Hodge – de Rham (Dirac) operators on classical and quantum spheres

Alessandro Zampini I.N.F.N. – Napoli

Geometry and Physics 2017

- The aim of this talk is to describe the setting and the main results of a research line developed together with G. Marmo, F. Di Cosmo, J.M. Perez-Pardo.
- It describes a formulation for the YM equations and a Dirac Kähler (Hodge de Rham) operator on a class of quantum spheres. Such a Dirac operator acts upon spinors introduced *algebraically*, i.e. with no needs to define a principal spinor bundle on them.

gauge theory – YM equations

- Gauge theory describes interactions in physics by requiring the dynamics of a system to be invariant with respect to the *local* action of a symmetry group.
- Its geometric formulation is based on the notion of principal (and associated) bundles.

$$\pi: P \xrightarrow{G} M, \qquad M \sim P \backslash G$$

$$\rho: G \to \operatorname{GL}(E),$$

$$\Gamma_{\mathcal{E}} \ni \psi: M \to E \qquad \text{(matter fields)}$$

$$A \in \mathfrak{g} \otimes \Lambda^{1}(M) \qquad \text{(vector potential)}$$

$$D \psi = \operatorname{d} \psi + A \wedge \psi,$$

$$D^{2} \psi = F \wedge \psi, \qquad F = \operatorname{d} A + A \wedge A \qquad \text{(curvature)}$$

• On (M, g) with gauge group G

$$S = -\frac{1}{2} \int_{M} d\mu \operatorname{Tr} \left(F \wedge \star F \right)$$

gives the YM action, whose extremals are the Yang-Mills equations

$$\mathfrak{D}F = 0, \qquad \mathfrak{D}(\star F) = 0$$

with

$$\mathfrak{D} T = \mathrm{d}T + [[A, T]], \qquad T \in \mathrm{End}(E) \otimes \Lambda^k(M) \quad \text{(covariant derivative)}$$

 $\star : \Lambda^k(M) \to \Lambda^{N-k}(M), \qquad \star^2 = (-1)^{k(N-k)} (\mathrm{sign}\,(g))$

• The action is invariant under a gauge transformation $G \in \mathcal{F}(M) \otimes \operatorname{Aut}(E)$,

$$A \quad \mapsto \quad A' = G A G^{-1} + (dG)G^{-1}$$

• Along a basis of $\Lambda^1(M)$ the YM equations are 2nd order nl PDE with higher order term

$$\Box = \star d \star d = \text{div} \circ \text{grad}$$

(the Laplace-Beltrami operator)

Dirac - Kähler operator

• On the Cartan algebra $(\Lambda(M), \wedge, d, i_X)$ one represents the Clifford product

$$\mathrm{d}x^a \vee \mathrm{d}x^b + \mathrm{d}x^b \vee \mathrm{d}x^a = 2\,g^{ab}$$
 with $\mathrm{d}x^a \vee \mathrm{d}x^b = \mathrm{d}x^a \wedge \mathrm{d}x^b + g^{ab}$. The set
$$(\Lambda(M), g, \wedge, \vee, \mathrm{d}, i_X)$$

is the Kähler - Atiyah algebra on (M, g).

• From $d\phi = dx^a \wedge \nabla_a \phi$ for $\phi \in \Lambda^k(M)$, following [K] one defines

$$\mathcal{D}\phi = dx^a \vee \nabla_a \phi = d\phi + (-1)^{N(k-1)} \star d \star \phi$$
$$= d\phi - d^{\dagger}\phi$$

where the duality is

$$\langle d\alpha \mid \beta \rangle = \langle \alpha \mid d^{\dagger}\beta \rangle + \int_{M} d(\alpha \wedge \star \beta).$$

with respect to the scalar product

$$\langle \phi \mid \phi' \rangle = \int_{M} \phi \wedge \star \phi'.$$

• The square gives the Laplace - Beltrami operator

$$\mathcal{D}^2 \phi = -(\mathrm{d}\,\mathrm{d}^\dagger + \mathrm{d}^\dagger \,\mathrm{d})\phi$$

