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We analyze the antiferromagnetic SU(3) Heisenberg chain by means of the density-matrix renormalization
group. The results confirm that the model is critical and the computation of its central charge and the scaling
dimensions of the first-excited states show that the underlying low-energy conformal field theory is the SU(3),
Wess-Zumino-Novikov-Witten model.
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where P;(s) = P(R(s
k d

- 8.42
1 dzx ( )

A(s) = exp [tR(s)p/R} ; p=

i.e. A is a translation operator. If we now choose the initial wave function as, say:

¥(z,0) = \/% sin (%) exp (ibz/R) §(z)8(A—z) (843}
for some [, the Adiabatic Theo'rem yields:
¥(z,t) = \/_%‘sin [WKZ (z— R(s))} exp [16 (z — R(s)) /hlexp [—1Et/R].  (8.44)

The factor: exp[—~i6R(s)/h] is just Berry’s phase. For a complete excursion, the

wave function acquires then a phase:

.6 . D
exp {—Zﬂ'zg} = exp | —272 E)——J

(8.45)

Yo .
where ® is the magnetic ﬂux of the Aharonov-Bohm solenoid, and: @, = hefe is
the elementary fluxon. As remarked by Berry, this establishes the link between the
Aharonov-Bohm effect and the Quantum Adiabatic Phase.

We are now in the position to recast the results of Ch. 6 in the language of fiber
" bundles and connections (21, 59] and in particular, of the Bott-Chern connection
and Berry’s phase. Recall that whit has been eventually done in the last part of
Ch.6 is a study of the changes of the ground-state wave function when the boundary
conditions, represented by the parameters a and 3 defined there, are changed. « and
3 play then the réle of adiabatically-changing pai‘ameters and; as the. ground etate
is assumed to be nondegenerate, the conditions of the Adiabatic Theorem a-pply.

Combining (5.39) and (5.46), we have:
‘20 - 2r ’
h : i 090|900 9%, |0¢0 \
Loy = | da | dB8 e L
2 27 8a aﬁ \ a8 | da
(¢} o] . ‘ .
'Comparing with (8.19) and (6.93), we see that this is just the integral over a two-cycle

of the first Chern class associated with the Bott-Chern connection (or with Berry’s
Some caution must be used as to how the manifold corresponding to the

(8.46)

phase).
parameter space is defined. If we take:

M = {square of side 27 in the (a, /) — plane},
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then M is a manifold with boundary, and both the curvature form 2 and the con-
nection w are well-defined. Therefore, Stokes’ theorem applies, and:

b 2-

which is just a way of rephrasing Eqns.(5.29) to (5.41) in the language of differential |
forms. On the other hand, « and f are actually angles, and hence the parameters
space should actually be identified as: M =

(8.47)

T?, the two-torus.
however, the connection one-form w is only locally defined (moving from, say, o to
a+ 27 it changes by an additive constant), and hence 01 is closed but not ezact , and
only the first of Eqns.(8.47) applies. In any event, the Hall conductwty (in units of
e? /h) is given by the integral over the parametersspace of the first Chern class, and
hence is quantized according to integers as a consequence of the periods of the Chern
classes {with the appropriate normalization) being z@tegral Stated in more phy51cal
(but of course equivalent) terms, we can also view mtegral quantization of the Hall
conduciivity as a manifestation of Berry’s phase '
The considerations of this Chapter should therefore clarlfy compietely the topo-
logical nature of the IQHE : & (static) magnetic field induces a non¢rivial U(1)-bundle _
over the parametr space. If the ground state is nondegenerate, the curvature of the
connection determines the Hall conductivity via the mtegral over the base mamfold
of its first Chern class.

Some further material related to the unusual features of electrons in a magnetic
field is reviewed in Appendix A.
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In such a case,
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The considerations of this Chapter should therefore clarify completely the fopo-
logical nature of the IQHE : a (static) magnetic field induces a nontrivial U(1)-bundle
over the parametr space. If the ground state is nondegenerate, the curvature of the
connection determines the Hall conductivity via the integral over the base manifold

of its first Chern class.



