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Outline of the talk

1 - Introduction to standard 
                       quantum error correction (QEC)

2 - Introduction to topological codes

• General properties 

• Topological error correction

functions of statistical mechanical models with three-body
interactions and external magnetic fields. Section VI is de-
voted to conclusions.

II. TOPOLOGICAL COLOR CODES

A. Construction

Let us start by recalling the notion of a topological color
code in order to see what type of classical spin models we
obtain from them with appropriate projections onto factor-
ized quantum states and specific lattices.

A TCC, denoted by C, is a quantum stabilizer error cor-
rection code constructed with a certain class of two-
dimensional lattices called 2-colexes. The word !colex! is a
contraction that stands for color complex, where complex is
the mathematical terminology for a rather general lattice. A
2-colex, denoted by C2, is a 2D trivalent lattice which has
three-colorable faces and is embedded in a compact surface
of arbitrary topology such as a torus of genus g. A trivalent
lattice is one for which three edges meet at every vertex. The
property of being three-colorable means that the faces !or
plaquettes" of the lattice can be colored with these colors in
such a way that neighboring faces never have the same color.
We select as colors red !r", green !g", and blue !b". An ex-
ample of a 2-colex construction is shown in Fig. 1.

Edges can be colored according to the coloring of the
faces. In particular, we attach red color to the edges that
connect red faces, and so on and so forth for the blue and
green edges and faces. When studying higher dimensional
colexes, it turns out that the coloring of the edges is the key
property of D-colexes: all the information about a D-colex is
encoded in its 1-skeleton, i.e., the set of edges with its col-
oring #11$.

Given a 2-colex !C2", a TCC !C" is constructed by placing
one qubit at each vertex of the colored lattice. Let us denote
by V, E, and F the sets of vertices v, edges e, and faces f,
respectively, of the given 2-colex. Then, the generators of the
stabilizer group, denoted by S, are given by face operators
only. For each face f, they come into two types depending on
whether they are constructed with Pauli operators of X or Z
type,

Xf: = !
v!f

Xv,

Zf: = !
v!f

Zv, !1"

and there are no generators associated to lattice vertices. For
example, a hexagonal lattice is an instance of a 2-colex, see
Fig. 2. The operators for the face f displayed in the figure
take the form Xf=X1X2X3X4X5X6, Zf=Z1Z2Z3Z4Z5Z6.

We notice that for the purpose of this paper, we are deal-
ing only with lattices of trivial topology, such as the plane or
the sphere. In these cases, it suffices to require the lattice to
have the following properties: !i" Each vertex has coordina-
tion number 3; !ii" each face has even number of edges !ver-
tices". These conditions guarantee that the stabilizers Xf and
Zf pairwise commute and the TCC state is unique for the
trivial topology. Nevertheless, we have kept the general defi-
nition of a 2-colex in terms of three-colorability since we are
referring to previous works where nontrivial topologies are
considered.

A given state %!c&!C is left trivially invariant under the
action of the face operators,

Xf%!c& = %!c&, Zf%!c& = %!c&, ∀ f ! F . !2"

An erroneous state %!&e is one that violates conditions !2" for
some set of face operators of either type. As the generator
operators Xf ,Zf!S satisfy that they square to the identity
operator, !Xf"2=1= !Zf"2, ∀f!F, then an erroneous state is
detected by having a negative eigenvalue with respect to
some set of stabilizer generators: Xf%!&e=−%!&e and/or
Zf%!&e=−%!&e.

Interestingly enough, it is possible to construct a quantum
lattice Hamiltonian Hc such that its ground state is degener-
ate and corresponds to the TCC !C", while the erroneous
states are given by the spectrum of excitations of the Hamil-
tonian #9$. Such Hamiltonian is constructed out of the gen-
erators of the topological stabilizer group S,

Hc = − '
f!F

!Xf + Zf" . !3"

The ground state of this Hamiltonian exhibits what is called
a topological order #12$, as opposed to a more standard order
based on a spontaneous symmetry breaking mechanism. One
of the signatures of that topological order is precisely the

FIG. 1. !Color online" An example of 2-colex. Both edges and
faces are three-colorable and they are colored in such a way that
green edges connect green faces !light gray" and so on and so forth
for red !medium gray" and blue !dark gray" edges and faces.
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FIG. 2. !Color online" A hexagonal lattice is an instance of
2-colex. Numbered vertices belong to the face f. Vertices labeled
with letters correspond to the red string " displayed. " is an open
string, because it has an end point in a red face.
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(a) damaged lattice

(b) corrected lattice

3 - Losses in topological codes

• Toric code 

• New results for the color code



A quantum computer is ...

classical output

quantum superposition principle

Central ingredients:

quantum mechanical entanglement

classical input 

a computer ...  
which works based on the laws of 

quantum physics

Basic unit in quantum information: 
two-level system = quantum bit (qubit)

|0�

|1�
0

or

1

Basic unit in classical 
information: the bit

|�� = c0|0�+ c1|1�

c0, c1 2 Cwith

p0 = |c0|2, p1 = |c1|2



Why should we build a large-scale and  
fault-tolerant quantum computer?

data base search 
(Grover‘s alg.) ...

prime factoring 
(Shor‘s alg.)

universal quantum 
simulator

many-body  
quantum 
systems



|0� |1�

Cold Rydberg atoms

first 2-qubit Rydberg gates: Saffman,
Browaeys & Grangier groups (2009)

Greiner, Kuhr, 
               Bloch 
               groups  
               (2011)

Weimer, Müller et al. 
(2010)

