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• The aim of this talk is to describe the setting and the main results of a
research line developed together with G. Marmo, F. Di Cosmo, J.M. Perez-
Pardo.

• It describes a formulation for the YM equations and a Dirac – Kähler (Hodge
– de Rham) operator on a class of quantum spheres. Such a Dirac operator
acts upon spinors introduced algebraically, i.e. with no needs to define a
principal spinor bundle on them.
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gauge theory – YM equations

• Gauge theory describes interactions in physics by requiring the dynamics
of a system to be invariant with respect to the local action of a symmetry
group.

• Its geometric formulation is based on the notion of principal (and associated)
bundles.

π : P
G−→ M, M ∼ P \G

ρ : G → GL(E),

ΓE 3 ψ : M → E (matter fields)

A ∈ g ⊗ Λ1(M) (vector potential)

Dψ = dψ + A ∧ ψ,

D2ψ = F ∧ ψ, F = dA + A ∧ A (curvature)
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• On (M, g) with gauge group G

S = −1

2

∫
M

dµTr (F ∧ ?F )

gives the YM action, whose extremals are the Yang-Mills equations

DF = 0, D(?F ) = 0

with

DT = dT + [[A, T ]], T ∈ End(E)⊗ Λk(M) (covariant derivative)

? : Λk(M) → ΛN−k(M), ?2 = (−1)k(N−k)(sign (g))

• The action is invariant under a gauge transformation G ∈ F(M)⊗Aut(E),

A 7→ A′ = GAG−1 + (dG)G−1

• Along a basis of Λ1(M) the YM equations are 2nd order nl PDE with higher
order term

� = ?d ? d = div ◦ grad

(the Laplace-Beltrami operator)
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Dirac - Kähler operator

• On the Cartan algebra (Λ(M),∧, d, iX) one represents the Clifford product

dxa ∨ dxb + dxb ∨ dxa = 2 gab

with dxa ∨ dxb = dxa ∧ dxb + gab. The set

(Λ(M), g,∧,∨, d, iX)

is the Kähler - Atiyah algebra on (M, g).

• From dφ = dxa ∧∇aφ for φ ∈ Λk(M), following [K] one defines

Dφ = dxa ∨ ∇aφ = dφ + (−1)N(k−1) ? d ? φ

= dφ − d†φ

where the duality is

〈dα | β〉 = 〈α | d†β〉 +

∫
M

d(α ∧ ?β).
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with respect to the scalar product

〈φ | φ′〉 =

∫
M

φ ∧ ?φ′.

• The square gives the Laplace - Beltrami operator

D2φ = −(d d† + d† d)φ

• The restriction of D to irreducible modules I ⊂ Λ(M) gives the action of
the so called Dirac - Kähler operator. Elements in I are called spinors. The
action dxa∨ upon I gives the corresponding γa. The operator D is defined
on any orientable manifold.

• The KD operator is not the spin (Atiyah) Dirac operator /D on (M, g). Only

upon sections of bundles associated to a spin bundle π : P
Spin(g)→ M it is

/Dψ = γr(∂r +
1

4
ηasΓ

s
rbγ

aγb)ψ
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The S3 ∼ SU(2) example

• On the group manifold SU(2) with g = δabω
a ⊗ ωb (the CK metric, with

?ωa = −dωa) and df = (Laf )ωa the KD operator acts on a 4-dim spinor
space

Dψ =


0 L+ Lz L−
L− Lz − i −L− 0
Lz −L+ −i L−
L+ 0 L+ −i− Lz

 ψ

with sp(D) = {−i(j + 1), ij,±i
√
j(j + 1)}, j = 1/2, 1, 3/2, . . . .

• The spin Dirac operator acts on a 2-dim spinor space as

/D ψ = (σaLa −
3i

4
)ψ

with sp( /D) = {i(j − 1/4), −i(j + 3/4)}.
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• On the principal bundle (with Spin(4) = SU(2)× SU(2) and Spin(3) = SU(2))

πP : Spin(4)/Spin(3) → S3

the vector potential given by a multiple of the Maurer-Cartan form

A = λXa ⊗ ωa = λ g−1dg

gives

D(?F ) = λ(λ− 1)(λ − 1

2
)ε c
ab Xc ⊗ (ωa ∧ ωb)

so that A = 1/2 g−1dg solves the YM eqs on S3.