TOPOLOGICAL INSULATORS

Bulk insulators

Edge conductors

Edge currents topologically protected
Spin-momentum locking

Time reversal protection

TOPOLOGICAL SEMIMETALS

® Massless bulk states
® Special edge currents
® TJopological protected



Hall effect
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Magnetoresistence: Hall effect

Classical Hall effect

Hall resistance

Magnetic field



Integer Quantum Hall effect
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[von Klitzing]



Quantum Hall effect

H = _(93 + (01 + i@BZCQ)Q_

e5 1
E, = — —
2m (TH_ 2)

Un.ky (T) = e"171 [ (eBxs) e~ ¢Bw2/2




Integer Quantum Hall effect

energy £ N( y O)
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Real Space Brillouin Zone
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Kramers points



Hall Effect in 2D Torus T

> ZE/F:kEZ k= eB/2r

PPy + 2, d2) = €220y, o)

In complex coordinates: (b1, do + 27) = e 2920)(hy, do)
_ ; -
H:2i (31-|-ZB(¢2—|-€2)> (82—|‘ZB( ¢1—€1)>
m -

Energy levels (degeneracy: |#))  [Landau]
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Hall Effect in 2D Torus T

<< > zi/F:kez b= eB/2r
TJr

Ground State Eigenfunctions (degeneracy: |£|) :
Holomorphic sections of £(77, C)
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Quantum Hall effect and Fiber bundles
Floquet-Bloch
L*(R?) =

2 (2
@AeTQL (T )

The space of states adquires a bundle structure
L2(R?) (T2, L2(T?))
Spectral Floquet-Bloch theorem

Hpe — H.

@Ae’f?



TKKN and the Hidden topology

The states with energies below the Fermi level
define a vector bundle over the Brillouin zone torus.

E (’ﬂ‘?, okl ))
In this bundle there are gauge fields defined by the
Berry phases of the different states
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TKKN and the Bloch bundle

First Chern class of Bloch bundle

v | k|—

LYY [ A

n=0 [=0

TKKN formula:
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Quantization of Hall conductivity



Fourier-Mukai transform

Real Space Brillouin Zone
—
U(N) gauge field Au U(k) gauge field Ay
with ¢ (A)=k with ¢1 (A)=N

Nahm transform
[Asorey, Nature Phys. 201 6]



God created the volumes, the Devil the
boundaries



Hall effect with boundaries
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te size effects
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Edge states and bands structure

E Conduction Band
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Boundary Insulators

ions =Anderson localization

teract

18

Boundary




Finite size effects

energy En(y,)

e O

Pe0e000000000000000000000000000000°°
| left edge right edge I
(Vor k)

0’ X

ozy = —Vv  [Halperin, O’Laughlin]

27



Edge states and Bulk-Edge correspondence

Chern-class on the cylinder C; is not any more an

integer but
AN LI
_ v 1,1 i _
=3 ) /]—" -l =y
n=0 [=0 -
C =St x 1]

is an integer quantum number

Edge states are chiral, due to the TR violation
introduced by the magnetic field



Edge states and Bulk-Edge correspondence

Chern-class on the cylinder C; is not any more an

integer but
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is an integer quantum number

Edge states are chiral, due to the TR violation
introduced by the magnetic field

Can edge states survive without magnetic field?



Edge states and Bulk-Edge correspondence

Chern-class on the cylinder C; is not any more an

integer but
; v |k|—1 - _
_ v Il I
=3 ) /C]-“n Al
n=0 [=0 * -
C =S5"x10,1]

is an integer quantum number

Edge states are chiral, due to the TR violation
introduced by the magnetic field

Can edge states survive without magnetic field?

