Geometric description of

open quantum systems

Jesús Clemente-Gallardo
Geometry \& Physics Remembering Giuseppe Morandi
Bologna, November 24-25, BIFI-Departmento de Física Teórica Universidad de Zaragoza

$\overline{\overline{T i}}$ Universidad
Email: jcg@unizar.es

Contents

1 Geometric formulation of Quantum Mechanics

2 The space of physical states

3 Geometric characterization of open quantum dynamics

4 Dynamics on the space of tensors

References:

J. F. Cariñena, J. Clemente-Gallardo, J. A. Jover-Galtier and G. Marmo, Tensorial dynamics on the space of quantum states, J. Phys. A:Math. Theor., 50, 365301, 2017
J. A. Jover-Galtier, Open quantum systems: geometric description, dynamics and control, Ph. Thesis, U. Zaragoza 2017

Geometric formulation of Quantum Mechanics

Let us consider a finite dimensional quantum system. Heinsenberg formalism will be defined on a C^{*}-algebra \mathcal{A}, finite dimensional, and therefore isomorphic to $M_{n}(\mathbb{C})$, with the Frobenius norm $|A|^{2}=\operatorname{Tr}\left(A^{\dagger} A\right)$.

We can now consider only the set of physical observables. The set of hermitian operators is isomorphic to the Lie algebra of the unitary group $\mathcal{O} \gtrsim \mathfrak{u}(n)$. As we have a (non-degenerate) scalar product

$$
\langle A \mid B\rangle=\operatorname{Tr}(A B) ; \quad \forall A, B \in \mathcal{O}
$$

we can identify \mathcal{O} with \mathcal{O}^{*}

Lie-Jordan algebra

A vector space endowed with a Jordan algebra structure \circ and a Lie structure $[\cdot, \cdot]$, such that $\forall a, b, c \in \mathcal{L}$:

- Leibnitz $[a, b \circ c]=[a, b] \circ c+b \circ[a, c]$
- $(a \circ b) \circ c-a \circ(b \circ c)=\hbar^{2}[b,[c, a]]$ where $\hbar \in \mathbb{R}$.

Lie-Jordan Banach (LJB) algebras

A Lie-Jordan algebra \mathcal{L} endowed with a norm $\|\cdot\|$ such that \mathcal{L} is complete and satisfies

- $\|a \circ b\| \leq\|a\|\|b\|$
- $\|[a, b]\| \leq|\hbar|^{-1}\|a\|\|b\|$
- $\left\|a^{2}\right\|=\|a\|^{2}$
- $\left\|a^{2}\right\| \leq\left\|a^{2}+b^{2}\right\|$
for any $a, b \in \mathcal{L}$.

Can we recover this structure on \mathcal{O} and can we do it in a geometric way?

Can we recover this structure on \mathcal{O} and can we do it in a geometric way?

Indeed. If we consider first the linear functions on \mathcal{O}^{*}

Definition of tensor fields

We can consider two tensors encoding relevant algebraic structures of \mathcal{O} :

$$
R_{\xi}\left(d f_{A}, d f_{B}\right)=\langle\xi,(A B+B A)\rangle
$$

and

$$
\Lambda_{\xi}\left(d f_{A}, d f_{B}\right)=\langle\xi,[A, B]\rangle
$$

R is a symmetric tensor and Λ is the canonical Lie-Poisson tensor for the unitary algebra. We can extend trivially the definition from linear to general differentiable functions on \mathcal{O}^{*}.
These tensor fields allow us to consider the notion of Hamiltonian vector field associated with an observable $A\left(X_{A}\right)$ and the corresponding gradient vector field $\left(Y_{A}\right)$.

Definition

We can consider the set of real linear functions on \mathcal{O}^{*} defined as

$$
\mathcal{F}_{\mathcal{O}}\left(\mathcal{O}^{*}\right)=\left\{f_{A}: \mathcal{O}^{*} \rightarrow \mathbb{R} \mid f_{A}(\xi)=\xi(A)\right\}
$$

Theorem

$\left(\mathcal{F}_{\mathcal{O}}, R, \Lambda\right)$ is a LJ algebra.

$$
f_{A} \circ f_{B}=R\left(d f_{A}, d f_{B}\right)=f_{A \circ B} ; \quad\left\{f_{A}, f_{B}\right\}=\Lambda\left(d f_{A}, d f_{B}\right)=f_{[A, B]}
$$

Summary

The algebraic properties encoding the main aspects of the quantum system can be encoded in the Lie-Jordan algebra structure which combines the commutator and anti-commutator structures from the space of observables. But we encode them in two contravariant tensor fields R and Λ, and this gives us the possibility of considering nonlinear objects.