Which physical platform? 
super-conducting qubits 2
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Figure 2. Half-plaquette device schematic and parity check quantum circuits. a, The optical image of the half-
plaquette device shows in false color all the di⇥erent components of the device: 3 qubits, Q1 (blue), Q2 (green), and Q3 (teal),
each with individual readout resonators, and 2 bus resonators (maroon) R12 and R23. Each transmon qubit (zoom view inset)
is independently addressed via its corresponding readout resonator, with single-qubit gates applied on resonance with each
qubit at �i, i � [1, 2, 3] and readout performed at the measurement frequencies �Mi. Whereas Q1 and Q3 readout signals are
only amplified through High-Electron Mobility Transistors (HEMTs), the Q2 readout is reflected o⇥ a Josephson parametric
amplifier (JPA) stage first before going on to a HEMT. Two-qubit gates are performed in the cross-resonance scheme, applying
�2 on both control qubits, Q1 and Q3. b, The parity check protocol (PCP) for qubit Q1 and Q3 where the Z-parity operator
�ZZ is applied, giving a single classical bit of information b2 (double lines indicate classical channel). c, The quantum circuit
which implements the Z-parity check consists of a pair of CNOT gates from the code qubits (Q1 and Q3) to the syndrome
(Q2) followed by a measurement M2 which gives the classical bit b2. d, The CNOT can be decomposed into the ZX90 gate and
single-qubit rotations. Using the cross-resonance microwave interaction, we have at our disposal the gate combination boxed
in dashed red, composed of a ZX90 followed by a NOT (or X) gate on the control qubit. The n in the depiction of the ZX90

gate can be either 0 or 1, indicating the state-dependent rotation.

lattice come in two distinct flavours, either code qubits
which carry logical information, or syndrome qubits
which are used to measure stabilizer operators of sur-
rounding code qubits. In Fig. 1a, syndrome qubits can
be used as eitherX-parity checks (red circles) or Z-parity
checks (green circles) of four surrounding code qubits
(blue circles). The five-qubit block consisting of X- (Z-
) syndrome and four surrounding code qubits defines a
unit cell X- (Z-) plaquette and is shaded in red (green).
Performing a round of error-correction in the SC consists
of applying controlled-NOT (CNOT) gates to map the
parity of the surrounding code qubits into the state of
the syndrome qubits. A subsequent measurement of the
syndrome state determines this parity.

Using superconducting resonators as the links of the
lattice, it is possible to construct a SC architecture us-
ing superconducting qubits in a square lattice, with a
qubit at each vertex. This requires the ability to couple
a single qubit to four resonators. As it is also import-
ant to be able to read out and address the qubits indi-
vidually, this can result in an additional fifth resonator
per qubit. However, another approach to topologically
achieve the same SC is to use the skew-symmetric square
lattice shown in Fig. 1b. This only requires that a single
qubit be coupled to two buses, and a third readout reson-

ator. Such an architecture is commensurate with exper-
iments already demonstrated, where a single qubit can
be coupled to two separate resonators21, a single bus has
been used to couple up to 3 qubits22, and an independ-
ent readout can be used to measure a single qubit that
has been entangled with a separate qubit via a bus reson-
ator23. In the skew-symmetric lattice, a full plaquette cell
consists of 8 qubits and 4 bus resonators, and is indicated
in the purple-shaded region of Fig. 1b. The experiments
presented in this manuscript are performed e�ectively on
a ‘half-plaquette’ sub-section, consisting of 3 qubits (all
with individual readout resonators) and 2 bus resonators,
where we demonstrate all necessary gate operations and
measurements that comprise the SC protocol.

The half-plaquette device (Fig. 2a) contains three
single-junction transmon qubits connected by two
coplanar-waveguide (CPW) resonators serving as the
buses, and each qubit is coupled to its own separate CPW
resonator for independent readout and control. Here we
label the code qubits Q1 and Q3, and the middle qubit
Q2 serves as the syndrome. A simplified control and
readout diagram is also shown in Fig. 2a, with all mi-
crowave sources for single- and two-qubit gates and in-
dependent readout indicated. The syndrome Q2 is read
out with the assistance of a Josephson parametric ampli-

Chow, Gambetta et al., BBN, 
G. Kirchmair group (Innsbruck), ...

From 1D to 2D Ion Traps

Blatt, Schmidt-Kaler, Schätz, Wineland... and 
many more groups
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Operations on qubits

Single qubit gates

|0i |1iX

|0i|1i X

Two-qubit gates

|0i

|1i |1i

|1i

CNOT

|0i

|1i

|0i

� |1i

Z

Z

|0i

|1i

H

H

|0i+ |1i

|0i � |1i

An arbitrary single qubit gate and CNOT 
form an universal set of quantum gates

|0i

CNOT
|1i+ |0i

|11i+ |00i



• Coupling to the environment 
causes decoherence:

| � = ↵0|0�+ ↵1|1�

pure coherent 
superposition state

|0�

|1�

dephasing

⇢ = |↵0|2|0⇥�0|+ |↵1|2|1⇥�1|

classical mixture, phase information lost

example:  
magnetic field 
fluctuations

�0e
i�0 |0�
+�1e

i�1 |1�

• similarly: Z-error (phase flip) 

• other channels: amplitude damping, qubit loss, ...

error channels

X-error (bit flip)
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Main obstacle towards quantum computers:  
decoherence & errors



Need for error correction: naive approach ...        

protection by redundancy

fails

not possible in this straightforward way: no-cloning theorem for quantum states

| � | �
| �

�| ⇥

@U

|��anc
U

...011010...

...011010... ...011010......010010......011010... ...011010...recover:

quantum states can‘t be copied, 
but keep idea of redundancy and majority vote...



Quantum error correcting codes
3-qubit bit-flip code

|0⇥ � |0L⇥ = |000⇥
|1⇥ � |1L⇥ = |111⇥

• use two ancilla qubits 
• code corrects 1 bit-flip error

P. Shor 1995

Encoding
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Encoding Error! Correction Decoding

• Encoding 
• Detection of the error 
• Correction 
• Decoding



Quantum Error Correcting (QEC) codes: Stabiliser codes
D. Gottesman (1996)

Stabilizer group
Operators in P  that mutually commute (Abelian subgroup of  P )
Defines the code space C as the common +1 eigenspace of all its elements

The code space stores the logical state(s) 

-1 +1

-1 -1,-1 -1,+1

+1 +1,-1 +1,+1

S2
S1

C

Error 
Correction

Product of single Pauli on n qubits
Pauli Group P

C

S
P P

An error brings the logical state out of C

Error

C



Quantum Error Correcting (QEC) codes: Stabiliser codes

3-qubit bit-flip code

|0⇥ � |0L⇥ = |000⇥
|1⇥ � |1L⇥ = |111⇥

is an example of a stabiliser code that  corrects only one error.