Yes adding SPIN and having spin-orbit couplings



Time Reversal and Kramers degeneracy

1 =
s = 5 spIn systems

@(70 _ einSySD*
0% = -1

Kramers theorem:
For a time reversal invariant Hamiltonian all energy
levels are double degenerated at CP Kramers points

Op=2p, O ="=—¢

For a non-degenerate energy level ¢

Nielsen-Ninomiya theorem: Lattice fermion doubling



Quantum Spin Hall

Two copies of Haldane model

Conduction Band
h\/‘

/~\
[Kane-Mele] [Bernevig-Zhang]
Valence Band

—7t/a 0 K —-m/a



Hall Spin Hall Anomalous Hall

(1879) (2004) (1881)
Quantum Hall Quantum spin Hall Quantum anomalous Hall
(1980) (2007) (2013)
4 — ~*—F

m/
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Quantum Hall Quantum spin Hall Quantum anomalous Hall



Topological Insulators

Normal Insulators Topological Insulators



Kane-Mele Z> index

0 n/a
Z, = N (Mod 2) = Invariant

[Fu-Kane]



Zi IndeXx

Time reversal matrix

Wyn(k) =< u,,(k)|Olu,(—k) > u,(k) > filled states

Winn (/6) — _wnm(_/e)

For TR invariant £, the matrix w(%,) is antisymmetric
Z, invariant v is defined by

y 11 Lf (w(ky))
=17 = ];[ detw(k,) =1

[Fu-Kane]
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SUMMARY

Zoo of new topological materials with amazing
properties

Essential ingredients: topology, discrete
symmetries and boundaries

Spectral band structures engineering

Beyond Solid state physics systems: optical
lattices, topological fluids, classical systems .....
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3D Topological Insulators

Four Z2indices

Vo V1 Vg V3
) b
v = / T (AD0; A% + 2 fope AT AL AS)

Weak topological insulators Vo = 2n

Strong topological insulators g = 2n + 1

Non-trivial TR Bloch bundle



Topological Insulators

[Zhang] [Haldane] [Kane]



VVeyl semimetals

One shouldn’t work on semiconductors,
that is a filthy mess; who knows whether
any semiconductors exist.



Weyl semimetals

Hermann VWeyl
1929



Weyl semimetals

Hermann Weyl
1929

ACCIDENTAL

basis vectors for a real representation of the
space group of the crystal, and that the normal
modes belonging to a representation which is
irreducible in the field of real numbers, even
though reducible in the complex field, must all
have the same frequency.” Thus mathematically
the theory of normal modes and their frequencies

7 Cf. E. Wigner, Gétt. Nachr. (1930), p. 133.

DEGENERACY 365

is just like the theory of electronic wave functions
and their energies: frequency can be plotted as a
function of wave vector, and sticking together of
two or more of these frequency bands will occur
at wave vectors k where G* has multidimensional
representations or where case (b) or case (c), as
defined above, occurs.

It is a pleasure for me to express my thanks to
Professor E. Wigner, who suggested this problem.

AUGUST 15, 1937

PHYSICAL REVIEW

VOLUME 52

Accidental Degeneracy in the Energy Bands of Crystals

ConYERS HERRING
Princeton University, Princeton, New Jersey

(Received June 16, 1937)

The circumstances are investigated under which two wave functions occurring in the Hartree
or Fock solution for a crystal can have the same reduced wave vector and the same energy. It
is found that coincidence of the energies of wave functions with the same symmetry properties,
as well as those with different symmetries, is often to be expected. Some qualitative features
are derived of the way in which energy varies with wave vector near wave vectors for which
degeneracy occurs. All these results, like those of the preceding paper, should be applicable
also to the frequency spectrum of the normal modes of vibration of a crystal.
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TOPOLOGICAL MATTER

Discovery of a Weyl fermion
semimetal and topological Fermi arcs

Su-Yang Xu,"?* Ilya Belopolski,’* Nasser Alidoust,”>* Madhab Neupane,3*

Guang Bian,’ Chenglong Zhang,* Raman Sankar,” Guoqing Chang,®’ Zhujun Yuan,*
Chi-Cheng Lee,%” Shin-Ming Huang,®” Hao Zheng,' Jie Ma,® Daniel S. Sanchez,!
BaoKai Wang,%”° Arun Bansil,? Fangcheng Chou,® Pavel P. Shibayev,"'° Hsin Lin,®”’
Shuang Jia,*'' M. Zahid Hasan"?t

A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent
quasiparticles and admits a topological classification that protects Fermi arc surface
states on the boundary of a bulk sample. This unusual electronic structure has deep
analogies with particle physics and leads to unique topological properties. We report the
experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission
spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion
cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate
on the Weyl fermion nodes, consistent with their topological character. Our work opens the
field for the experimental study of Weyl fermions in physics and materials science.

