Hodge - de Rham (Dirac) operators on classical and quantum spheres

Alessandro Zampini
I.N.F.N. - Napoli

Geometry and Physics 2017

- The aim of this talk is to describe the setting and the main results of a research line developed together with G. Marmo, F. Di Cosmo, J.M. PerezPardo.
- It describes a formulation for the YM equations and a Dirac - Kähler (Hodge - de Rham) operator on a class of quantum spheres. Such a Dirac operator acts upon spinors introduced algebraically, i.e. with no needs to define a principal spinor bundle on them.
- Gauge theory describes interactions in physics by requiring the dynamics of a system to be invariant with respect to the local action of a symmetry group.
- Its geometric formulation is based on the notion of principal (and associated) bundles.

$$
\begin{array}{lr}
\pi: P \xrightarrow{G} M, \quad M \sim P \backslash G \\
\rho: G \rightarrow \mathrm{GL}(E), & \\
\Gamma_{\mathcal{E}} \ni \psi: M \rightarrow E & \text { (matter fields) } \\
A \in \mathfrak{g} \otimes \Lambda^{1}(M) & \text { (vector potential) } \\
D \psi=\mathrm{d} \psi+A \wedge \psi, & \\
D^{2} \psi=F \wedge \psi, & F=\mathrm{d} A+A \wedge A
\end{array} \quad \text { (curvature) }
$$

- On (M, g) with gauge group G

$$
S=-\frac{1}{2} \int_{M} \mathrm{~d} \mu \operatorname{Tr}(\mathrm{~F} \wedge \star \mathrm{~F})
$$

gives the YM action, whose extremals are the Yang-Mills equations

$$
\mathfrak{D} F=0, \quad \mathfrak{D}(\star F)=0
$$

with

$$
\begin{array}{lc}
\mathfrak{D} T=\mathrm{d} T+[[A, T]], & T \in \operatorname{End}(E) \otimes \Lambda^{k}(M) \quad \text { (covariant derivative) } \\
\star: \Lambda^{k}(M) \rightarrow \Lambda^{N-k}(M), & \star^{2}=(-1)^{k(N-k)}(\operatorname{sign}(g))
\end{array}
$$

- The action is invariant under a gauge transformation $G \in \mathcal{F}(M) \otimes \operatorname{Aut}(E)$,

$$
A \quad \mapsto \quad A^{\prime}=G A G^{-1}+(\mathrm{d} G) G^{-1}
$$

- Along a basis of $\Lambda^{1}(M)$ the YM equations are 2 nd order nl PDE with higher order term

$$
\square=\star \mathrm{d} \star \mathrm{~d}=\text { div } \circ \operatorname{grad}
$$

(the Laplace-Beltrami operator)

Dirac - Kähler operator

- On the Cartan algebra $\left(\Lambda(M), \wedge, \mathrm{d}, i_{X}\right)$ one represents the Clifford product

$$
\mathrm{d} x^{a} \vee \mathrm{~d} x^{b}+\mathrm{d} x^{b} \vee \mathrm{~d} x^{a}=2 g^{a b}
$$

with $\mathrm{d} x^{a} \vee \mathrm{~d} x^{b}=\mathrm{d} x^{a} \wedge \mathrm{~d} x^{b}+g^{a b}$. The set

$$
\left(\Lambda(M), g, \wedge, \vee, \mathrm{~d}, i_{X}\right)
$$

is the Kähler - Atiyah algebra on (M, g).

- From $\mathrm{d} \phi=\mathrm{d} x^{a} \wedge \nabla_{a} \phi$ for $\phi \in \Lambda^{k}(M)$, following [K] one defines

$$
\begin{aligned}
\mathcal{D} \phi=\mathrm{d} x^{a} \vee \nabla_{a} \phi & =\mathrm{d} \phi+(-1)^{N(k-1)} \star \mathrm{d} \star \phi \\
& =\mathrm{d} \phi-\mathrm{d}^{\dagger} \phi
\end{aligned}
$$

where the duality is

$$
\langle\mathrm{d} \alpha \mid \beta\rangle=\left\langle\alpha \mid \mathrm{d}^{\dagger} \beta\right\rangle+\int_{M} \mathrm{~d}(\alpha \wedge \star \beta)
$$

with respect to the scalar product

$$
\left\langle\phi \mid \phi^{\prime}\right\rangle=\int_{M} \phi \wedge \star \phi^{\prime}
$$

- The square gives the Laplace - Beltrami operator

$$
\mathcal{D}^{2} \phi=-\left(\mathrm{d}^{\dagger}+\mathrm{d}^{\dagger} \mathrm{d}\right) \phi
$$

