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Geometric formulation of Quantum Mechanics

Let us consider a finite dimensional quantum system. Heinsenberg
formalism will be defined on a C*-algebra A, finite dimensional, and
therefore isomorphic to M,(C), with the Frobenius norm |A[2 = Tr(AfA).

We can now consider only the set of physical observables. The set of
hermitian operators is isomorphic to the Lie algebra of the unitary group
O ~ u(n). As we have a (non-degenerate) scalar product

(A|B) = Tr(AB); VA, Be O

we can identify O with O*



Lie-Jordan algebra

A vector space endowed with a Jordan algebra structure o and a Lie
structure [-, -], such that Va, b, c € L:

> Leibnitz [a,boc] =[a,b]loc+ bo]a,c]
» (aob)oc—ao(boc)=hb,]c,a]] where h € R.

Lie-Jordan Banach (LJB) algebras
A Lie-Jordan algebra £ endowed with a norm || - || such that £ is
complete and satisfies
> [lao bl < lall]| bl
> ll[a, b]I| < [nI=*]alll| ]|
> [|a%] = [|a]®
> [|a%] < [la® + b2
for any a,b € L.




Can we recover this structure on @ and can we do it in a geometric way?



Can we recover this structure on @ and can we do it in a geometric way?

Indeed. If we consider first the linear functions on O*

Definition of tensor fields
We can consider two tensors encoding relevant algebraic structures of O:

Re(dfa, dfg) = (€, (AB + BA))

and
Ne(dfa, dfs) = (&, A, B])

R is a symmetric tensor and A is the canonical Lie-Poisson tensor for the
unitary algebra. We can extend trivially the definition from linear to
general differentiable functions on O*.

These tensor fields allow us to consider the notion of Hamiltonian vector
field associated with an observable A (X4) and the corresponding
gradient vector field (Ya).



We can consider the set of real linear functions on O* defined as

Fo(O7) = {fa: O = R| fa(€) = £(A)}

Theorem
(Fo,R,N) is a LJ algebra.

fa o fg = R(dfa, dfg) = facB; {fa, fg} = N(dfa, dfg) = fia g

The algebraic properties encoding the main aspects of the quantum
system can be encoded in the Lie-Jordan algebra structure which
combines the commutator and anti-commutator structures from the space
of observables. But we encode them in two contravariant tensor fields R
and A, and this gives us the possibility of considering nonlinear objects.




The space of physical states

Definition

The set of density matrices S of a system corrresponds to the subset of
O defined by the convex combinations of rank-one projectors on the
Hilbert space. Analogously, p € O is a density matrix iff

Trp =1, p > 0.

Analogously, we can also define them in terms of the functions F(O*) as

S={peOfilp) =1; fr(p) >0, VAc O} Cc O*







We adapt the notation from Grabowski, Kus and Marmo and denote by
Dp and Dg the generalized distributions on O* of Hamiltonian and
gradient vector fields, respectively.

Proposition GKM

The distribution D; = Dp + Dr on O* is involutive and can be integrated
to a generalized foliation F7, whose leaves correspond to the orbits of the
action of the general linear group GL(m,C) on O*, m = dim©, defined
by (T,&) — TETH.




Y4

O*




Proposition

Let P(O) denote the set of real positive linear functionals ( : O — C, i.e.
such that

¢(a*)=¢(a), ¢(a*a)>0,VacO.

The set P(O) is a subset of O*. Furthermore, it is a stratified manifold,

where the stratum P(O) is the set of rank k operators in P(0). Each
stratum P(O)k is a leaf of the foliation 7 corresponding to the joint
distribution, union of Hamiltonian and gradient vector fields.

| A\

Proposition

The set of states S is a stratified manifold,

S = U Sk, where SK= P(O)k ﬂ{f € O*|¢(1) = 1}.
k=1



Some considerations:

> Let us consider the foliation of O* defined by the gradient vector
field Y;. As Y; € Dy, any leaf that intersects P(O) belongs
completely to P(O).