- The restriction of \mathcal{D} to irreducible modules $I \subset \Lambda(M)$ gives the action of the so called Dirac Kähler operator. Elements in I are called *spinors*. The action $dx^a \vee upon\ I$ gives the corresponding γ^a . The operator \mathcal{D} is defined on any orientable manifold.
- The KD operator is *not* the spin (Atiyah) Dirac operator $\not \!\!\!D$ on (M,g). Only upon sections of bundles associated to a spin bundle $\pi:P\stackrel{\mathrm{Spin}(g)}{\to}M$ it is

$$\not\!\!D\psi = \gamma^r (\partial_r + \frac{1}{4} \eta_{as} \Gamma_{rb}^{\ s} \gamma^a \gamma^b) \psi$$

The $S^3 \sim SU(2)$ example

• On the group manifold SU(2) with $g = \delta_{ab}\omega^a \otimes \omega^b$ (the CK metric, with $\star \omega^a = -d\omega^a$) and $df = (L_a f)\omega^a$ the KD operator acts on a 4-dim spinor space

$$\mathcal{D}\psi = \begin{pmatrix} 0 & L_{+} & L_{z} & L_{-} \\ L_{-} & L_{z} - i & -L_{-} & 0 \\ L_{z} & -L_{+} & -i & L_{-} \\ L_{+} & 0 & L_{+} & -i - L_{z} \end{pmatrix} \psi$$
with sp(\mathcal{D}) = \{-i(j+1), ij, \pm i\sqrt{j(j+1)}\}, \quad j = 1/2, 1, 3/2, \ldots

• The spin Dirac operator acts on a 2-dim spinor space as

$$\not\!\!D\,\psi = (\sigma^a L_a - \frac{3i}{4})\psi$$

with $\operatorname{sp}(\mathcal{D}) = \{i(j-1/4), -i(j+3/4)\}.$

• On the principal bundle (with Spin(4) = SU(2) × SU(2) and Spin(3) = SU(2)) $\pi_P : \text{Spin}(4)/\text{Spin}(3) \to S^3$

the vector potential given by a multiple of the Maurer-Cartan form

$$A = \lambda X_a \otimes \omega^a = \lambda g^{-1} dg$$

gives

$$\mathfrak{D}(\star F) = \lambda(\lambda - 1)(\lambda - \frac{1}{2})\epsilon_{ab}^{\ c}X_c \otimes (\omega^a \wedge \omega^b)$$

so that $A = 1/2 g^{-1} dg$ solves the YM eqs on S^3 .

- With $\pi: \mathbb{R}^4 \setminus \{0\} \to S^3$, one proves that $\pi^*(A)$ gives the *meron* solution of YM eqs. [D-A,FF76]
- Is it possible to define a KD operator in a quantum group setting, and use it to solve YM equations?

Gauge theory over $SU_q(2)$

- In the spirit of Gelfand duality, (following [Wo]) a compact quantum group $G = (A, \Delta)$ is separable unital C^* -algebra with a (dense) coproduct Δ .
- As quantum group $SU_q(2)$ consider the Hopf $(S, \varepsilon, \Delta, *)$, polynomial unital *-algebra (with $q \in \mathbb{R}$) generated by

$$\gamma = \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix}, \qquad \begin{array}{c} ac = qca & ac^* = qc^*a & cc^* = c^*c \\ a^*a + c^*c = aa^* + q^2cc^* = 1. \end{array}$$

• The dually paired Hopf universal envelopping algebra to $SU_q(2)$ is $\mathcal{U}_q(\mathfrak{su}(2)) = \{K^{\pm}, E, F = E^*\}$

$$K^{\pm}E = q^{\pm}EK^{\pm}$$
 $K^{\pm}F = q^{\mp}FK^{\pm}$ $[E, F] = \frac{K^2 - K^{-2}}{q - q^{-1}}$

- ullet A gauge theory on a classical manifold M requires:
 - 1. a differential structure on M and G (gauge group),
 - 2. a notion of connection (vector potential, covariant derivatives),
 - 3. a metric tensor on M.

