle$

P. Shor 1995

- Encoding
- Detection of the error
- Correction
- Decoding

Quantum Error Correcting (QEC) codes: Stabiliser codes

Pauli Group ${\cal P}$

D. Gottesman (1996)

Product of single Pauli on n qubits

Stabilizer group ${\cal S}$

- \blacktriangleright Operators in ${\cal P}$ that mutually commute (Abelian subgroup of ${\cal P}$)
- Defines the code space C as the common +1 eigenspace of all its elements

The code space stores the logical state(s)

An error brings the logical state out of $\ensuremath{\mathcal{C}}$

Quantum Error Correcting (QEC) codes: Stabiliser codes

D. Gottesman (1996)

3-qubit bit-flip code

 $|0\rangle \rightarrow |0_L\rangle = |000\rangle$ $|1\rangle \rightarrow |1_L\rangle = |111\rangle$

is an example of a stabiliser code that corrects only one error.

 $\alpha |0\rangle + \beta |1\rangle \rightarrow \alpha |000\rangle + \beta |111\rangle$

code space is fixed by a set of (**commuting**) $Z_1 Z_2 |\psi\rangle = +|\psi\rangle$ stabiliser generators $\{Z_1 Z_2, Z_2 Z_3\}$ $Z_2 Z_3 |\psi\rangle = +|\psi\rangle$

Kitaev's toric code

A. Yu. Kitaev, Annals of Physics, 303 (2003)

• all terms commute: $[S_x, S_z] = 0$ for all stabilisers \rightarrow Hamiltonian exactly solvable.

The ground state manifold coincides with the code space

Ground state degeneracy of the toric code

$$H = -J\sum_{\Box} S_z - J\sum_{+} S_x$$

• ground state $|K\rangle$ with $\{S_x^{(i)}|K\rangle = |K\rangle, S_z^{(j)}|K\rangle = |K\rangle\}$ for all X- and Z-stabilisers

- ground state degeneracy, which depends on the
 - boundary conditions
 - and the **topology** of the surface on which the lattice lives
- on a torus: periodic boundary conditions:

$$N^{2} \text{ plaquettes, } 2N^{2} \text{ physical qubits}$$

$$N^{2} - 1 \text{ indep. X-stabilizers, } N^{2} - 1 \text{ Z-stabilizers,}$$
since
$$\prod_{\square} S_{z} = \prod_{+} S_{x} = 1$$
• $2N^{2} - 2(N^{2} - 1) = 2 \text{ conditions missing:}$
• encode **two logical qubits** in the ground state manifold
$$\chi = 2 - 2g$$
2*g* logical qubits

Logical operators

- must commute with all stabilisers
- must be independent
- must respect the usual AC relations

The stabilisers always excite an even number of qubits

Logical qubits

Logical operators are strings that **percolate** through the lattice and act non trivially in the code space

Errors in the toric code

• errors = gapped excitations = local stabilizer violations

- Z-type errors are detected by X-type stabiliser
- X-type errors are detected by Z-type stabiliser
 - Two excitations have a non trivial statistics: They are Abelian anyons
 - The state picks up a phase -1 if

The goal of quantum error correction is to find the chain of errors (or one equivalent) that has produced the excitations detected

Errors in the toric code - 2

Two excitations detected

possible chain of errors $E = \sigma_a^z \sigma_b^z$ correct it by applying $C = \sigma_a^z \sigma_b^z$ $CE = \mathbf{1}$

What if the chain of errors was $E=\sigma_c^z\sigma_d^z$

Applying $C=\sigma_a^z\sigma_b^z$ to the error

Errors in the toric code - 3

 $\begin{array}{l} \mbox{Correction } C=\sigma_1^z\sigma_2^z\sigma_3^z\\ \mbox{The error was } E=\sigma_0^z\sigma_4^z \end{array}$

Error + Correction = Logical *Z* operator Correction failed

A toric code *L* x *L* can correct (*L* - 1) / 2 errors successfully

Losses in quantum codes

A loss can be

- a qubit that flies away from the trap
- a qubit that leaks out of the computational basis

Detectable, but inaccessible

Losses and leakage can damage the performance of (topological) QEC codes

Challenges:

- Find a protocol to deal with qubit losses
- Understand robustness of the code used

Losses in the toric code

Use the freedom in defining the plaquettes/vertices and the logical operators

 $p_{\rm losing\ a\ qubit}$ probability of

What about the logical operators?