↵|0⇥+ �|1⇥ � ↵|000⇥+ �|111⇥

code space is fixed by a set of (commuting)
stabiliser generators {Z1Z2, Z2Z3}

Z1Z2|�� = +|��
Z2Z3|�� = +|��

logical operators Z̄ = Z1Z2Z3

X̄ = X1X2X3

|111�|000�

|100� |011�

|010� |101�

↵|000�+ �|111�

↵|100�+ �|011�
X1 error

D. Gottesman (1996)

Z1Z2|�erri = �|�erri
Z2Z3|�erri = +|�erri



Z

X

Topological quantum error correction 
with the toric code



• Spin-1/2 (qubits) located on the edges  
   of a two-dimensional square lattice 

S
x

= �x

5�
x

6�
x

7�
x

8

• Four-qubit stabiliser generators

Sz = �z
1�z

2�z
3�z

4

• all terms commute:                          for all stabilisers                             [Sx, Sz] = 0 ➡ Hamiltonian exactly solvable.

|0�

|1�

Kitaev’s toric code
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H = �J
X

⇤
S
z

� J
X

+

S
x

•The ground state manifold coincides with the code space



• ground state {S(i)
x |K⇤ = |K⇤, S(j)

z |K⇤ = |K⇤}|K� with                                                           for all X- and Z-stabilisers

• ground state degeneracy, which depends on the  
• boundary conditions 
• and the topology of the surface on which the lattice lives

Ground state degeneracy of the toric code

H = �J
X

⇤
S
z

� J
X

+

S
x

• on a torus: periodic boundary conditions:

N

N

N2 plaquettes,          physical qubits2N2

•                                           conditions missing:2N2 � 2(N2 � 1) = 2

N2 � 1 indep. X-stabilizers, N2 � 1 Z-stabilizers,

since 

•  encode two logical qubits in the ground state manifold

Y

⇤
S
z

=
Y

+

S
x

= 1

� = 2� 2g
For a different manifold

2g   logical qubits



Logical qubits

Z̄2

Z̄2

X̄1

X̄1

Logical operators are strings that 
percolate through the lattice and 
act non trivially in the code space

Sz

Sx

X̄2

X̄2

Z̄1

Z̄1

|1̄�|1̄�|1̄�|0̄�|0̄�|1̄�|0̄�|0̄�code space

E

X̄1

Logical operators 
must commute with all stabilisers

must be independent
must respect the usual AC relations

The stabilisers always excite an even number of qubits  



• errors = gapped excitations = local stabilizer violations

�z

Errors in the toric code

2

1

Z-type errors are detected by X-type stabiliser

�x

3 4

X-type errors are detected by Z-type stabiliser

Two excitations have a non trivial statistics:
They are Abelian anyons

1 4

The state picks up a phase -1 if

 is moved around

|1̄�|1̄�|1̄�|0̄�|0̄�|1̄�|0̄�|0̄�code space

E

error

The goal of quantum error correction is 
to find the chain of errors (or one 
equivalent) that has produced the 

excitations detected



Errors in the toric code - 2

2

1

Two excitations detected

2

1

What if the chain of errors was

�z
c

�z
d

E = �z
c�

z
d

Applying C = �z
a�

z
b

Z stabiliser

to the error

CE = �z
a�

z
b�

z
c�

z
d

possible chain of errors E = �z
a�

z
b

�z
a

�z
b

correct it by applying C = �z
a�

z
b

CE = 1



Errors in the toric code - 3

21

Two excitations detected

Correction�z
1 �z

2 �z
3

21

�z
1 �z

2 �z
3

C = �z
1�

z
2�

z
3

The error was E = �z
0�

z
4

�z
4

�z
0

Error + Correction = Logical Z operator

Z̄1

Correction failed

A toric code L x L can correct (L - 1) / 2 
errors successfully 



Losses in quantum codes
A loss can be

but inaccessible 

Losses and leakage can damage the performance 
of (topological) QEC codes

a qubit that flies away from the trap
a qubit that leaks out of the computational basis

Find a protocol to deal with qubit losses
Understand robustness of the code used

Challenges:

Grassl, et al PRA 56 (1997)

The smallest system that is capable to 
correct for one loss is a 


4-qubit code

ancillas

original 
information

info 
recovered{

Detectable,



Losses in the toric code

T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

Use the freedom in defining the plaquettes/vertices

and the logical operators

loss
The loss affects

A B

two plaquettes generators 

Idea!

two vertices generators 
C

D

2 plaquettes

A B

1 superplaquette

AB

D D
original vertices reduced vertices

The new defined operators still mutually commute 
What about the logical 

operators?

p probability of 
losing a qubit



Losses in the toric code - 2
Z̄

We can use the stabiliser group to redefine the logical 
operators that go through the loss qubits

After all the losses are detected, check if a logical 
operator can be defined on the remaining qubits

T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

How many losses can be tolerated?

The threshold for losses is given by 

the bond percolation critical value

no percolating path

for the square lattice 

no logical operator

pc = 1/2



Topological quantum error correction 
with color codes



Topological color codes: definition and properties

H.#Bombin#&#M.#A.#Mar/n0Delgado.#PRL#97#,#180501#(2006)#
H.#Bombin#&#M.#A.#Mar/n0Delgado.#PRL#98#,#160502#(2007)#

• ground state(s)       {S(i)
x |K⇤ = |K⇤, S(j)

z |K⇤ = |K⇤}|K� with                                                           for all X- and Z-stabilisers
Code space:

+1

-1

+1
-1

-1 +1

Sz

Sz

S
x

code 
space

Hilbert 
space

• all stabilisers commute: [Sx, Sz] = 0functions of statistical mechanical models with three-body
interactions and external magnetic fields. Section VI is de-
voted to conclusions.

II. TOPOLOGICAL COLOR CODES

A. Construction

Let us start by recalling the notion of a topological color
code in order to see what type of classical spin models we
obtain from them with appropriate projections onto factor-
ized quantum states and specific lattices.

A TCC, denoted by C, is a quantum stabilizer error cor-
rection code constructed with a certain class of two-
dimensional lattices called 2-colexes. The word !colex! is a
contraction that stands for color complex, where complex is
the mathematical terminology for a rather general lattice. A
2-colex, denoted by C2, is a 2D trivalent lattice which has
three-colorable faces and is embedded in a compact surface
of arbitrary topology such as a torus of genus g. A trivalent
lattice is one for which three edges meet at every vertex. The
property of being three-colorable means that the faces !or
plaquettes" of the lattice can be colored with these colors in
such a way that neighboring faces never have the same color.
We select as colors red !r", green !g", and blue !b". An ex-
ample of a 2-colex construction is shown in Fig. 1.