The space of physical states

Definition

The set of density matrices $\tilde{\mathcal{S}}$ of a system corrresponds to the subset of \mathcal{O} defined by the convex combinations of rank-one projectors on the Hilbert space. Analogously, $\rho \in \mathcal{O}$ is a density matrix iff

$$
\operatorname{Tr} \rho=1, \quad \rho \geq 0 .
$$

Analogously, we can also define them in terms of the functions $\mathcal{F}\left(\mathcal{O}^{*}\right)$ as

$$
\mathcal{S}=\left\{\rho \in \mathcal{O}^{*} \mid f_{l}(\rho)=1 ; f_{A^{2}}(\rho) \geq 0 ; \forall A \in \mathcal{O}\right\} \subset \mathcal{O}^{*}
$$

We adapt the notation from Grabowski, Kus and Marmo and denote by D_{Λ} and D_{R} the generalized distributions on \mathcal{O}^{*} of Hamiltonian and gradient vector fields, respectively.

Proposition GKM

The distribution $D_{1}=D_{\wedge}+D_{R}$ on \mathcal{O}^{*} is involutive and can be integrated to a generalized foliation \mathcal{F}_{1}, whose leaves correspond to the orbits of the action of the general linear group $\operatorname{GL}(m, \mathbb{C})$ on $\mathcal{O}^{*}, m=\operatorname{dim} \mathcal{O}$, defined by $(T, \xi) \mapsto T \xi T^{\dagger}$.

Proposition

Let $\mathcal{P}(\mathcal{O})$ denote the set of real positive linear functionals $\zeta: \mathcal{O} \rightarrow \mathbb{C}$, i.e. such that

$$
\zeta\left(a^{*}\right)=\overline{\zeta(a)}, \quad \zeta\left(a^{*} a\right) \geq 0, \forall a \in \mathcal{O} .
$$

The set $\mathcal{P}(\mathcal{O})$ is a subset of \mathcal{O}^{*}. Furthermore, it is a stratified manifold,

$$
\mathcal{P}(\mathcal{O})=\bigcup_{k=0}^{n} \mathcal{P}^{k}(\mathcal{O})
$$

where the stratum $\mathcal{P}(\mathcal{O})^{k}$ is the set of rank k operators in $\mathcal{P}(\mathcal{O})$. Each stratum $\mathcal{P}(\mathcal{O})^{k}$ is a leaf of the foliation \mathcal{F}_{1} corresponding to the joint distribution, union of Hamiltonian and gradient vector fields.

Proposition

The set of states \mathcal{S} is a stratified manifold,

$$
\mathcal{S}=\bigcup_{k=1}^{n} \mathcal{S}^{k}, \quad \text { where } \quad \mathcal{S}^{k}=\mathcal{P}(\mathcal{O})^{k} \bigcap\left\{\xi \in \mathcal{O}^{*} \mid \xi(I)=1\right\}
$$

Some considerations:

- Let us consider the foliation of \mathcal{O}^{*} defined by the gradient vector field Y_{I}. As $Y_{I} \in D_{1}$, any leaf that intersects $\mathcal{P}(\mathcal{O})$ belongs completely to $\mathcal{P}(\mathcal{O})$.
- Notice that the functional $0 \in \mathcal{P}(\mathcal{O})$ is a fixed point of Y_{1}. Removing it, we obtain a regular foliation by $Y_{\text {I }}$ of $\mathcal{P}_{0}(\mathcal{O}):=\mathcal{P}(\mathcal{O})-\{0\}$.
- We can thus define the corresponding quotient manifold identifying points in the same leaf; two points ζ, ζ^{\prime} are equivalent if $\zeta=c \zeta^{\prime}$, with $c>0$. The set of states \mathcal{S} is the section of this fibration defined by the elements of trace equal to one.
We are interested in the characterization of geometrical objects in \mathcal{S} as objects in $\mathcal{P}(\mathcal{O})$ that are projectable with respect to the fibration

$$
\pi_{\mathcal{P}}(\zeta)=\frac{1}{f_{l}(\zeta)} \zeta, \quad \zeta \in \mathcal{P}_{0}(\mathcal{O})
$$