- The restriction of \mathcal{D} to irreducible modules $I \subset \Lambda(M)$ gives the action of the so called Dirac - Kähler operator. Elements in I are called spinors. The action $\mathrm{d} x^{a} \vee$ upon I gives the corresponding γ^{a}. The operator \mathcal{D} is defined on any orientable manifold.
- The KD operator is not the spin (Atiyah) Dirac operator $\not D$ on (M, g). Only upon sections of bundles associated to a spin bundle $\pi: P \xrightarrow{\text { Spin }(g)} M$ it is

$$
\not D \psi=\gamma^{r}\left(\partial_{r}+\frac{1}{4} \eta_{a s} \Gamma_{r b}^{s} \gamma^{a} \gamma^{b}\right) \psi
$$

$$
\text { The } S^{3} \sim S U(2) \text { example }
$$

- On the group manifold $S U(2)$ with $g=\delta_{a b} \omega^{a} \otimes \omega^{b}$ (the CK metric, with $\left.\star \omega^{a}=-\mathrm{d} \omega^{a}\right)$ and $\mathrm{d} f=\left(L_{a} f\right) \omega^{a}$ the KD operator acts on a 4 -dim spinor space

$$
\mathcal{D} \psi=\left(\begin{array}{cccc}
0 & L_{+} & L_{z} & L_{-} \\
L_{-} & L_{z}-i & -L_{-} & 0 \\
L_{z} & -L_{+} & -i & L_{-} \\
L_{+} & 0 & L_{+} & -i-L_{z}
\end{array}\right) \psi
$$

with $\operatorname{sp}(\mathcal{D})=\{-i(j+1), i j, \pm i \sqrt{j(j+1)}\}, \quad j=1 / 2,1,3 / 2, \ldots$.

- The spin Dirac operator acts on a 2-dim spinor space as

$$
\not D \psi=\left(\sigma^{a} L_{a}-\frac{3 i}{4}\right) \psi
$$

with $\operatorname{sp}(\not D)=\{i(j-1 / 4),-i(j+3 / 4)\}$.

- On the principal bundle $($ with $\operatorname{Spin}(4)=\operatorname{SU}(2) \times \operatorname{SU}(2)$ and $\operatorname{Spin}(3)=\operatorname{SU}(2))$

$$
\pi_{P}: \operatorname{Spin}(4) / \operatorname{Spin}(3) \rightarrow S^{3}
$$

the vector potential given by a multiple of the Maurer-Cartan form

$$
A=\lambda X_{a} \otimes \omega^{a}=\lambda g^{-1} \mathrm{~d} g
$$

gives

$$
\mathfrak{D}(\star F)=\lambda(\lambda-1)\left(\lambda-\frac{1}{2}\right) \epsilon_{a b}{ }^{c} X_{c} \otimes\left(\omega^{a} \wedge \omega^{b}\right)
$$

so that $A=1 / 2 g^{-1} \mathrm{~d} g$ solves the YM eqs on S^{3}.

- With $\pi: \mathbb{R}^{4} \backslash\{0\} \rightarrow S^{3}$, one proves that $\pi^{*}(A)$ gives the meron solution of YM eqs. [D-A,FF76]
- Is it possible to define a KD operator in a quantum group setting, and use it to solve YM equations?
- In the spirit of Gelfand duality, (following [Wo]) a compact quantum group $G=(A, \Delta)$ is separable unital C^{*}-algebra with a (dense) coproduct Δ.
- As quantum group $\mathrm{SU}_{q}(2)$ consider the $\operatorname{Hopf}(S, \varepsilon, \Delta, *)$, polynomial unital $*$-algebra (with $q \in \mathbb{R}$) generated by

$$
\gamma=\left(\begin{array}{cc}
a & -q c^{*} \\
c & a^{*}
\end{array}\right), \quad \begin{aligned}
& a c=q c a \quad a c^{*}=q c^{*} a \quad c c^{*}=c^{*} c \\
& a^{*} a+c^{*} c=a a^{*}+q^{2} c c^{*}=1
\end{aligned}
$$

- The dually paired Hopf universal envelopping algebra to $\mathrm{SU}_{q}(2)$ is $\mathcal{U}_{q}(\mathfrak{s u}(2))=\left\{K^{ \pm}, E, F=E^{*}\right\}$

$$
K^{ \pm} E=q^{ \pm} E K^{ \pm} \quad K^{ \pm} F=q^{\mp} F K^{ \pm} \quad[E, F]=\frac{K^{2}-K^{-2}}{q-q^{-1}}
$$

- A gauge theory on a classical manifold M requires:

1. a differential structure on M and G (gauge group),
2. a notion of connection (vector potential, covariant derivatives),
3. a metric tensor on M.

- In the algebraic formulation of a gauge theory over $\mathcal{A}=\mathrm{SU}_{q}(2)$ we assume:

1. the formulation à la Woronowicz for differential calculi,
2. covariant derivatives are derivations on finite projective modules over \mathcal{A}, whose elements describes sections of vector bundles (matter fields),
3. symmetric tensors and \star-Hodge on \mathcal{A}.

