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Geometric formulation of Quantum Mechanics

Let us consider a finite dimensional quantum system. Heinsenberg
formalism will be defined on a C∗–algebra A, finite dimensional, and
therefore isomorphic to Mn(C), with the Frobenius norm |A|2 = Tr(A†A).

We can now consider only the set of physical observables. The set of
hermitian operators is isomorphic to the Lie algebra of the unitary group
O h u(n). As we have a (non-degenerate) scalar product

〈A|B〉 = Tr(AB); ∀A,B ∈ O

we can identify O with O∗



Lie-Jordan algebra
A vector space endowed with a Jordan algebra structure ◦ and a Lie
structure [·, ·], such that ∀a, b, c ∈ L:

I Leibnitz [a, b ◦ c] = [a, b] ◦ c + b ◦ [a, c]
I (a ◦ b) ◦ c − a ◦ (b ◦ c) = ~2[b, [c, a]] where ~ ∈ R.

Lie-Jordan Banach (LJB) algebras
A Lie-Jordan algebra L endowed with a norm ‖ · ‖ such that L is
complete and satisfies

I ‖a ◦ b‖ ≤ ‖a‖‖b‖
I ‖[a, b]‖ ≤ |~|−1‖a‖‖b‖
I ‖a2‖ = ‖a‖2

I ‖a2‖ ≤ ‖a2 + b2‖
for any a, b ∈ L.



Can we recover this structure on O and can we do it in a geometric way?

Indeed. If we consider first the linear functions on O∗

Definition of tensor fields
We can consider two tensors encoding relevant algebraic structures of O:

Rξ(dfA, dfB) = 〈ξ, (AB + BA)〉

and
Λξ(dfA, dfB) = 〈ξ, [A,B]〉

R is a symmetric tensor and Λ is the canonical Lie-Poisson tensor for the
unitary algebra. We can extend trivially the definition from linear to
general differentiable functions on O∗.
These tensor fields allow us to consider the notion of Hamiltonian vector
field associated with an observable A (XA) and the corresponding
gradient vector field (YA).
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Definition
We can consider the set of real linear functions on O∗ defined as

FO(O∗) = {fA : O∗ → R| fA(ξ) = ξ(A)}

Theorem
(FO,R,Λ) is a LJ algebra.

fA ◦ fB = R(dfA, dfB) = fA◦B ; {fA, fB} = Λ(dfA, dfB) = f[A,B]

Summary
The algebraic properties encoding the main aspects of the quantum
system can be encoded in the Lie-Jordan algebra structure which
combines the commutator and anti-commutator structures from the space
of observables. But we encode them in two contravariant tensor fields R
and Λ, and this gives us the possibility of considering nonlinear objects.



The space of physical states

Definition
The set of density matrices S̃ of a system corrresponds to the subset of
O defined by the convex combinations of rank-one projectors on the
Hilbert space. Analogously, ρ ∈ O is a density matrix iff

Trρ = 1, ρ ≥ 0.

Analogously, we can also define them in terms of the functions F(O∗) as

S = {ρ ∈ O∗|fI(ρ) = 1; fA2 (ρ) ≥ 0; ∀A ∈ O} ⊂ O∗





We adapt the notation from Grabowski, Kus and Marmo and denote by
DΛ and DR the generalized distributions on O∗ of Hamiltonian and
gradient vector fields, respectively.

Proposition GKM
The distribution D1 = DΛ + DR on O∗ is involutive and can be integrated
to a generalized foliation F1, whose leaves correspond to the orbits of the
action of the general linear group GL(m,C) on O∗, m = dimO, defined
by (T , ξ) 7→ T ξT †.





Proposition
Let P(O) denote the set of real positive linear functionals ζ : O → C, i.e.
such that

ζ(a∗) = ζ(a), ζ(a∗a) ≥ 0, ∀a ∈ O.

The set P(O) is a subset of O∗. Furthermore, it is a stratified manifold,

P(O) =
n⋃

k=0
Pk(O),

where the stratum P(O)k is the set of rank k operators in P(O). Each
stratum P(O)k is a leaf of the foliation F1 corresponding to the joint
distribution, union of Hamiltonian and gradient vector fields.

Proposition
The set of states S is a stratified manifold,

S =
n⋃

k=1
Sk , where Sk = P(O)k ⋂{ξ ∈ O∗|ξ(I) = 1}.



Some considerations:
I Let us consider the foliation of O∗ defined by the gradient vector

field YI . As YI ∈ D1, any leaf that intersects P(O) belongs
completely to P(O).