Definition

Let us consider a set of expectation value functions defined, from the linear ones, in the form

$$
e_{A}(\rho):=\pi_{\mathcal{P}}^{*}\left(\left.f_{a}\right|_{\mathcal{S}}\right)(\zeta)=\frac{f_{a}(\zeta)}{f_{l}(\zeta)}, \quad \zeta \in \mathcal{P}_{0}(\mathcal{O}), \quad a \in \mathcal{O} .
$$

Theorem

We can define thus a symmetric and a skewsymmetric tensors on the submanifold \mathcal{S} as

$$
\begin{gathered}
R_{\mathcal{S}}\left(d e_{A}, d e_{B}\right)=e_{A \circ B}-e_{A} e_{B}=\operatorname{Cov}(A, B) \\
\Lambda_{\mathcal{S}}\left(d e_{A}, d e_{B}\right)=\Lambda\left(d e_{A}, d e_{B}\right)=e_{[A, B]}
\end{gathered}
$$

The set of expectation value functions $\mathcal{E}_{\mathcal{S}}$ becomes a Lie-Jordan algebra

$$
e_{A} \circ \mathcal{S} e_{B}:=e_{A \circ B} ; \quad\left[e_{A}, e_{B}\right]_{\mathcal{S}}=e_{[A, B]} ;
$$

and its complexification an associative algebra

$$
e_{A} \star_{\mathcal{S}} e_{B}=\frac{1}{2} e_{A} \circ_{\mathcal{S}} e_{B}+\frac{i}{2}\left[e_{A}, e_{B}\right]_{\mathcal{S}}=e_{A B}
$$

Very simple examples: 1 qubit

As a simple application, let us consider a simple example: consider a single qubit, a magnetic vector field and the operator

$$
H=\vec{B} \vec{\sigma} .
$$

If we consider the Hamiltonian and gradient vector fields on the Bloch sphere we find

$$
\begin{gathered}
X_{H}=\epsilon_{j k l} x^{j} B^{k} \frac{\partial}{\partial x^{\prime}} \\
Y_{H}=B^{k} \frac{\partial}{\partial x^{k}}-(\vec{x} \vec{B}) x^{k} \frac{\partial}{\partial x^{k}}
\end{gathered}
$$

There have been interesting dynamical models in the last forty years aiming to describe effective or ab-initio dissipative phenomena

- Metriplectic formulation by Kaufman (1984) and Morrison (1986): dissipation introduced through entropic effects

$$
\dot{\rho}=[H, \rho]+S \odot \rho=X_{H}+Y_{S}
$$

It is also related to Rajeev (2007) construction of complex valued Hamiltonian.

- Gisin (1981): nonlinear effects in Quantum Mechanics. As even being non-linear, the dynamics preserves the spectrum, it must be a nonlinear combination of Hamiltonian vector fields:

$$
\dot{\rho}=[\rho,[\rho, H]]=\sum_{k} f_{k} X_{k}
$$

- Brody-Holm-Ellis (2007, 2008): linear dynamics through a double bracket to reproduce the state of a canonical ensemble:

$$
\dot{G}=[H,[H, G]]=(H \circ G) \circ G-H^{2} \circ G=K+Y_{H^{2}}
$$

For a finite dimensional system the trace is conserved and thus K must compensate the effect of the gradient vector field.

Geometric characterization of the KL equation

GKS and Lindblad determined, in 1976, the form of the infinitesimal generator of a markovian dynamics on the set of states.

$$
\begin{aligned}
& \frac{d \rho(t)}{d t}=-i[H, \rho(t)]+\frac{1}{2} \sum_{j=1}^{n^{2}}\left(\left[V_{j} \rho(t), V_{j}^{\dagger}\right]+\left[V_{j}, \rho(t) V_{j}^{\dagger}\right]=\right. \\
& -i[H, \rho(t)]+\frac{1}{2} \sum_{j=1}^{n^{2}}\left(\left[V_{j}^{\dagger} V_{j}, \rho(t)\right]_{+}+\frac{1}{2} \sum_{j=1}^{n^{2}} V_{j} \rho(t) V_{j}^{\dagger}\right.
\end{aligned}
$$

