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e The aim of this talk is to describe the setting and the main results of a

research line developed together with G. Marmo, F. Di Cosmo, J.M. Perez-
Pardo.

e [t describes a formulation for the YM equations and a Dirac — Kéhler (Hodge
— de Rham) operator on a class of quantum spheres. Such a Dirac operator
acts upon spinors introduced algebraically, i.e. with no needs to define a
principal spinor bundle on them.



gauge theory — YM equations

e Gauge theory describes interactions in physics by requiring the dynamics
of a system to be invariant with respect to the local action of a symmetry

group.

e [ts geometric formulation is based on the notion of principal (and associated)
bundles.

P -5 M, M~ P\G
p . G — GL(F),
ey : M — FE (matter fields)

Acg® ANM) (vector potential)
Dy =dy + AN Y,
D% = F A, F=dA+ANA  (curvature)



e On (M, g) with gauge group G

S = —1/ duTr (F A +F)
2 Ju

gives the YM action, whose extremals are the Yang-Mills equations

DF =0, D*F) =0
with
DT =dT + ||A,T]], T € End(E) @ A*(M) (covariant derivative)
% o AS(M) — AR, *2 = (=)W (sign (g))

e The action is invariant under a gauge transformation G € F(M )R Aut(FE),
A — A =GAG + (dG)G!

e Along a basis of A*(M) the YM equations are 2nd order nl PDE with higher
order term

[1 = xdxd = div o grad
(the Laplace-Beltrami operator)



Dirac - Kahler operator

e On the Cartan algebra (A(M), A, d, 2x) one represents the Clifford product

dz® v dz’ + dz’ v dz® = 2¢*
with dz® vV da? = dz® A dz? + g%. The set
(A(M),g,N,V,d,ix)
is the Kéhler - Atiyah algebra on (M, g).

e From d¢ = da® A V,¢ for ¢ € A¥(M), following [K] one defines
Do = dz® V Vep = do + (=) Vs dx o
= do — di¢
where the duality is

(o | B) = (| dTB) + / Ao A #B).

M



with respect to the scalar product

<¢\¢’>:/M¢A*¢’.

e The square gives the Laplace - Beltrami operator

D¢ = —(dd" + dTd)¢

e The restriction of D to irreducible modules I C A(M) gives the action of
the so called Dirac - Kahler operator. Elements in I are called spinors. The
action dz*V upon [ gives the corresponding v*. The operator D is defined
on any orientable manifold.

e The KD operator is not the spin (Atiyah) Dirac operator 1D on (M, g). Only

Spin
upon sections of bundles associated to a spin bundle 7 : P p%(g) M it is

1
Dy = 4" (0, + Enaslliv“vb)w



The S? ~ SU(2) example

e On the group manifold SU(2) with ¢ = Jw? ® W’ (the CK metric, with
*xw® = —dw®) and df = (L,f)w” the KD operator acts on a 4-dim spinor
space

0 L. L. L.

L L,—1 —L_ 0

L. —-n, —-i . |Y

L. 0 L, —i—L.

with sp(D) = {—i(j + 1),4j, £i /G + D}, j=1/2,1,3/2,....

Dip =

e The spin Dirac operator acts on a 2-dim spinor space as
. 31
lﬁlb — (0 L, — Z)w
with sp(DD) = {i(j — 1/4), —i(j +3/4)}.



e On the principal bundle (with Spin(4) = SU(2) x SU(2) and Spin(3) = SU(2))
mp : Spin(4)/Spin(3) — S°
the vector potential given by a multiple of the Maurer-Cartan form
A=X2X,®w" = \g 'dg
gives
D(xF) = AN = DA — S Xe ® (' Aw)

2
so that A = 1/2 ¢ 'dg solves the YM eqs on S°.

o With 7 : R'\{0} — S?, one proves that 7*(A) gives the meron solution
of YM egs. |D-A FET76]

e [s it possible to define a KD operator in a quantum group setting, and use
it to solve YM equations?



Gauge theory over SU,(2)

e In the spirit of Gelfand duality, (following [Wo]) a compact quantum group
G = (A, A) is separable unital C*-algebra with a (dense) coproduct A.

e As quantum group SU,(2) consider the Hopf (5, e, A, %),
polynomial unital *-algebra (with ¢ € R) generated by

a —qc’ ac = qca ac* = qc'a cct = c'c
V= :

c a' a*a + c*c = aa* + ¢°cc* = 1.

e The dually paired Hopf universal envelopping algebra to SU,(2)
isU,(su(2)) = {K* E, F = E*}

KZ L K—Z
q—q!

K*E=¢"EK* K'F=q¢'FK* |[E,F|=



e A gauge theory on a classical manifold M requires:

1. a differential structure on M and G (gauge group),
2. a notion of connection (vector potential, covariant derivatives),

3. a metric tensor on M.

e [n the algebraic formulation of a gauge theory over A = SU,(2) we assume:

1. the formulation a la Woronowicz for differential calculi,

2. covariant derivatives are derivations on finite projective modules over A,
whose elements describes sections of vector bundles (matter fields),

3. symmetric tensors and x-Hodge on A.
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e On SU,(2) a family of left-covariant 3D x-calculi (i.e. d(z*) = (dz)*)
dr =) (Xpa)w,, X, € U, (su(2)), (a==,2),

a

e [or any of such calculi we have a quantum Lie algebra &, (with a braided
commutator depending on ¢) and a Maurer-Cartan structure equation

c 1 a
[XaaXb] = JabXo dwa — _1_|_q2 fbc Wy N\ We

e A Maurer-Cartan form exists (although the differential calculus is only left-
covariant [Wo)):

vy = X, ® w, € Xy @ Q(SU(2))

with X, the quantum Lie algebra corresponding to the calculus.
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e For any 3d left covariant exterior algebra it is possible to define a symmetric
tensor and

* o AF(SU,(2)) — A*TF(SU,(2))
with
*x (1) =, *(1) =1, *(wq) = Aw,, *(wg) = pdw,

with lim A =1, lim pu = —1
q—1 q—1
and a duality
@16) = [ ¢n (o)
(d'o | ¢) = (& ]d¢), d'¢ = (=1)" % d(x¢)

which we use to define a KD operator on SU,(2) as

D(¢) = dp — (—1)" xd(x¢)
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e We limit to say that the spectrum of the quantum D is purely discrete, and
is a deformation (in q) of the classical one. For such operator one can prove
the Hodge decomposition theorem

A(SU,(2)) = d(A) @ dT(A) @ ker(D?)

e What about the YM eqs on SU,(2)? It is possible to prove that
1

A = 57—%17 =  DHF) =0
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e We consider ]R;l as the x-algebra generated by 1, 29, 3, x4 with

TiT; = qT;%; i< 7,1+ 7 F#5,

Tol3 = X3X2, L1T4 — T4X1 = (6] - Q)fvzfs

and Ty * qry, x5 = T3.

e [t has a positive central group like element

S = qri174 + 612513‘2$3

The localisation R;\{0} comes by adding R, an invertible central generator

r=r* with Sr—= = 1.

e The set R\ {0} gives the Hopf *-algebra G'L,(1, H) of quantum invertible

quaternions, and SU,(2) is a quantum subgroup of it.

e On GL,(1, H) it is possible to define all the relevant geometric structures
needed, and to prove that the vector potential A is transformed into a solu-

tion of the YM eqs. This is the quantum meron.
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