» Notice that the functional 0 € P(O) is a fixed point of Y;. Removing
it, we obtain a regular foliation by Y; of Po(0) := P(O) — {0}.

» We can thus define the corresponding quotient manifold identifying
points in the same leaf; two points ¢, ¢’ are equivalent if { = c(’,
with ¢ > 0. The set of states S is the section of this fibration
defined by the elements of trace equal to one.

We are interested in the characterization of geometrical objects in S as
objects in P(O) that are projectable with respect to the fibration

mp(() = ¢, ¢C€Po(0).

=)
fi(€)



1= {fa(p) > 0}




Let us consider a set of expectation value functions defined, from the
linear ones, in the form

fa(€)

ea(p) := mp(fals)(C) = 70)

¢ €Po(0), acO.

Theorem

We can define thus a symmetric and a skewsymmetric tensors on the
submanifold S as

Rs(de,a\7 deB) = €A0B — €A€B = COV(A, B)

As(deA, deB) = /\(deA, deB) e e[A’B]

The set of expectation value functions £s becomes a Lie-Jordan algebra
€A OS5 €B I= €AoB; [ea, eBls = ea.a);

and its complexification an associative algebra

1 i
eaxs g = seaos g+ §[GA, epls = ean



Very simple examples: 1 qubit

As a simple application, let us consider a simple example: consider a
single qubit, a magnetic vector field and the operator

H = B7.

If we consider the Hamiltonian and gradient vector fields on the Bloch
sphere we find

ok O
- k
XH — €jk/XJB ﬁaxl

YH_Bkﬁ—( B)x*

Oxk Oxk






There have been interesting dynamical models in the last forty years
aiming to describe effective or ab-initio dissipative phenomena

» Metriplectic formulation by Kaufman (1984) and Morrison (1986):
dissipation introduced through entropic effects

p=[Hpl+SOp=Xu+Ys

It is also related to Rajeev (2007) construction of complex valued
Hamiltonian.

» Gisin (1981): nonlinear effects in Quantum Mechanics. As even
being non-linear, the dynamics preserves the spectrum, it must be a
nonlinear combination of Hamiltonian vector fields:

p = [p7 [p7 H]] ™ Z kak
k
» Brody-Holm-Ellis (2007, 2008): linear dynamics through a double
bracket to reproduce the state of a canonical ensemble:
G=[H,[H,G]]=(HoG)oG—H*cG=K+ Y

For a finite dimensional system the trace is conserved and thus K
must compensate the effect of the gradient vector field.



Geometric characterization of the KL equation

GKS and Lindblad determined, in 1976, the form of the infinitesimal
generator of a markovian dynamics on the set of states.

2

d%@ = ~ilH, p(t)] + % ST (WVie(t), Vi + 1V, p(t) V] =

— i, p(8)]+ 5 S (1Y) Visp(0)]+ %Z

This equation defines a vector field Z; on S:

()

g = 2Llp).



We can characterize the different terms from a geometrical point of view
and write

ZL=Xu+Y,+K
where

» Xy is a Hamiltonian vector field with respect to the Poisson tensor
As

> Y, is the gradient vector field associated with the function
2
J=3, \/JT\/J by the symmetric tensor Rs.
» K is the vector field associated to the action of the Kraus operators

n2
K(p) = VipV]
=



Dynamics on the space of tensors

We can encode the evolution in a transformation of the algebraic
structures of our LJB system. Therefore we shall consider the following
equations

d
EA(t) = Lz \(t); A(0) = As
d
ER(t) = Lz R(t); R(0) = Rs
The system we are interested in is the limit:
Rw = lim R(t) = lim e %4 Rs; A = lim A(t) = lim etz Ag
t— 00 t—00 t—o00 t—00

Does (R, Ao ) define a LJB algebra? This is the dual question to the
one analyzed in Chruscinski et al, 2012.