This equation defines a vector field Z_{L} on \mathcal{S} :

$$
\frac{d \rho(t)}{d t}=Z_{L}(\rho) .
$$

We can characterize the different terms from a geometrical point of view and write

$$
Z_{L}=X_{H}+Y_{J}+K
$$

where

- X_{H} is a Hamiltonian vector field with respect to the Poisson tensor Λ_{S}
- Y_{J}, is the gradient vector field associated with the function $J=\sum_{j=1}^{n^{2}} V_{j}^{\dagger} V_{j}$ by the symmetric tensor $R_{\mathcal{S}}$.
- K is the vector field associated to the action of the Kraus operators

$$
K(\rho)=\sum_{j=1}^{n^{2}} V_{j} \rho V_{j}^{\dagger}
$$

Dynamics on the space of tensors

We can encode the evolution in a transformation of the algebraic structures of our LJB system. Therefore we shall consider the following equations

$$
\begin{array}{ll}
\frac{d}{d t} \Lambda(t)=L_{z_{L}} \Lambda(t) ; & \Lambda(0)=\Lambda_{\mathcal{S}} \\
\frac{d}{d t} R(t)=L_{z_{L}} R(t) ; & R(0)=R_{\mathcal{S}}
\end{array}
$$

The system we are interested in is the limit:

$$
R_{\infty}=\lim _{t \rightarrow \infty} R(t)=\lim _{t \rightarrow \infty} e^{-t L Z_{L}} R_{S} ; \quad \Lambda_{\infty}=\lim _{t \rightarrow \infty} \Lambda(t)=\lim _{t \rightarrow \infty} e^{-t L_{Z_{L}}} \Lambda_{\mathcal{S}}
$$

Question

Does $\left(R_{\infty}, \Lambda_{\infty}\right)$ define a LJB algebra? This is the dual question to the one analyzed in Chruściński et al, 2012.

Theorem (Jover)

Consider a set of vector fields W_{1}, W_{2}, \ldots which generate the tangent space to \mathcal{S} at the limit manifold \mathcal{S}_{L}. Then, the contraction T_{∞} of the flow T_{t} on the space of tensor fields on \mathcal{S} exists if and only if there exists asymptotic limits for all the tensors

$$
\mathcal{L}_{W_{j}} T_{t}
$$

This result is particularly useful when used on a set of symmetries of the dynamical vector field.

Example: 2-level systems

Let us consider the phase damping of a qubit, given by the following Kossakowski-Lindblad operator

$$
L \rho=-\gamma\left(\rho-\sigma_{3} \rho \sigma_{3}\right)
$$

The vector field Z_{L} associated to this operator is:

$$
Z_{L}=-2 \gamma\left(x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}\right)
$$

By computing the Lie derivatives with respect to this vector field of $\Lambda_{\mathcal{S}}$ and $R_{\mathcal{S}}$, we obtain the coordinate expressions of the families $\Lambda_{\mathcal{S}, t}$ and $R_{\mathcal{S}, t}:$

$$
\begin{aligned}
& \Lambda_{\mathcal{S}, t}=e^{-4 \gamma t} x_{3} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}+x_{2} \frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial x_{1}} \\
& R_{\mathcal{S}, t}=e^{-4 \gamma t}\left(\frac{\partial}{\partial x_{1}} \otimes \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}} \otimes \frac{\partial}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{3}} \otimes \frac{\partial}{\partial x_{3}}-\sum_{j, k=1}^{3} x_{j} x_{k} \partial x_{j} \otimes \partial x_{k}
\end{aligned}
$$

In this case, the asymptotic limits $t \rightarrow \infty$ of the families do exist.

Proposition

The phase damping evolution of a qubit defines a contraction of the Lie-Jordan algebra of functions on the space of states, determined by the following products:

$$
\begin{aligned}
& \left\{x_{1}, x_{3}\right\}_{\infty}=-x_{2}, \quad\left\{x_{2}, x_{3}\right\}_{\infty}=x_{1}, \quad\left\{x_{1}, x_{2}\right\}_{\infty}=0, \\
& \left(x_{1}, x_{1}\right)_{\infty}=\left(x_{2}, x_{2}\right)_{\infty}=0, \quad\left(x_{3}, x_{3}\right)_{\infty}=1
\end{aligned}
$$

The Lie algebra $\left(\operatorname{span}\left(x_{1}, x_{2}, x_{3}\right),\{\cdot, \cdot\}_{\infty}\right)$ is isomorphic to the Euclidean Lie algebra. The pair $\left(\operatorname{span}\left(x_{1}, x_{2}, x_{3}, 1\right),(\cdot, \cdot)_{\infty}\right)$ is a Jordan algebra. The triple $\left(\operatorname{span}\left(x_{1}, x_{2}, x_{3}, 1\right),(\cdot, \cdot)_{\infty},\{\cdot, \cdot\}_{\infty}\right)$ is a Lie-Jordan algebra.