I Notice that the functional 0 ∈ P(O) is a fixed point of YI . Removing
it, we obtain a regular foliation by YI of P0(O) := P(O)− {0}.

I We can thus define the corresponding quotient manifold identifying
points in the same leaf; two points ζ, ζ ′ are equivalent if ζ = cζ ′,
with c > 0. The set of states S is the section of this fibration
defined by the elements of trace equal to one.

We are interested in the characterization of geometrical objects in S as
objects in P(O) that are projectable with respect to the fibration

πP(ζ) = 1
fI(ζ) ζ, ζ ∈ P0(O).





Definition
Let us consider a set of expectation value functions defined, from the
linear ones, in the form

eA(ρ) := π∗P(fa|S)(ζ) = fa(ζ)
fI(ζ) , ζ ∈ P0(O), a ∈ O.

Theorem
We can define thus a symmetric and a skewsymmetric tensors on the
submanifold S as

RS(deA, deB) = eA◦B − eAeB = Cov(A,B)

ΛS(deA, deB) = Λ(deA, deB) = e[A,B]

The set of expectation value functions ES becomes a Lie-Jordan algebra

eA ◦S eB := eA◦B ; [eA, eB]S = e[A,B];

and its complexification an associative algebra

eA ?S eB = 1
2eA ◦S eB + i

2 [eA, eB]S = eAB



Very simple examples: 1 qubit

As a simple application, let us consider a simple example: consider a
single qubit, a magnetic vector field and the operator

H = ~B~σ.

If we consider the Hamiltonian and gradient vector fields on the Bloch
sphere we find

XH = εjklx jBk ∂

∂x l

YH = Bk ∂

∂xk − (~x~B)xk ∂

∂xk





There have been interesting dynamical models in the last forty years
aiming to describe effective or ab-initio dissipative phenomena

I Metriplectic formulation by Kaufman (1984) and Morrison (1986):
dissipation introduced through entropic effects

ρ̇ = [H, ρ] + S � ρ = XH + YS

It is also related to Rajeev (2007) construction of complex valued
Hamiltonian.

I Gisin (1981): nonlinear effects in Quantum Mechanics. As even
being non-linear, the dynamics preserves the spectrum, it must be a
nonlinear combination of Hamiltonian vector fields:

ρ̇ = [ρ, [ρ,H]] =
∑

k
fkXk

I Brody-Holm-Ellis (2007, 2008): linear dynamics through a double
bracket to reproduce the state of a canonical ensemble:

Ġ = [H, [H,G ]] = (H ◦ G) ◦ G − H2 ◦ G = K + YH2

For a finite dimensional system the trace is conserved and thus K
must compensate the effect of the gradient vector field.



Geometric characterization of the KL equation

GKS and Lindblad determined, in 1976, the form of the infinitesimal
generator of a markovian dynamics on the set of states.

dρ(t)
dt = −i [H, ρ(t)] + 1

2

n2∑
j=1

([Vjρ(t),V †j ] + [Vj , ρ(t)V †j ] =

− i [H, ρ(t)] + 1
2

n2∑
j=1

([V †j Vj , ρ(t)]+ + 1
2

n2∑
j=1

Vjρ(t)V †j

This equation defines a vector field ZL on S:

dρ(t)
dt = ZL(ρ).



We can characterize the different terms from a geometrical point of view
and write

ZL = XH + YJ + K

where
I XH is a Hamiltonian vector field with respect to the Poisson tensor

ΛS
I YJ , is the gradient vector field associated with the function

J =
∑n2

j=1 V †j Vj by the symmetric tensor RS .
I K is the vector field associated to the action of the Kraus operators

K (ρ) =
n2∑

j=1
VjρV †j



Dynamics on the space of tensors

We can encode the evolution in a transformation of the algebraic
structures of our LJB system. Therefore we shall consider the following
equations

d
dt Λ(t) = LZL Λ(t); Λ(0) = ΛS

d
dt R(t) = LZLR(t); R(0) = RS

The system we are interested in is the limit:

R∞ = lim
t→∞

R(t) = lim
t→∞

e−tLZL RS ; Λ∞ = lim
t→∞

Λ(t) = lim
t→∞

e−tLZL ΛS

Question
Does (R∞,Λ∞) define a LJB algebra? This is the dual question to the
one analyzed in Chruściński et al, 2012.