The loss affects

- two plaquettes generators
- two vertices generators

The new defined operators still mutually commute

T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

We can use the stabiliser group to redefine the logical operators that go through the loss qubits

After all the losses are detected, check if a logical operator can be defined on the remaining qubits

How many losses can be tolerated?

no percolating path

The threshold for losses is given by the bond percolation critical value

for the square lattice $p_c = 1/2$

Topological quantum error correction with color codes

Topological color codes: definition and properties

Defined on a trivalent 3-colorable lattice: the neighbours of each plaquette are of a complementary color

Hilbert

- Qubits on vertices of the lattice
- X,Z types of plaquette operators

• all stabilisers commute: $[S_x, S_z] = 0$

Code space:

• ground state(s) $|K\rangle$ with $\{S_x^{(i)}|K\rangle = |K\rangle, S_z^{(j)}|K\rangle = |K\rangle\}$ for all X- and Z-stabilisers

H. Bombin & M. A. Martin-Delgado. PRL 97, 180501 (2006)
H. Bombin & M. A. Martin-Delgado. PRL 98, 160502 (2007)

Color codes on 2D regular lattices

Color code and its logical operators

<u>Remember:</u> qubits on sites, only X- and Z-plaquette stabilisers

Color code and its logical operators

third (blue) string is not linearly independent, but just a tensor product of logical operators

Quantum error correction in color codes

more complex error behavior than in toric code

Error correction:

derive from measured error syndrome the class of most probable physical error scenario

derive (efficiently) a good recovery operation

Failure: logical error occurs if **Errors + Correction** include a **non-contractible path**

Multiply A and B plaquettes?

Why does it work?

• The Euler characteristic is still the same $\chi = F + V - E$

$$-1f - 2v - (-5 + 2)e = 0$$

Outlook & Conclusions

What's left?

Take into account the possibility for an operator to branch into two operators of complementary colors

- Implement a strategy for choosing the twin qubits
 - Look at an experimental realisation of the color code like the one in Nigg, Muller et al., Science **234**, (2014)

What we've seen:

Error and losses can affect quantum computers but can be cured with success

Quantum error correcting codes can be realised in condensed matter topological systems

Our group in Swansea

ALA

D. Amaro *Curriculum Vitae*

IN REPART OF

ImplementationDavid Amaro FernándezAddressMoreras 23. Rivas VaciamadMovide Phone(+34) 679 237 040emaildavamaro@hotmail.es

Personal Details

Miguel Angel Martin Delgado (Madrid)

1<mark>4 May 1992. Madrid Spain.</mark> Spanish Single

Markus Müller

Alejandro Bermudez

Mauricio Gutierrez

Thank you!

Yes, that's Wales!

Color codes in trapped ions

System of 7 ions

3+3 stabiliser generators

1 logical qubit

- Initialize the system in the code space
- Mimic up to two errors
- Measure the stabilisers
- Correct the error(s)

Error threshold in the toric code

How many errors we can effectively correct in a toric code?

- (L 1)/2 if they lie on straight lines!
- If they have random positions Find a cycle such that C + E = trivial cycle Correcting for errors Phase transition in a **Random Bond Ising Model** $H_{\rm RBIM} = -J \sum \eta_{ij} \sigma_i \sigma_j$ $\langle i,j \rangle$ \bigwedge F random Ferro/Antiferro coupling related to E + C**Disordered** phase Ordered phase **RB** Ising Toric code Correctable Non-correctable error probability phase transition p=10%

Ground state degeneracy of the toric code - 2

What if the system has a different topology?

In a torus with genus $g \longrightarrow \chi = 2 - 2g \longrightarrow 2g$ logical qubits