Example: 3-level systems

The model of decoherence for massive particles is given by

$$
L(\rho)=-\gamma[X,[X, \rho]],
$$

where X is the position operator. This model can be discretized by considering a finite number $d=3$ of positions \vec{x}_{m} along a circle. The positions are given by

$$
\vec{x}_{m}=\left(\cos \phi_{m}, \sin \phi_{m}\right), \quad \phi_{m}=\frac{2 \pi m}{d}, \quad m,=1,2, \ldots, d .
$$

The operator L in the basis of eigenstates of the position operator takes the form

$$
L|m\rangle\langle n|=-\gamma\left|\vec{x}_{m}-\vec{x}_{n}\right||m\rangle\langle n|=-4 \gamma \sin ^{2}\left(\frac{\pi(m-n)}{d}\right)|m\rangle\langle n|,
$$

for $m, n=1,2, \ldots, d$.

On the other hand, the pure decoherence of a d-level system is given by

$$
L(\rho)=-\frac{1}{d} \sum_{k=1}^{d-1} \gamma_{k}\left(\rho-U_{k} \rho U_{k}^{*}\right), \quad \gamma_{k}>0, k=1,2, \ldots, d-1,
$$

where U_{k} are the unitary operators given by

$$
U_{k}=\sum_{l=1}^{d-1} \lambda^{-k(l-1)} P_{l}, \quad \lambda=e^{\frac{2 \pi i}{d}}
$$

and P_{I} are the 1 -dimensional projectors $|I\rangle\langle | \mid$.

The evolutions of a 3-level system by either the decoherence model of massive particles or the pure decoherence model define a contraction of the Lie-Jordan algebra of functions. The Poisson and the Jordan brackets of the contracted algebras are

$$
\begin{aligned}
& \left\{x_{1}, x_{3}\right\}_{\infty}=-x_{2},\left\{x_{2}, x_{3}\right\}_{\infty}=x_{1}, \\
& \left\{x_{4}, x_{3}\right\}_{\infty}=-\frac{1}{2} x_{5},\left\{x_{5}, x_{3}\right\}_{\infty}=\frac{1}{2} x_{4},\left\{x_{4}, x_{8}\right\}_{\infty}=-\frac{\sqrt{3}}{2} x_{5},\left\{x_{5}, x_{8}\right\}_{\infty}=\frac{\sqrt{3}}{2} x_{4}, \\
& \left\{x_{6}, x_{3}\right\}_{\infty}=\frac{1}{2} x_{7},\left\{x_{7}, x_{3}\right\}_{\infty}=-\frac{1}{2} x_{6},\left\{x_{6}, x_{8}\right\}_{\infty}=-\frac{\sqrt{3}}{2} x_{7},\left\{x_{7}, x_{8}\right\}_{\infty}=\frac{\sqrt{3}}{2} x_{6}, \\
& \left(x_{3}, x_{3}\right)_{\infty}=\frac{2}{3}+\frac{1}{\sqrt{3}} x_{8},\left(x_{8}, x_{8}\right)_{\infty}=\frac{2}{3}-\frac{1}{\sqrt{3}} x_{8}, \\
& \left(x_{1}, x_{8}\right)_{\infty}=\frac{1}{\sqrt{3}} x_{1},\left(x_{2}, x_{8}\right)_{\infty}=\frac{1}{\sqrt{3}} x_{2},\left(x_{3}, x_{8}\right)_{\infty}=\frac{1}{\sqrt{3}} x_{3},\left(x_{4}, x_{8}\right)_{\infty}=-\frac{1}{2 \sqrt{3}} x_{4}, \\
& \left(x_{5}, x_{8}\right)_{\infty}=-\frac{1}{2 \sqrt{3}} x_{5},\left(x_{6}, x_{8}\right)_{\infty}=-\frac{1}{2 \sqrt{3}} x_{6},\left(x_{7}, x_{8}\right)_{\infty}=-\frac{1}{2 \sqrt{3}} x_{7}, \\
& \left(x_{4}, x_{3}\right)_{\infty}=\frac{1}{2} x_{4},\left(x_{5}, x_{3}\right)_{\infty}=\frac{1}{2} x_{5},\left(x_{6}, x_{3}\right)_{\infty}=-\frac{1}{2} x_{6},\left(x_{7}, x_{3}\right)_{\infty}=-\frac{1}{2} x_{7} .
\end{aligned}
$$

The triple $\left(\operatorname{span}\left(x_{1}, \ldots, x_{8}, 1\right),(\cdot, \cdot)_{\infty},\{\cdot, \cdot\}_{\infty}\right)$ is a Lie-Jordan algebra.

Thanks for your attention