Edges can be colored according to the coloring of the
faces. In particular, we attach red color to the edges that
connect red faces, and so on and so forth for the blue and
green edges and faces. When studying higher dimensional
colexes, it turns out that the coloring of the edges is the key
property of D-colexes: all the information about a D-colex is
encoded in its 1-skeleton, i.e., the set of edges with its col-
oring #11$.

Given a 2-colex !C2", a TCC !C" is constructed by placing
one qubit at each vertex of the colored lattice. Let us denote
by V, E, and F the sets of vertices v, edges e, and faces f,
respectively, of the given 2-colex. Then, the generators of the
stabilizer group, denoted by S, are given by face operators
only. For each face f, they come into two types depending on
whether they are constructed with Pauli operators of X or Z
type,

Xf: = !
v!f

Xv,

Zf: = !
v!f

Zv, !1"

and there are no generators associated to lattice vertices. For
example, a hexagonal lattice is an instance of a 2-colex, see
Fig. 2. The operators for the face f displayed in the figure
take the form Xf=X1X2X3X4X5X6, Zf=Z1Z2Z3Z4Z5Z6.

We notice that for the purpose of this paper, we are deal-
ing only with lattices of trivial topology, such as the plane or
the sphere. In these cases, it suffices to require the lattice to
have the following properties: !i" Each vertex has coordina-
tion number 3; !ii" each face has even number of edges !ver-
tices". These conditions guarantee that the stabilizers Xf and
Zf pairwise commute and the TCC state is unique for the
trivial topology. Nevertheless, we have kept the general defi-
nition of a 2-colex in terms of three-colorability since we are
referring to previous works where nontrivial topologies are
considered.

A given state %!c&!C is left trivially invariant under the
action of the face operators,

Xf%!c& = %!c&, Zf%!c& = %!c&, ∀ f ! F . !2"

An erroneous state %!&e is one that violates conditions !2" for
some set of face operators of either type. As the generator
operators Xf ,Zf!S satisfy that they square to the identity
operator, !Xf"2=1= !Zf"2, ∀f!F, then an erroneous state is
detected by having a negative eigenvalue with respect to
some set of stabilizer generators: Xf%!&e=−%!&e and/or
Zf%!&e=−%!&e.

Interestingly enough, it is possible to construct a quantum
lattice Hamiltonian Hc such that its ground state is degener-
ate and corresponds to the TCC !C", while the erroneous
states are given by the spectrum of excitations of the Hamil-
tonian #9$. Such Hamiltonian is constructed out of the gen-
erators of the topological stabilizer group S,

Hc = − '
f!F

!Xf + Zf" . !3"

The ground state of this Hamiltonian exhibits what is called
a topological order #12$, as opposed to a more standard order
based on a spontaneous symmetry breaking mechanism. One
of the signatures of that topological order is precisely the

FIG. 1. !Color online" An example of 2-colex. Both edges and
faces are three-colorable and they are colored in such a way that
green edges connect green faces !light gray" and so on and so forth
for red !medium gray" and blue !dark gray" edges and faces.

f

γ

1 2

3
45

6

a b
c

d

e f

FIG. 2. !Color online" A hexagonal lattice is an instance of
2-colex. Numbered vertices belong to the face f. Vertices labeled
with letters correspond to the red string " displayed. " is an open
string, because it has an end point in a red face.
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complementary color
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5

The code distance of a triangular color code is equal to
its side length, namely the number of qubits along a side
of the defining triangle. To see this, notice that the logi-
cal X and Z operators for the logical qubit are transver-
sal because they are encoded Cli�ord gates. Thus, when
one multiplies a logical X or Z operator by all checks
of the same Pauli type, except the checks incident on a
specified side, one obtains an equivalent logical opera-
tor whose Pauli-weight is equal to the that side’s length.
The family of 4.8.8 triangular codes we study is generated
according to the pattern depicted in Fig. 3. Note that
the smallest triangular code (for any of three triangular
code families depicted in Fig. 2) is equivalent to the well-
known Steane [[7, 1, 3]] code [45]; triangular codes o�er a
way to generate an infinite code family from the Steane
code by a means other than concatenation [72].

(a) 4.8.8 code (b) 6.6.6 code (c) 4.6.12 code

FIG. 2: Three distance d = 11 triangular codes encoding
one qubit, drawn from the 4.8.8, 6.6.6, and 4.6.12 lattices
respectively. For general d, these codes have length n equal
to 1

2d
2 + d� 1

2 ,
3
4d

2 + 1
4 and 3

2d
2 � 3d+ 5

2 respectively. The
asymptotic ratio of d2 to n is highest for the 4.8.8 codes.

(a) d = 3 (b) d = 5 (c) d = 7

FIG. 3: 4.8.8 color codes of sizes 3, 5, and 7.

Although the colors of the faces in a color code have
no intrinsic meaning for the algebraic structure of the
code other than constraining the class of graphs on which
color codes are defined, it is useful to use the colors as
placeholders in discussions from time to time. To that
end, we will refer to the colors of the faces as “red,”
“green,” and “blue.” We will further assign a color to
each edge so that an edge’s color is complementary to
the colors of the two faces upon which it is incident. We
will call a set of vertices lying on a collection of edges of
the same color connected by faces also having that color a
“colored chain;” an example of a colored chain is depicted
in Fig. 4. We will assign colors to each side of a triangular
code so that the color of the side is complementary to the
colors of the faces terminating on that side; for example,
in Figs. 2 and 3, the left sides of the triangles are blue,
the right sides are green, and the bottoms are red. These

side colors are indicated explicitly in Fig. 4.

FIG. 4: A green-colored chain in a triangular code. The chain
connects a green-colored side of the 4.8.8 triangular code to a
green octagonal face. If qubits are flipped (are in error) along
this chain, it will only be detected by this terminal octagonal
check operator.

