Qubit Losses in Topological Color Codes

Davide Vodola
Department of Physics, College of Science

Swansea University

Prifysgol Abertawe Swansea University

Bologna, 24-25/1 1/2017
Physics and Geometry
Remembering Giuseppe Morandi

Outline of the talk

1 - Introduction to standard quantum error correction (QEC)

2 - Introduction to topological codes

- General properties
- Topological error correction

3 - Losses in topological codes

- Toric code
- New results for the color code

A quantum computer is ...

Central ingredients:

- quantum superposition principle
- quantum mechanical entanglement

Basic unit in classical information: the bit

Basic unit in quantum information: two-level system = quantum bit (qubit)

$$
\begin{array}{cc}
-|1\rangle \oint & |\psi\rangle=c_{0}|0\rangle+c_{1}|1\rangle \\
-|0\rangle \oint & \text { with } c_{0}, c_{1} \in \mathbb{C} \\
& p_{0}=\left|c_{0}\right|^{2}, p_{1}=\left|c_{1}\right|^{2}
\end{array}
$$

Why should we build a large-scale and fault-tolerant quantum computer?

prime factoring (Shor's alg.)

data base search (Grover‘s alg.)

universal quantum simulator

Which physical platform?

From 1D to 2D Ion Traps

Blatt, Schmidt-Kaler, Schätz, Wineland... and many more groups

Cold Rydberg atoms

first 2-qubit Rydberg gates: Saffman, Browaeys \& Grangier groups (2009)
super-conducting qubits

Chow, Gambetta et al., BBN,
G. Kirchmair group (Innsbruck), ...

Photons
$\triangle N V$ centres
Δ Quantum Dots

Operations on qubits

Single qubit gates

$$
|0\rangle-x-|1\rangle
$$

Two-qubit gates

$$
|0\rangle-z-\quad|0\rangle
$$

$$
|1\rangle-z--|1\rangle
$$

$$
|0\rangle-H-|0\rangle+|1\rangle
$$

$$
|1\rangle-H-|0\rangle-|1\rangle
$$

An arbitrary single qubit gate and CNOT form an universal set of quantum gates

Main obstacle towards quantum computers: decoherence \& errors

- Coupling to the environment causes decoherence:

example: magnetic field fluctuations

error channels

$$
\text { dephasing } \downarrow \square \begin{gathered}
\alpha_{0} e^{i \phi_{0}}|0\rangle \\
+\alpha_{1} e^{i \phi_{1}}|1\rangle
\end{gathered}
$$

$$
\begin{array}{lll}
|0\rangle & -|1\rangle & \\
|1\rangle & -x-|0\rangle & \text { X-error (bit flip) }
\end{array}
$$

$$
\rho=\left|\alpha_{0}\right|^{2}|0\rangle\langle 0|+\left|\alpha_{1}\right|^{2}|1\rangle\langle 1|
$$

classical mixture, phase information lost

- similarly: Z-error (phase flip) $\quad|0\rangle \rightarrow|0\rangle$

$$
|1\rangle \rightarrow-|1\rangle
$$

- other channels: amplitude damping, qubit loss, ...

$$
\rho \mapsto \varepsilon(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}
$$

Need for error correction: naive approach ... fails

Δ protection by redundancy
 ...011010...

...011010...

...010010... ...011010...
recover: ...011010...
Δ not possible in this straightforward way: no-cloning theorem for quantum states

Quantum error correcting codes

- 3-qubit bit-flip code
P. Shor 1995
- use two ancilla qubits
- code corrects 1 bit-flip error
- Encoding
- Detection of the error
- Correction
- Decoding

Encoding

$$
\begin{aligned}
|0\rangle \rightarrow\left|0_{L}\right\rangle & =|000\rangle \\
|1\rangle \rightarrow\left|1_{L}\right\rangle & =|111\rangle
\end{aligned}
$$

Quantum Error Correcting (QEC) codes: Stabiliser codes

Pauli Group \mathcal{P}
D. Gottesman (1996)
Δ Product of single Pauli on n qubits
Stabilizer group \mathcal{S}
Δ Operators in \mathcal{P} that mutually commute (Abelian subgroup of \mathcal{P})
\checkmark Defines the code space \mathcal{C} as the common +1 eigenspace of all its elements

The code space stores the logical state(s)

An error brings the logical state out of \mathcal{C}

Quantum Error Correcting (QEC) codes: Stabiliser codes

- 3-qubit bit-flip code

$$
\begin{aligned}
|0\rangle \rightarrow\left|0_{L}\right\rangle & =|000\rangle \\
|1\rangle \rightarrow\left|1_{L}\right\rangle & =|111\rangle
\end{aligned}
$$

is an example of a stabiliser code that corrects only one error.