- $\mathrm{On}_{q}(2)$ a family of left-covariant 3D $*$-calculi (i.e. $\left.\mathrm{d}\left(x^{*}\right)=(\mathrm{d} x)^{*}\right)$

$$
\mathrm{d} x=\sum_{a}\left(X_{a} \triangleright x\right) \omega_{a}, \quad X_{a} \in \mathcal{U}_{q}(\mathfrak{s u}(2)), \quad(a= \pm, z)
$$

- For any of such calculi we have a quantum Lie algebra \mathcal{X}_{q} (with a braided commutator depending on σ) and a Maurer-Cartan structure equation

$$
\left[X_{a}, X_{b}\right]=f_{a b}^{c} X_{c}, \quad \quad \mathrm{~d} \omega_{a}=-\frac{1}{1+q^{2}} f_{b c}^{a} \omega_{b} \wedge \omega_{c}
$$

- A Maurer-Cartan form exists (although the differential calculus is only leftcovariant [Wo]):

$$
\gamma^{-1} \mathrm{~d} \gamma=X_{a} \otimes \omega_{a} \in \mathcal{X}_{q} \otimes \Omega^{1}\left(\mathrm{SU}_{q}(2)\right)
$$

with \mathcal{X}_{q} the quantum Lie algebra corresponding to the calculus.

- For any 3d left covariant exterior algebra it is possible to define a symmetric tensor and

$$
\star: \Lambda^{k}\left(\mathrm{SU}_{q}(2)\right) \rightarrow \Lambda^{3-k}\left(\mathrm{SU}_{q}(2)\right)
$$

with

$$
\begin{gathered}
\star(1)=\tau, \quad \star(\tau)=1, \quad \star^{2}\left(\omega_{a}\right)=A \omega_{a}, \quad \star\left(\omega_{a}\right)=\mu \mathrm{d} \omega_{a} \\
\text { with } \quad \lim _{q \rightarrow 1} A=1, \quad \lim _{q \rightarrow 1} \mu=-1
\end{gathered}
$$

and a duality

$$
\begin{aligned}
& \left\langle\phi \mid \phi^{\prime}\right\rangle=\int_{\tau} \phi^{\prime} \wedge(\star \phi), \\
& \left\langle\mathrm{d}^{\dagger} \phi \mid \phi^{\prime}\right\rangle=\left\langle\phi \mid \mathrm{d} \phi^{\prime}\right\rangle, \quad \mathrm{d}^{\dagger} \phi=(-1)^{k} \star \mathrm{~d}(\star \phi)
\end{aligned}
$$

which we use to define a KD operator on $\mathrm{SU}_{q}(2)$ as

$$
\mathcal{D}(\phi)=\mathrm{d} \phi-(-1)^{k} \star \mathrm{~d}(\star \phi)
$$

- We limit to say that the spectrum of the quantum \mathcal{D} is purely discrete, and is a deformation (in q) of the classical one. For such operator one can prove the Hodge decomposition theorem

$$
\Lambda\left(\mathrm{SU}_{q}(2)\right)=\mathrm{d}(\Lambda) \oplus \mathrm{d}^{\dagger}(\Lambda) \oplus \operatorname{ker}\left(\mathcal{D}^{2}\right)
$$

- What about the YM eqs on $\mathrm{SU}_{q}(2)$? It is possible to prove that

$$
A=\frac{1}{2} \gamma^{-1} \mathrm{~d} \gamma \quad \Rightarrow \quad \mathfrak{D}(\star F)=0
$$

- We consider \mathbb{R}_{q}^{4} as the $*$-algebra generated by $x_{1}, x_{2}, x_{3}, x_{4}$ with

$$
\begin{array}{lc}
x_{i} x_{j}=q x_{j} x_{i} & i<j, i+j \neq 5 \\
x_{2} x_{3}=x_{3} x_{2}, & x_{1} x_{4}-x_{4} x_{1}=\left(q^{-1}-q\right) x_{2} x_{3}
\end{array}
$$

and $x_{1} * q x_{4}, \quad x_{2}^{*}=x_{3}$.

- It has a positive central group like element

$$
S=q x_{1} x_{4}+q^{2} x_{2} x_{3}
$$

The localisation $\mathbb{R}_{q}^{4} \backslash\{0\}$ comes by adding \mathbb{R}_{q}^{4} an invertible central generator $r=r^{*}$ with $S r^{-2}=1$.

- The set $\mathbb{R}_{q}^{4} \backslash\{0\}$ gives the Hopf $*$-algebra $G L_{q}(1, H)$ of quantum invertible quaternions, and $\mathrm{SU}_{q}(2)$ is a quantum subgroup of it.
- On $G L_{q}(1, H)$ it is possible to define all the relevant geometric structures needed, and to prove that the vector potential A is transformed into a solution of the YM eqs. This is the quantum meron.