B. Syndrome extraction

To record each error-syndrome bit, the relevant data
qubits interact with one or more ancilla qubits and the
ancilla qubits are then measured. Shor [1], Steane [46],
and Knill [10] have devised elaborate methods for ex-
tracting an error syndrome to minimize the impact of
ancilla-qubit errors spreading to the data qubits. For
topological codes, however, such elaborate schemes are
not necessary; a single ancilla qubit per syndrome bit
su⇥ces. This is because, by choosing an appropriate or-
der in which data qubits interact with the ancilla qubit,
the locality properties of the code will limit propagation
of errors to a constant-distance spread. Using more elab-
orate ancillas is possible, and in general there is a trade-
o� in the resulting accuracy threshold one must examine
between the reduction in error propagation complexity
o�ered versus the additional verification procedures re-
quired. Here, we examine the simplest case, with one
ancilla qubit per syndrome bit. By placing two syn-
drome qubits at the center of each face f (one for the
Xf measurement and one for the Zf measurement), the
syndrome extraction process can be made spatially local,
in keeping with the spirit of the semiregular 2D geometry
constraints we are imposing.
Because color codes are Calderbank-Shor-Steane

(CSS) codes [47, 48], syndrome bits can be separated
into those which identify Z errors (phase flips) and those
which identify X errors (bit flips). These correspond to
the bits coming from measuring the Xf and Zf opera-
tors respectively. The circuit for measuring an operator
Xf is identical to the one for measuring the operator Zf ,
except with the basis conjugated by a Hadamard gate;
examples of bit-flip and phase-flip extraction circuits for
the square faces in the 4.8.8 color code are depicted in
Fig. 5.
In a full round of syndrome extraction, bothXf and Zf

must be measured for each face f . One way of schedul-

4.8.8 code

5

The code distance of a triangular color code is equal to
its side length, namely the number of qubits along a side
of the defining triangle. To see this, notice that the logi-
cal X and Z operators for the logical qubit are transver-
sal because they are encoded Cli�ord gates. Thus, when
one multiplies a logical X or Z operator by all checks
of the same Pauli type, except the checks incident on a
specified side, one obtains an equivalent logical opera-
tor whose Pauli-weight is equal to the that side’s length.
The family of 4.8.8 triangular codes we study is generated
according to the pattern depicted in Fig. 3. Note that
the smallest triangular code (for any of three triangular
code families depicted in Fig. 2) is equivalent to the well-
known Steane [[7, 1, 3]] code [45]; triangular codes o�er a
way to generate an infinite code family from the Steane
code by a means other than concatenation [72].

(a) 4.8.8 code (b) 6.6.6 code (c) 4.6.12 code

FIG. 2: Three distance d = 11 triangular codes encoding
one qubit, drawn from the 4.8.8, 6.6.6, and 4.6.12 lattices
respectively. For general d, these codes have length n equal
to 1

2d
2 + d� 1

2 ,
3
4d

2 + 1
4 and 3

2d
2 � 3d+ 5

2 respectively. The
asymptotic ratio of d2 to n is highest for the 4.8.8 codes.

(a) d = 3 (b) d = 5 (c) d = 7

FIG. 3: 4.8.8 color codes of sizes 3, 5, and 7.

Although the colors of the faces in a color code have
no intrinsic meaning for the algebraic structure of the
code other than constraining the class of graphs on which
color codes are defined, it is useful to use the colors as
placeholders in discussions from time to time. To that
end, we will refer to the colors of the faces as “red,”
“green,” and “blue.” We will further assign a color to
each edge so that an edge’s color is complementary to
the colors of the two faces upon which it is incident. We
will call a set of vertices lying on a collection of edges of
the same color connected by faces also having that color a
“colored chain;” an example of a colored chain is depicted
in Fig. 4. We will assign colors to each side of a triangular
code so that the color of the side is complementary to the
colors of the faces terminating on that side; for example,
in Figs. 2 and 3, the left sides of the triangles are blue,
the right sides are green, and the bottoms are red. These

side colors are indicated explicitly in Fig. 4.

FIG. 4: A green-colored chain in a triangular code. The chain
connects a green-colored side of the 4.8.8 triangular code to a
green octagonal face. If qubits are flipped (are in error) along
this chain, it will only be detected by this terminal octagonal
check operator.

B. Syndrome extraction

To record each error-syndrome bit, the relevant data
qubits interact with one or more ancilla qubits and the
ancilla qubits are then measured. Shor [1], Steane [46],
and Knill [10] have devised elaborate methods for ex-
tracting an error syndrome to minimize the impact of
ancilla-qubit errors spreading to the data qubits. For
topological codes, however, such elaborate schemes are
not necessary; a single ancilla qubit per syndrome bit
su⇥ces. This is because, by choosing an appropriate or-
der in which data qubits interact with the ancilla qubit,
the locality properties of the code will limit propagation
of errors to a constant-distance spread. Using more elab-
orate ancillas is possible, and in general there is a trade-
o� in the resulting accuracy threshold one must examine
between the reduction in error propagation complexity
o�ered versus the additional verification procedures re-
quired. Here, we examine the simplest case, with one
ancilla qubit per syndrome bit. By placing two syn-
drome qubits at the center of each face f (one for the
Xf measurement and one for the Zf measurement), the
syndrome extraction process can be made spatially local,
in keeping with the spirit of the semiregular 2D geometry
constraints we are imposing.
Because color codes are Calderbank-Shor-Steane

(CSS) codes [47, 48], syndrome bits can be separated
into those which identify Z errors (phase flips) and those
which identify X errors (bit flips). These correspond to
the bits coming from measuring the Xf and Zf opera-
tors respectively. The circuit for measuring an operator
Xf is identical to the one for measuring the operator Zf ,
except with the basis conjugated by a Hadamard gate;
examples of bit-flip and phase-flip extraction circuits for
the square faces in the 4.8.8 color code are depicted in
Fig. 5.
In a full round of syndrome extraction, bothXf and Zf

must be measured for each face f . One way of schedul-

4.6.12 code

5

The code distance of a triangular color code is equal to
its side length, namely the number of qubits along a side
of the defining triangle. To see this, notice that the logi-
cal X and Z operators for the logical qubit are transver-
sal because they are encoded Cli�ord gates. Thus, when
one multiplies a logical X or Z operator by all checks
of the same Pauli type, except the checks incident on a
specified side, one obtains an equivalent logical opera-
tor whose Pauli-weight is equal to the that side’s length.
The family of 4.8.8 triangular codes we study is generated
according to the pattern depicted in Fig. 3. Note that
the smallest triangular code (for any of three triangular
code families depicted in Fig. 2) is equivalent to the well-
known Steane [[7, 1, 3]] code [45]; triangular codes o�er a
way to generate an infinite code family from the Steane
code by a means other than concatenation [72].