Theorem (Jover)

Consider a set of vector fields W, Ws, ... which generate the tangent
space to S at the limit manifold S;. Then, the contraction T, of the
flow T, on the space of tensor fields on S exists if and only if there exists
asymptotic limits for all the tensors

£VVJ Tt

This result is particularly useful when used on a set of symmetries of the
dynamical vector field.




Example: 2-level systems

Let us consider the phase damping of a qubit, given by the following
Kossakowski-Lindblad operator
Lp = —v(p — 03p03).

The vector field Z; associated to this operator is:
0 0
Z = =2y (Xl— +X2i> :
X1

By computing the Lie derivatives with respect to this vector field of As
and Rs, we obtain the coordinate expressions of the families As ; and

RS,t:

As.+ :e_4"’tx3i A i +X1£ A i +Xgi A i
’ 8x1 8)(2 6><2 8X3 0X3 8)(1

3
0 0 19} 1%} 19} 1%}
Risy = Mo I — |0l L L o BV § Ix. Ox; ® Oxs .
Sa € (8)(1 & 8X1 L 6X2 = 6X2) ] 8)(3 ® 8X3 i K
J k=1

P






In this case, the asymptotic limits t — co of the families do exist.

Proposition

The phase damping evolution of a qubit defines a contraction of the
Lie-Jordan algebra of functions on the space of states, determined by the
following products:

X1, %} 0 = —X2, {X2,X3}00 = X1, {X1,X2}00 =0,
(x1,%1)00 = (X2, %2)00 =0, (X3,X3)00 = 1.

The Lie algebra (span(xi, x2, x3), {*, - }oo) is isomorphic to the Euclidean
Lie algebra. The pair (span(xy, x2, x3,1), (%, *)so) is @ Jordan algebra. The
triple (span(xy, %2, x3,1), (*,*)oos {*, * } oo ) is a Lie-Jordan algebra.




Example: 3-level systems

The model of decoherence for massive particles is given by

L(p) = _'V[Xa [Xv p]]a

where X is the position operator. This model can be discretized by
considering a finite number d = 3 of positions X,,, along a circle. The
positions are given by

2
)?m:(cosqu,sinqu), ¢m:jdﬂ, m,:172,...7d.

The operator L in the basis of eigenstates of the position operator takes
the form

L)l = =R = 5o Il = <4500 (Z2=2) o

formn=12,...,d.



On the other hand, the pure decoherence of a d-level system is given by

and P; are the 1-dimensional projectors |/)(/|.



The evolutions of a 3-level system by either the decoherence model of massive particles or the pure
decoherence model define a contraction of the Lie-Jordan algebra of functions. The Poisson and
the Jordan brackets of the contracted algebras are

{x1,%5} 00 = =32, {X2, X3} 00 = X1,
1 1 3 V3
{xa,X3}o0 = —Exsv {5, X3} 00 = 5X47 {xa, X8} 00 = —7X57 {x5, X8} 0 = 7X41
1 1 V3 V3
{X6, X3} oo = =x7, {X7, X8} 00 = —=X6, {X6: X8} oo = ——— X7, {X7, X8} 00 = — X6,
2 2 2 2
2 1 2 1
X3,X3)o0 = = + —=X8, (X8, X8)o0 = = — —=X8,
( ) 3 . ( ) 37/
(1, 36)o0 = —=31, (2, 36)o0 = 32, (63, %0)o0 = 33, (x4, %)
X1, X8)00 = —=X1, (X2, X8 —x2, (33, X8)00 = —=X3, (X2, X8)00 = ——=Xa,
V3 V3 V3 2V3
1 1
X5,X8)00 = ——=X5, (X6,X8)o0 = ———=X6, (X7,%X8)00 = ——=X7,
( ) 23 ( ) 23 ( ) 2v/3
1
(x4, x3)00 = 3% (x5, %3)00 = 5751 (X65X3) 00 = =5 (X7, %38) 00 = -5

The triple (span(xi, ..., xg, 1), (*, *)oo, {; - }oo) is a Lie-Jordan algebra.
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