$$
\alpha|0\rangle+\beta|1\rangle \rightarrow \alpha|000\rangle+\beta|111\rangle
$$

code space is fixed by a set of (commuting) $Z_{1} Z_{2}|\psi\rangle=+|\psi\rangle$ stabiliser generators $\left\{Z_{1} Z_{2}, Z_{2} Z_{3}\right\} \quad Z_{2} Z_{3}|\psi\rangle=+|\psi\rangle$

$$
\text { logical operators } \begin{aligned}
& \bar{Z}=Z_{1} Z_{2} Z_{3} \\
& \bar{X}=X_{1} X_{2} X_{3}
\end{aligned}
$$

$$
\begin{aligned}
Z_{1} Z_{2}\left|\phi_{\mathrm{err}}\right\rangle & =-\left|\phi_{\mathrm{err}}\right\rangle \\
Z_{2} Z_{3}\left|\phi_{\mathrm{err}}\right\rangle & =+\left|\phi_{\mathrm{err}}\right\rangle
\end{aligned}
$$

$$
X_{1} \text { error }\left(\begin{array}{c}
\alpha|100\rangle+\beta|011\rangle \\
\alpha|000\rangle+\beta|111\rangle
\end{array}\right.
$$

Kitaev's toric code

A. Yu. Kitaev, Annals of Physics, 303 (2003)

- all terms commute: $\left[S_{x}, S_{z}\right]=0$ for all stabilisers \Rightarrow Hamiltonian exactly solvable.
-The ground state manifold coincides with the code space

Ground state degeneracy of the toric code

$$
H=-J \sum_{\square} S_{z}-J \sum_{+} S_{x}
$$

- ground state $|K\rangle$ with $\left\{S_{x}^{(i)}|K\rangle=|K\rangle, S_{z}^{(j)}|K\rangle=|K\rangle\right\}$ for all X- and Z-stabilisers
- ground state degeneracy, which depends on the
- boundary conditions
- and the topology of the surface on which the lattice lives
- on a torus: periodic boundary conditions:
N^{2} plaquettes, $2 N^{2}$ physical qubits

$N^{2}-1$ indep. X-stabilizers, $N^{2}-1$ Z-stabilizers, since $\prod S_{z}=\prod S_{x}=\mathbf{1}$

$$
\text { - } 2 N^{2}-2\left(N^{2}-1\right)=2 \text { conditions missing: }
$$

- encode two logical qubits in the ground state manifold

For a different manifold

$$
\chi=2-2 g
$$

$2 g$ logical qubits

Logical operators

- must commute with all stabilisers
- must be independent
- must respect the usual AC relations

The stabilisers always excite an even number of qubits

Logical qubits

Logical operators are strings that percolate through the lattice and act non trivially in the code space

Errors in the toric code

- errors $=$ gapped excitations $=$ local stabilizer violations

- Z-type errors are detected by X-type stabiliser
- X-type errors are detected by Z-type stabiliser
- Two excitations have a non trivial statistics:

They are Abelian anyons
The state picks up a phase - 1 if
1 is moved around

The goal of quantum error correction is to find the chain of errors (or one equivalent) that has produced the excitations detected

Errors in the toric code - 2

Two excitations detected

possible chain of errors $E=\sigma_{a}^{z} \sigma_{b}^{z}$ correct it by applying $C=\sigma_{a}^{z} \sigma_{b}^{z}$

$$
C E=\mathbf{1}
$$

What if the chain of errors was

$$
E=\sigma_{c}^{z} \sigma_{d}^{z}
$$

Applying $C=\sigma_{a}^{z} \sigma_{b}^{z} \quad$ to the error

$$
\begin{array}{r}
C E=\sigma_{a}^{z} \sigma_{b}^{z} \sigma_{c}^{z} \sigma_{d}^{z} \\
\quad \mathrm{Z} \text { stabiliser }
\end{array}
$$

Errors in the toric code - 3

Two excitations detected
Correction $C=\sigma_{1}^{z} \sigma_{2}^{z} \sigma_{3}^{z}$
The error was $E=\sigma_{0}^{z} \sigma_{4}^{z}$

Error + Correction $=$ Logical Z operator
Correction failed

A toric code $L \times L$ can correct $(L-1) / 2$ errors successfully

Losses in quantum codes

A loss can be

- a qubit that flies away from the trap
- a qubit that leaks out of the computational basis

Detectable, but inaccessible

Losses and leakage can damage the performance of (topological) QEC codes

Challenges:

- Find a protocol to deal with qubit losses
- Understand robustness of the code used

The smallest system that is capable to correct for one loss is a

4-qubit code

Losses in the toric code

Use the freedom in defining the plaquettes/vertices and the logical operators

$p \begin{aligned} & \text { probability of } \\ & \text { losing a qubit }\end{aligned}$

What about the logical operators?