- In the algebraic formulation of a gauge theory over $\mathcal{A} = \mathrm{SU}_q(2)$ we assume:
 - 1. the formulation à la Woronowicz for differential calculi,
 - 2. covariant derivatives are derivations on finite projective modules over \mathcal{A} , whose elements describes sections of vector bundles (matter fields),
 - 3. symmetric tensors and \star -Hodge on \mathcal{A} .

• On $SU_q(2)$ a family of left-covariant 3D *-calculi (i.e. $d(x^*) = (dx)^*$)

$$dx = \sum_{a} (X_a \triangleright x) \omega_a, \qquad X_a \in \mathcal{U}_q(\mathfrak{su}(2)), \quad (a = \pm, z),$$

• For any of such calculi we have a quantum Lie algebra \mathcal{X}_q (with a braided commutator depending on σ) and a Maurer-Cartan structure equation

$$[X_a, X_b] = f_{ab}^{\ c} X_c, \qquad d\omega_a = -\frac{1}{1+q^2} f_{bc}^{\ a} \omega_b \wedge \omega_c$$

• A Maurer-Cartan form exists (although the differential calculus is only left-covariant [Wo]):

$$\gamma^{-1} d\gamma = X_a \otimes \omega_a \in \mathcal{X}_q \otimes \Omega^1(SU_q(2))$$

with \mathcal{X}_q the quantum Lie algebra corresponding to the calculus.

• For any 3d left covariant exterior algebra it is possible to define a symmetric tensor and

$$\star : \Lambda^k(SU_q(2)) \to \Lambda^{3-k}(SU_q(2))$$

with

$$\star (1) = \tau, \qquad \star(\tau) = 1, \qquad \star^2(\omega_a) = A\omega_a, \qquad \star(\omega_a) = \mu d\omega_a,$$

with
$$\lim_{q \to 1} A = 1$$
, $\lim_{q \to 1} \mu = -1$

and a duality

$$\langle \phi \mid \phi' \rangle = \int_{\tau} \phi' \wedge (\star \phi),$$

$$\langle d^{\dagger} \phi \mid \phi' \rangle = \langle \phi \mid d\phi' \rangle, \qquad d^{\dagger} \phi = (-1)^k \star d(\star \phi)$$

which we use to define a KD operator on $SU_q(2)$ as

$$\mathcal{D}(\phi) = d\phi - (-1)^k \star d(\star \phi)$$

• We limit to say that the spectrum of the quantum \mathcal{D} is purely discrete, and is a deformation (in q) of the classical one. For such operator one can prove the Hodge decomposition theorem

$$\Lambda(SU_q(2)) = d(\Lambda) \oplus d^{\dagger}(\Lambda) \oplus \ker(\mathcal{D}^2)$$

• What about the YM eqs on $SU_q(2)$? It is possible to prove that

$$A = \frac{1}{2} \gamma^{-1} d\gamma \qquad \Rightarrow \qquad \mathfrak{D}(\star F) = 0$$

ullet We consider \mathbb{R}_q^4 as the *-algebra generated by x_1, x_2, x_3, x_4 with

$$x_i x_j = q x_j x_i$$
 $i < j, i + j \neq 5,$
 $x_2 x_3 = x_3 x_2,$ $x_1 x_4 - x_4 x_1 = (q^{-1} - q) x_2 x_3$

and $x_1 * qx_4$, $x_2^* = x_3$.

• It has a positive central group like element

$$S = qx_1x_4 + q^2x_2x_3$$

The localisation $\mathbb{R}_q^4 \setminus \{0\}$ comes by adding \mathbb{R}_q^4 an invertible central generator $r = r^*$ with $Sr^{-2} = 1$.

- The set $\mathbb{R}_q^4\setminus\{0\}$ gives the Hopf *-algebra $GL_q(1,H)$ of quantum invertible quaternions, and $SU_q(2)$ is a quantum subgroup of it.
- On $GL_q(1, H)$ it is possible to define all the relevant geometric structures needed, and to prove that the vector potential A is transformed into a solution of the YM eqs. This is the *quantum meron*.