(a) 4.8.8 code (b) 6.6.6 code (c) 4.6.12 code

FIG. 2: Three distance d = 11 triangular codes encoding
one qubit, drawn from the 4.8.8, 6.6.6, and 4.6.12 lattices
respectively. For general d, these codes have length n equal
to 1

2d
2 + d� 1

2 ,
3
4d

2 + 1
4 and 3

2d
2 � 3d+ 5

2 respectively. The
asymptotic ratio of d2 to n is highest for the 4.8.8 codes.

(a) d = 3 (b) d = 5 (c) d = 7

FIG. 3: 4.8.8 color codes of sizes 3, 5, and 7.

Although the colors of the faces in a color code have
no intrinsic meaning for the algebraic structure of the
code other than constraining the class of graphs on which
color codes are defined, it is useful to use the colors as
placeholders in discussions from time to time. To that
end, we will refer to the colors of the faces as “red,”
“green,” and “blue.” We will further assign a color to
each edge so that an edge’s color is complementary to
the colors of the two faces upon which it is incident. We
will call a set of vertices lying on a collection of edges of
the same color connected by faces also having that color a
“colored chain;” an example of a colored chain is depicted
in Fig. 4. We will assign colors to each side of a triangular
code so that the color of the side is complementary to the
colors of the faces terminating on that side; for example,
in Figs. 2 and 3, the left sides of the triangles are blue,
the right sides are green, and the bottoms are red. These

side colors are indicated explicitly in Fig. 4.

FIG. 4: A green-colored chain in a triangular code. The chain
connects a green-colored side of the 4.8.8 triangular code to a
green octagonal face. If qubits are flipped (are in error) along
this chain, it will only be detected by this terminal octagonal
check operator.

B. Syndrome extraction

To record each error-syndrome bit, the relevant data
qubits interact with one or more ancilla qubits and the
ancilla qubits are then measured. Shor [1], Steane [46],
and Knill [10] have devised elaborate methods for ex-
tracting an error syndrome to minimize the impact of
ancilla-qubit errors spreading to the data qubits. For
topological codes, however, such elaborate schemes are
not necessary; a single ancilla qubit per syndrome bit
su⇥ces. This is because, by choosing an appropriate or-
der in which data qubits interact with the ancilla qubit,
the locality properties of the code will limit propagation
of errors to a constant-distance spread. Using more elab-
orate ancillas is possible, and in general there is a trade-
o� in the resulting accuracy threshold one must examine
between the reduction in error propagation complexity
o�ered versus the additional verification procedures re-
quired. Here, we examine the simplest case, with one
ancilla qubit per syndrome bit. By placing two syn-
drome qubits at the center of each face f (one for the
Xf measurement and one for the Zf measurement), the
syndrome extraction process can be made spatially local,
in keeping with the spirit of the semiregular 2D geometry
constraints we are imposing.
Because color codes are Calderbank-Shor-Steane

(CSS) codes [47, 48], syndrome bits can be separated
into those which identify Z errors (phase flips) and those
which identify X errors (bit flips). These correspond to
the bits coming from measuring the Xf and Zf opera-
tors respectively. The circuit for measuring an operator
Xf is identical to the one for measuring the operator Zf ,
except with the basis conjugated by a Hadamard gate;
examples of bit-flip and phase-flip extraction circuits for
the square faces in the 4.8.8 color code are depicted in
Fig. 5.
In a full round of syndrome extraction, bothXf and Zf

must be measured for each face f . One way of schedul-

6.6.6 code

(hexagonal)

Color codes on 2D regular lattices



X̄1, Z̄2

Color code on a torus (periodic boundary conditions) 

Remember:  
qubits on sites,  
only X- and  
Z-plaquette  
stabilisers

Z̄1, X̄2

X̄3, Z̄4

Z̄3, X̄4

doubling the number of logical qubits (compared to Kitaev)
Z̄3, X̄4

X̄3, Z̄4

Z̄2, X̄1

Z̄1, X̄2

Color code and its logical operators

string operator of third color: linearly dependent

Sz = ZZZZZZ
S
x

= XXXXXX

Z̄
1

=
Y

j2loop 1

�z
j

X̄
2

=
Y

j2loop 1

�x

j



Z1Z3

Z1, X2

Z3, X4

third (blue) string is not linearly independent,  
but just a tensor product of logical operators

Color code and its logical operators

Branching
new!



Error correction:  

derive from measured error 
syndrome the class of most 
probable physical error scenario 

derive (efficiently) a good 
recovery operation

Quantum error correction in color codes

error string
error string net

more complex error behavior than in 
toric code

Failure: logical error occurs 
if Errors + Correction include 
a non-contractible path

Z̄

Z̄



Losses in color codes



Losses in color codes
Cure all the losses and keep 

the three-colorability
Challenge!

A
B

Multiply A and B plaquettes?

loss

A
B

What colour AB?

🤔



Losses in color codes
Cure all the losses and  

keep the three-colorability
Challenge!

Choose a neighbouring twin qubit

loss

twin

A
C

B
D

A

B

CD

Pick a twin qubit randomly

A
C

B
D

Remove 5 links
Add 2 new links

Redefine the plaquettes  
Merged super-plaquette CD

Reduced plaquettes A,B

Solution!

Why does it work?
The Euler characteristic is still the same

� = F + V � E
�1f � 2v � (�5 + 2)e = 0



Losses in color codes
How robust is the code against losses? percolation problem
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Outlook & Conclusions
What's left?

Take into account the possibility for an operator to 
branch into two operators of complementary colors 

Implement a strategy for choosing the twin qubits

What we’ve seen:

Error and losses can affect quantum computers but 
can be cured with success

Quantum error correcting codes can be realised in 
condensed matter topological systems

Look at an experimental realisation of the color code 
like the one in Nigg, Muller et al., Science 234, (2014)

…
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Yes, that’s Wales!