The loss affects

- two plaquettes generators
- two vertices generators

original vertices
reduced vertices

The new defined operators still mutually commute
T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

Losses in the toric code - 2

T. Stace, S. Barrett, A. Doherty, PRL 102, 200501 (2009)

We can use the stabiliser group to redefine the logical operators that go through the loss qubits

After all the losses are detected, check if a logical operator can be defined on the remaining qubits

How many losses can be tolerated?

no percolating path \longrightarrow no logical operator

The threshold for losses is given by the bond percolation critical value
for the square lattice $\quad p_{c}=1 / 2$

Topological color codes: definition and properties

Δ Defined on a trivalent 3-colorable lattice:
the neighbours of each plaquette are of a complementary color

- Qubits on vertices of the lattice
- X, Z types of plaquette operators

- all stabilisers commute: $\left[S_{x}, S_{z}\right]=0$

Code space:

- ground state(s) $|K\rangle$ with $\left\{S_{x}^{(i)}|K\rangle=|K\rangle, S_{z}^{(j)}|K\rangle=|K\rangle\right\}$ for all X- and Z-stabilisers
H. Bombin \& M. A. Martin-Delgado. PRL 97 , 180501 (2006)
H. Bombin \& M. A. Martin-Delgado. PRL 98 , 160502 (2007)

Color codes on 20 regular lattices

4.8.8 code

Color code and its logical operators

Δ Color code on a torus (periodic boundary conditions)
Δ doubling the number of logical qubits (compared to Kitaev)
Δ string operator of third color: linearly dependent

Remember: qubits on sites, only X- and Z-plaquette stabilisers

$$
\begin{aligned}
& S_{z}=Z Z Z Z Z Z \\
& S_{x}=X X X X X X
\end{aligned}
$$

Color code and its logical operators

Δ third (blue) string is not linearly independent, but just a tensor product of logical operators

\rightarrow Branching

Quantum error correction in color codes

- more complex error behavior than in toric code

- Error correction:
derive from measured error syndrome the class of most probable physical error scenario
derive (efficiently) a good recovery operation

Failure: logical error occurs if Errors + Correction include a non-contractible path

Losses in color codes

Cure all the losses and keep the three-colorability

- Multiply A and B plaquettes?

What colour AB?

Losses in color codes

Pick a twin qubit randomly

Remove 5 links

Add 2 new links
Redefine the plaquettes Merged super-plaquette CD Reduced plaquettes A,B

Why does it work?

- The Euler characteristic is still the same

$$
-1 f-2 v-(-5+2) e=0
$$

$$
\chi=F+V-E
$$

How robust is the code against losses?
\longrightarrow percolation problem

4.8.8 lattice

Outlook \& Conclusions

What's left?

Take into account the possibility for an operator to branch into two operators of complementary colors
Δ Implement a strategy for choosing the twin qubits
Look at an experimental realisation of the color code like the one in Nigg, Muller et al., Science 234, (2014)

What we've seen:

Error and losses can affect quantum computers but can be cured with success
\checkmark Quantum error correcting codes can be realised in condensed matter topological systems

Thank you!

Color codes in trapped ions

- System of 7 ions

3+3 stabiliser generators
1 logical qubit

Initialize the system in the code space
Δ Mimic up to two errors

- Measure the stabilisers
- Correct the error(s)

Error threshold in the toric code

How many errors we can effectively correct in a toric code?

- ($L-1$)/2 if they lie on straight lines!
Δ If they have random positions
Correcting for errors \longrightarrow Find a cycle such that $C+E=$ trivial cycle

$$
H_{\mathrm{RBIM}}=-J \sum_{\langle i, j\rangle} \eta_{i j} \eta_{i j} \sigma_{j}
$$

RB Ising	Ordered phase	Disordered phase	
Toric code	Correctable	Non-correctable	error probability

Ground state degeneracy of the toric code - 2

What if the system has a different topology?

- Physical qubits occupy the edges E
X-stabilisers on vertices V
Z-stabilisers on faces F

As before $\prod S_{z}=\prod S_{x}=1 \longrightarrow$
One X and one Z stabiliser generator not independent

$$
\begin{aligned}
& \text { Degrees of freedom left }= \\
& \begin{array}{l}
=E-(F-1)-(V-1) \\
=2-(F+V-E)= \\
=2-\chi_{\sim} \\
\text { Euler characteristic }
\end{array}
\end{aligned}
$$

In a torus with genus $g \longrightarrow \chi=2-2 g \longrightarrow 2 g$ logical qubits