Theorem (Jover)
Consider a set of vector fields W1,W2, ... which generate the tangent
space to S at the limit manifold SL. Then, the contraction T∞ of the
flow Tt on the space of tensor fields on S exists if and only if there exists
asymptotic limits for all the tensors

LWj Tt

This result is particularly useful when used on a set of symmetries of the
dynamical vector field.



Example: 2-level systems

Let us consider the phase damping of a qubit, given by the following
Kossakowski-Lindblad operator

Lρ = −γ(ρ− σ3ρσ3).

The vector field ZL associated to this operator is:

ZL = −2γ
(

x1
∂

∂x1
+ x2

∂

∂x2

)
.

By computing the Lie derivatives with respect to this vector field of ΛS
and RS , we obtain the coordinate expressions of the families ΛS,t and
RS,t :

ΛS,t =e−4γt x3
∂

∂x1
∧

∂

∂x2
+ x1

∂

∂x2
∧

∂

∂x3
+ x2

∂

∂x3
∧

∂

∂x1
,

RS,t =e−4γt
(
∂

∂x1
⊗

∂

∂x1
+

∂

∂x2
⊗

∂

∂x2

)
+

∂

∂x3
⊗

∂

∂x3
−

3∑
j,k=1

xj xk∂xj ⊗ ∂xk .





In this case, the asymptotic limits t →∞ of the families do exist.

Proposition
The phase damping evolution of a qubit defines a contraction of the
Lie-Jordan algebra of functions on the space of states, determined by the
following products:

{x1, x3}∞ = −x2, {x2, x3}∞ = x1, {x1, x2}∞ = 0,
(x1, x1)∞ = (x2, x2)∞ = 0, (x3, x3)∞ = 1.

The Lie algebra (span(x1, x2, x3), {·, ·}∞) is isomorphic to the Euclidean
Lie algebra. The pair (span(x1, x2, x3, 1), (·, ·)∞) is a Jordan algebra. The
triple (span(x1, x2, x3, 1), (·, ·)∞, {·, ·}∞) is a Lie-Jordan algebra.



Example: 3-level systems

The model of decoherence for massive particles is given by

L(ρ) = −γ[X , [X , ρ]],

where X is the position operator. This model can be discretized by
considering a finite number d = 3 of positions ~xm along a circle. The
positions are given by

~xm = (cosφm, sinφm), φm = 2πm
d , m,= 1, 2, . . . , d .

The operator L in the basis of eigenstates of the position operator takes
the form

L|m〉〈n| = −γ |~xm − ~xn| |m〉〈n| = −4γ sin2
(
π(m − n)

d

)
|m〉〈n|,

for m, n = 1, 2, . . . , d .



On the other hand, the pure decoherence of a d-level system is given by

L(ρ) = − 1
d

d−1∑
k=1

γk(ρ− UkρU∗k ), γk > 0, k = 1, 2, . . . , d − 1,

where Uk are the unitary operators given by

Uk =
d−1∑
l=1

λ−k(l−1)Pl , λ = e 2πi
d ,

and Pl are the 1-dimensional projectors |l〉〈l |.



The evolutions of a 3-level system by either the decoherence model of massive particles or the pure
decoherence model define a contraction of the Lie-Jordan algebra of functions. The Poisson and
the Jordan brackets of the contracted algebras are

{x1, x3}∞ = −x2, {x2, x3}∞ = x1,

{x4, x3}∞ = −
1
2

x5, {x5, x3}∞ =
1
2

x4, {x4, x8}∞ = −
√

3
2

x5, {x5, x8}∞ =
√

3
2

x4,

{x6, x3}∞ =
1
2

x7, {x7, x3}∞ = −
1
2

x6, {x6, x8}∞ = −
√

3
2

x7, {x7, x8}∞ =
√

3
2

x6,

(x3, x3)∞ =
2
3

+
1
√

3
x8, (x8, x8)∞ =

2
3
−

1
√

3
x8,

(x1, x8)∞ =
1
√

3
x1, (x2, x8)∞ =

1
√

3
x2, (x3, x8)∞ =

1
√

3
x3, (x4, x8)∞ = −

1
2
√

3
x4,

(x5, x8)∞ = −
1

2
√

3
x5, (x6, x8)∞ = −

1
2
√

3
x6, (x7, x8)∞ = −

1
2
√

3
x7,

(x4, x3)∞ =
1
2

x4, (x5, x3)∞ =
1
2

x5, (x6, x3)∞ = −
1
2

x6, (x7, x3)∞ = −
1
2

x7.

The triple (span(x1, . . . , x8, 1), (·, ·)∞, {·, ·}∞) is a Lie-Jordan algebra.



Thanks for your attention
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