•With π : R4\{0} → S3, one proves that π∗(A) gives the meron solution
of YM eqs. [D-A,FF76]

• Is it possible to define a KD operator in a quantum group setting, and use
it to solve YM equations?
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Gauge theory over SUq(2)

• In the spirit of Gelfand duality, (following [Wo]) a compact quantum group
G = (A,∆) is separable unital C∗-algebra with a (dense) coproduct ∆.

• As quantum group SUq(2) consider the Hopf (S, ε,∆, ∗),
polynomial unital ∗-algebra (with q ∈ R) generated by

γ =

(
a −qc∗
c a∗

)
,

ac = qca ac∗ = qc∗a cc∗ = c∗c
a∗a + c∗c = aa∗ + q2cc∗ = 1.

• The dually paired Hopf universal envelopping algebra to SUq(2)
is Uq(su(2)) = {K±, E, F = E∗}

K±E = q±EK± K±F = q∓FK± [E,F ] =
K2 −K−2

q − q−1
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• A gauge theory on a classical manifold M requires:

1. a differential structure on M and G (gauge group),

2. a notion of connection (vector potential, covariant derivatives),

3. a metric tensor on M .

• In the algebraic formulation of a gauge theory over A = SUq(2) we assume:

1. the formulation à la Woronowicz for differential calculi,

2. covariant derivatives are derivations on finite projective modules over A,
whose elements describes sections of vector bundles (matter fields),

3. symmetric tensors and ?-Hodge on A.
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• On SUq(2) a family of left-covariant 3D ∗-calculi (i.e. d(x∗) = (dx)∗)

dx =
∑
a

(Xa.x)ωa, Xa ∈ Uq(su(2)), (a = ±, z),

• For any of such calculi we have a quantum Lie algebra Xq (with a braided
commutator depending on σ) and a Maurer-Cartan structure equation

[Xa, Xb] = f c
abXc, dωa = − 1

1 + q2
f a
bc ωb ∧ ωc

• A Maurer-Cartan form exists (although the differential calculus is only left-
covariant [Wo]):

γ−1dγ = Xa ⊗ ωa ∈ Xq ⊗ Ω1(SUq(2))

with Xq the quantum Lie algebra corresponding to the calculus.
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• For any 3d left covariant exterior algebra it is possible to define a symmetric
tensor and

? : Λk(SUq(2)) → Λ3−k(SUq(2))

with

? (1) = τ, ?(τ ) = 1, ?2(ωa) = Aωa, ?(ωa) = µdωa,

with lim
q→1

A = 1, lim
q→1

µ = −1

and a duality

〈φ | φ′〉 =

∫
τ

φ′ ∧ (?φ),

〈d†φ | φ′〉 = 〈φ | dφ′〉, d†φ = (−1)k ? d(?φ)

which we use to define a KD operator on SUq(2) as

D(φ) = dφ − (−1)k ? d(?φ)
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•We limit to say that the spectrum of the quantum D is purely discrete, and
is a deformation (in q) of the classical one. For such operator one can prove
the Hodge decomposition theorem

Λ(SUq(2)) = d(Λ) ⊕ d†(Λ) ⊕ ker(D2)

•What about the YM eqs on SUq(2)? It is possible to prove that

A =
1

2
γ−1dγ ⇒ D(?F ) = 0
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•We consider R4
q as the ∗-algebra generated by x1, x2, x3, x4 with

xixj = qxjxi i < j, i + j 6= 5,

x2x3 = x3x2, x1x4 − x4x1 = (q−1 − q)x2x3
and x1 ∗ qx4, x∗2 = x3.

• It has a positive central group like element

S = qx1x4 + q2x2x3

The localisation R4
q\{0} comes by adding R4

q an invertible central generator
r = r∗ with Sr−2 = 1.

• The set R4
q\{0} gives the Hopf ∗-algebra GLq(1, H) of quantum invertible

quaternions, and SUq(2) is a quantum subgroup of it.

• On GLq(1, H) it is possible to define all the relevant geometric structures
needed, and to prove that the vector potential A is transformed into a solu-
tion of the YM eqs. This is the quantum meron.
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