ARTICLES

PUBLISHED ONLINE: 177 MARCH 2013 | DOI: 10.1038/NPHOTON.2013.42

tantalum arsenide (TaAs). Using the combina-
tion of the vacuum ultraviolet low-photon-energy) =
and soft x-ray (SX) angle-resolved photoemission S
spectroscopy (ARPES), we systematically and dif- 2
ferentially study the surface and bulk electronic 5
structure of TaAs. Our ultraviolet (low-photon- 5
energy) ARPES measurements, which are highly %
surface sensitive, demonstrate the existence of —
the Fermi arc surface states, consistent with our 3
band calculations presented here. Moreover, our =

-

SX-ARPES measurements, which are reasonably =
bulk sensitive, reveal the 3D linearly dispersive 3
bulk Weyl cones and Weyl nodes. Furthermore,
by combining the low-photon-energy and SX
ARPES data, we show that the locations of the
projected bulk Weyl nodes correspond to the
terminations of the Fermi arcs within our exper- :
imental resolution. These systematic measure-

ments demonstrate TaAs as a Weyl semimetal.

The material system and
theoretical considerations
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Tantalum arsenide is a semimetallic material
that crvstallizes in a bodv-centered tetragonal
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Weyl points and line nodes in gyroid
photonic crystals

Ling Lu*, Liang Fu, John D. Joannopoulos and Marin Soljacic

Weyl points and line nodes are three-dimensional linear point and line degeneracies between two bands. In contrast
two-dimensional Dirac points, which are their lower-dimensional analogues, Weyl points are stable in momentum spacg,
and the associated surface states are predicted to be topologically non-trivial. However, Weyl points are yet to be
discovered in nature. Here, we report photonic crystals based on double-gyroid structures, exhibiting frequency-isolatéd
Weyl points with complete phase diagrams by breaking the parity and time-reversal symmetries. Gapless surface
dispersions associated with non-zero Chern numbers are demonstrated. Line nodes are also found in similar geometries,
the associated surface states forming flat dlspersmn bands Our results are based on realistic ab :mt:o calculations with
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Nielsen-Ninomiya theorem I

Chiral fermions cannot be regularized on a lattice

Axial anomaly:
flow of charge from left to right VWeyl points

H=a -V+my + 750 a+ puys

TR breaking + Parity breaking symmetries



Dirac points split into two Weyl points with
opposite chiralities

Fermi Arc
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Weyl semimetals (2015)

Fermi arc




ARPES

Angle-resolved photoemission spectroscopy

photon source energy analyser

hv

UHYV - Ultra High Vacuum
(p< 10~ mbar ) J




Weyl Fermion nodes and Topological Fermi arcs

Low-energy (surface) ARPES + SX (bulk) ARPES data

Weyl Fermion nodes
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[Hassan group]



SUMMARY

Topological matter is a brand new area of CM
developing very fast

Tools of HEP are fundamental in the theory

Topological insulators do have applications for
spintronics and quantum computation

Weyl semimetals have interesting conducting
properties which are being explored for apps.
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TOPOLOGICAL MATTER

® New conducting effects in topological materials

e New band analysis unveils a hidden topological structure
e Jopological insulators with edge currents

e Dirac semimetal on edges of TPI

e Jopological superconductors. Majorana Fermions

e Jopological Semimetals.VWeyl Fermions. Fermi Arcs

e Semimetals with nodal points
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TOPOLOGICAL MATTER

® New conducting effects in topological materials

e New band analysis unveils a hidden topological structure
e Jopological insulators with edge currents

e Dirac semimetal on edges of TPI

e Jopological superconductors. Majorana Fermions

e Jopological Semimetals.VWeyl Fermions. Fermi Arcs

e Semimetals with nodal points

e Stability provided by topological robutnes
e Applications to spintronic and quantum computation



Fermi arcs

Helicoid Riemann surface state

(@)
E
qy
qx

Weyl points
(Berry charges)

Double-helicoid Riemann surface state

(c)

Degeneracy line

E
qy
9,

Dirac points
(Z, monopoles)
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