Color codes in trapped ions
1 

4 

First experiment in 

Nigg, Muller et al., Science 234, (2014)

System of 7 ions

3+3 stabiliser generators

1 logical qubit

Initialize the system in the 
code space

Mimic up to two errors

Correct the error(s)
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Fig. 2. E�ect of arbitrary single-qubit
errors on the encoded logical qubit. (A)
The initial logical state |0�L, prior to the oc-
currence of single-qubit errors, is reflected (i)

by the error syndrome, in which all six S(i)
x and

S(i)
z stabilizers are positive-valued, and (ii) by

a positive (vanishing) expectation value of the
logical operator ZL (XL). (B) A bit flip er-
ror (red wiggled arrow) on qubit 2 (marked
in black) a�ects the blue and red plaquettes
(visualized by grey-shaded circles) and mani-

fests itself by negative S(1)
z and S(2)

z expecta-
tion values and a ZL sign flip. (C) A Z5 phase
flip error only a�ects the blue plaquette and
results in a sign flip of S(2)

x . (D) A Y3 error
– equivalent to a combined X3 and Z3 error –
a�ects all three plaquettes and induces a sign
change in all six stabilizers and ZL. Double-
error events, such as a Z5 phase flip (Fig. 2C),
followed by a Z2 (E) or a Z3 error (F) result
in an incorrect assignment of physical errors,
as the detected stabilizer patterns are indistin-
guishable from single-error syndromes – here,
the ones induced by a Z1 (Fig. 2E) or a Z4

(Fig. 2F) error [26]. In the correction pro-
cess, this eventually results in a logical error
– here a ZL phase flip error. Stabilizer viola-
tions can under subsequent errors hop (white
non-wiggled arrow) to an adjacent plaquette,
as in Fig. 2E, where the violation disappears
(open grey circle) from the blue and reappears
on the red plaquette. Alternatively (Fig. 2F),
they can disappear (from the blue plaquette),
split up (white branched arrow) and reappear
on two neighboring plaquettes (red and green).
This rich dynamical behavior of stabilizer vio-
lations is a characteristic signature of the topo-
logical order in color codes [16, 26].

The entire sequence for encoding involves three col-
lective entangling gates and 108 local single-qubit rota-
tions [26]. The quantum state fidelity of the system in
state |0⇤L is exactly determined from measurements of
128 Pauli operators, and yields 32.7(8)%. This value sur-
passes the threshold value of 25% (by more than 9 stan-
dard deviations), above which genuine six-qubit entangle-
ment is witnessed, thereby clearly indicating the mutual
entanglement of all three plaquettes of the code [26].

The quality of the created logical state |0⇤L, as shown
in Fig. 2A, is governed by two factors: (a) the overlap
of the created state with the code space; and (b) the ac-
cordance of the experimental state within the code space
with the target encoded state, which is related to the
expectation values of the logical operator ZL. Residual
populations outside the code-space are indicated by devi-
ations of the six stabilizer expectation values, in our case
on average 0.48(2), from the ideal value of +1. A more
detailed analysis shows that within the code-space, the fi-
delity between experimental and target state is as high as

95(2)%, whereas the expectation value of ⇥ZL⇤ = 0.38(3)
and the overall fidelity between the experimentally real-
ized and the ideal state |0⇤L are currently limited by the
overlap with the code-space of 34(1)% [26].

It is a hallmark feature of topologically ordered states
that these cannot be characterized by local order param-
eters, but only reveal their topological quantum order
in global system properties [8, 26]. We experimentally
confirm this intriguing characteristics for the topologi-
cally encoded 7-qubit system in state |1⇤L by measuring
all subsets of reduced two-qubit density matrices, which
yield an average Uhlmann-fidelity of 98.3(2)% with the
two-qubit completely-mixed state, clearly showing the
absence of any single- and two-qubit correlations. On
the contrary, we observe the presence of global quantum
order, as signaled for the system size at hand by non-
vanishing three-qubit correlations ⇥Z1Z4Z7⇤ = �0.46(6)
[26].

We next study the error correction properties of the
encoded qubit. Single-qubit errors lead the system out
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Fig. 2. E�ect of arbitrary single-qubit
errors on the encoded logical qubit. (A)
The initial logical state |0�L, prior to the oc-
currence of single-qubit errors, is reflected (i)

by the error syndrome, in which all six S(i)
x and

S(i)
z stabilizers are positive-valued, and (ii) by

a positive (vanishing) expectation value of the
logical operator ZL (XL). (B) A bit flip er-
ror (red wiggled arrow) on qubit 2 (marked
in black) a�ects the blue and red plaquettes
(visualized by grey-shaded circles) and mani-

fests itself by negative S(1)
z and S(2)

z expecta-
tion values and a ZL sign flip. (C) A Z5 phase
flip error only a�ects the blue plaquette and
results in a sign flip of S(2)

x . (D) A Y3 error
– equivalent to a combined X3 and Z3 error –
a�ects all three plaquettes and induces a sign
change in all six stabilizers and ZL. Double-
error events, such as a Z5 phase flip (Fig. 2C),
followed by a Z2 (E) or a Z3 error (F) result
in an incorrect assignment of physical errors,
as the detected stabilizer patterns are indistin-
guishable from single-error syndromes – here,
the ones induced by a Z1 (Fig. 2E) or a Z4

(Fig. 2F) error [26]. In the correction pro-
cess, this eventually results in a logical error
– here a ZL phase flip error. Stabilizer viola-
tions can under subsequent errors hop (white
non-wiggled arrow) to an adjacent plaquette,
as in Fig. 2E, where the violation disappears
(open grey circle) from the blue and reappears
on the red plaquette. Alternatively (Fig. 2F),
they can disappear (from the blue plaquette),
split up (white branched arrow) and reappear
on two neighboring plaquettes (red and green).
This rich dynamical behavior of stabilizer vio-
lations is a characteristic signature of the topo-
logical order in color codes [16, 26].

The entire sequence for encoding involves three col-
lective entangling gates and 108 local single-qubit rota-
tions [26]. The quantum state fidelity of the system in
state |0⇤L is exactly determined from measurements of
128 Pauli operators, and yields 32.7(8)%. This value sur-
passes the threshold value of 25% (by more than 9 stan-
dard deviations), above which genuine six-qubit entangle-
ment is witnessed, thereby clearly indicating the mutual
entanglement of all three plaquettes of the code [26].

The quality of the created logical state |0⇤L, as shown
in Fig. 2A, is governed by two factors: (a) the overlap
of the created state with the code space; and (b) the ac-
cordance of the experimental state within the code space
with the target encoded state, which is related to the
expectation values of the logical operator ZL. Residual
populations outside the code-space are indicated by devi-
ations of the six stabilizer expectation values, in our case
on average 0.48(2), from the ideal value of +1. A more
detailed analysis shows that within the code-space, the fi-
delity between experimental and target state is as high as

95(2)%, whereas the expectation value of ⇥ZL⇤ = 0.38(3)
and the overall fidelity between the experimentally real-
ized and the ideal state |0⇤L are currently limited by the
overlap with the code-space of 34(1)% [26].

It is a hallmark feature of topologically ordered states
that these cannot be characterized by local order param-
eters, but only reveal their topological quantum order
in global system properties [8, 26]. We experimentally
confirm this intriguing characteristics for the topologi-
cally encoded 7-qubit system in state |1⇤L by measuring
all subsets of reduced two-qubit density matrices, which
yield an average Uhlmann-fidelity of 98.3(2)% with the
two-qubit completely-mixed state, clearly showing the
absence of any single- and two-qubit correlations. On
the contrary, we observe the presence of global quantum
order, as signaled for the system size at hand by non-
vanishing three-qubit correlations ⇥Z1Z4Z7⇤ = �0.46(6)
[26].

We next study the error correction properties of the
encoded qubit. Single-qubit errors lead the system out
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Fig. 2. E�ect of arbitrary single-qubit
errors on the encoded logical qubit. (A)
The initial logical state |0�L, prior to the oc-
currence of single-qubit errors, is reflected (i)

by the error syndrome, in which all six S(i)
x and

S(i)
z stabilizers are positive-valued, and (ii) by

a positive (vanishing) expectation value of the
logical operator ZL (XL). (B) A bit flip er-
ror (red wiggled arrow) on qubit 2 (marked
in black) a�ects the blue and red plaquettes
(visualized by grey-shaded circles) and mani-

fests itself by negative S(1)
z and S(2)

z expecta-
tion values and a ZL sign flip. (C) A Z5 phase
flip error only a�ects the blue plaquette and
results in a sign flip of S(2)

x . (D) A Y3 error
– equivalent to a combined X3 and Z3 error –
a�ects all three plaquettes and induces a sign
change in all six stabilizers and ZL. Double-
error events, such as a Z5 phase flip (Fig. 2C),
followed by a Z2 (E) or a Z3 error (F) result
in an incorrect assignment of physical errors,
as the detected stabilizer patterns are indistin-
guishable from single-error syndromes – here,
the ones induced by a Z1 (Fig. 2E) or a Z4

(Fig. 2F) error [26]. In the correction pro-
cess, this eventually results in a logical error
– here a ZL phase flip error. Stabilizer viola-
tions can under subsequent errors hop (white
non-wiggled arrow) to an adjacent plaquette,
as in Fig. 2E, where the violation disappears
(open grey circle) from the blue and reappears
on the red plaquette. Alternatively (Fig. 2F),
they can disappear (from the blue plaquette),
split up (white branched arrow) and reappear
on two neighboring plaquettes (red and green).
This rich dynamical behavior of stabilizer vio-
lations is a characteristic signature of the topo-
logical order in color codes [16, 26].

The entire sequence for encoding involves three col-
lective entangling gates and 108 local single-qubit rota-
tions [26]. The quantum state fidelity of the system in
state |0⇤L is exactly determined from measurements of
128 Pauli operators, and yields 32.7(8)%. This value sur-
passes the threshold value of 25% (by more than 9 stan-
dard deviations), above which genuine six-qubit entangle-
ment is witnessed, thereby clearly indicating the mutual
entanglement of all three plaquettes of the code [26].

The quality of the created logical state |0⇤L, as shown
in Fig. 2A, is governed by two factors: (a) the overlap
of the created state with the code space; and (b) the ac-
cordance of the experimental state within the code space
with the target encoded state, which is related to the
expectation values of the logical operator ZL. Residual
populations outside the code-space are indicated by devi-
ations of the six stabilizer expectation values, in our case
on average 0.48(2), from the ideal value of +1. A more
detailed analysis shows that within the code-space, the fi-
delity between experimental and target state is as high as

95(2)%, whereas the expectation value of ⇥ZL⇤ = 0.38(3)
and the overall fidelity between the experimentally real-
ized and the ideal state |0⇤L are currently limited by the
overlap with the code-space of 34(1)% [26].

It is a hallmark feature of topologically ordered states
that these cannot be characterized by local order param-
eters, but only reveal their topological quantum order
in global system properties [8, 26]. We experimentally
confirm this intriguing characteristics for the topologi-
cally encoded 7-qubit system in state |1⇤L by measuring
all subsets of reduced two-qubit density matrices, which
yield an average Uhlmann-fidelity of 98.3(2)% with the
two-qubit completely-mixed state, clearly showing the
absence of any single- and two-qubit correlations. On
the contrary, we observe the presence of global quantum
order, as signaled for the system size at hand by non-
vanishing three-qubit correlations ⇥Z1Z4Z7⇤ = �0.46(6)
[26].

We next study the error correction properties of the
encoded qubit. Single-qubit errors lead the system out
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Error threshold in the toric code

How many errors we can effectively correct in a toric code?

(L - 1)/2 if they lie on straight lines!  

If they have random positions

Correcting  for errors Find a cycle such that C + E = trivial cycle

2

1

E

CPhase transition in a 
Random Bond Ising Model

random Ferro/Antiferro 
coupling related to E + C

HRBIM = �J
X

hi,ji

⌘ij�i�j

Ordered phase Disordered phase
Correctable Non-correctable

phase transition p=10%
error probability

RB Ising
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Ground state degeneracy of the toric code - 2
What if the system has a different topology?

Physical qubits occupy the edges E

X-stabilisers on vertices V

Z-stabilisers on faces F

As before
Y

⇤
S
z

=
Y

+

S
x

= 1 One X and one Z stabiliser generator

not independent 

In a torus with genus g 2g   logical qubits� = 2� 2g

There will be

X-stabilisersV � 1
F � 1 Z-stabilisers

E physical qubits
E � (F � 1)� (V � 1) = 2� (F + V � E) = E � 2�

Euler characteristic

= 2� �

Degrees of freedom left =
= E � (F � 1)� (V � 1)


