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Timeo hominem unius libri 
 
Giuseppe was a man of many books (he was really fond of them) and a deeply  
learned scholar. At a time when people were still not so obsessed by citations 
(and thus did not demand them explicitly), he was extremely attentive to other 
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The BCS-BEC crossover 

Gas of fermions interacting  via an attractive potential: 
 
 
 Weak attraction: Cooper pairs form at low temperature according to BCS theory.  
 Largely-overlapping pairs form and condense at the same temperature (Tc ). 
 
 
 Strong attraction:  the pair-size shrinks and pair-formation is no longer  a cooperative 
 phenomenon. Non-overlapping pairs (composite bosons) undergo Bose-Einstein  
condensation at low temperature. Pair-formation and condensation become unrelated. 
 

How does the system evolves from one regime to the 
other one?  



The standard BCS effective potential (constant attraction –V within a shell of width ωD 
about the Fermi energy EF) is not suitable for studying the BCS-BEC crossover (Fermi 
surface meaningless in the BEC limit). 
 
Two body attractive potential V(k-k’) is OK. Often approximated by a separable 
potential               . For example NSR (or Yamaguchi) potential  
 
                                                       
 
For                         (diluteness condition) the attractive potential is effectively short-ranged 
and can be parametrized completely in terms of the s-wave scattering length     
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BCS BEC 

Diluteness condition normally satisfied in experiments with ultracold Fermi atoms for 
which the dimensionless effective coupling parameter                can be tuned  from BCS 
to BEC limit by using appropriate Fano-Feshbach resonances. 
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where              for weak coupling. 

BCS equation for Tc (for contact potential):                                      (1) 
 
where                                                                    with  
 
With weak-coupling assumption               one gets 
 
                                                                               
 
                                                                                                               
 
 
For stronger coupling Tc becomes of order of (or larger than) TF : necessary to use number 
equation to adjust chemical potential.  
BCS number equation at Tc  (and above) reduces to free Fermi gas relation 
 
                                                                     (2) 
 
Eagles was first to notice (1969) that simultaneous solution of (1) and (2)  yields in the 
BEC limit a “pairing” temperature T* rather than critical temperature for condensation.   
  

where                     . Eq. (1) then yields:  
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Interlude: a threefold role for ladder diagrams 
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     The sum of ladder diagrams            has a threefold role: 
 
•  The BCS equation for Tc corresponds to the equation                         (Thouless 

criterion): the two-particle Green’s function diverges at zero center-of-mass 
momentum and frequency. 

•  In the BEC limit,           becomes (except for numerical factors) the free propagator 
of molecules (composite bosons). 

 
•  For a contact potential, the series of ladder diagrams replaces the bare interaction 

in diagrammatic theory. This is because the “bare” potential strength V0  vanishes 
as the momentum cutoff              .  Every particle-particle rung in the ladder series is 
ultraviolet divergent and compensates a vanishing V0 , making      finite for              .     
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Nozières-Schmitt-Rink approach to the BCS-BEC crossover 

 
Consider the simplest self-energy which can be constructed with ladder series: 
 

In this way Tc approaches BE critical 
temperature in the BEC limit.  
True also when the Dyson’s equation 
 
 
is used to calculate G and then n  
(T-matrix self-energy approach). 

k

Q−k

k
Σ(k) = Γ (Q)0

Use number equation n=Tr G, where                    
coupled with the standard BCS equation for critical 
temperature.  
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NSR theory in the weak-coupling limit 

Common belief: The NSR curve for Tc interpolates between the BCS  and BE 
critical temperatures. Not really true: in the BCS limit  the NSR Tc approaches the 
BCS critical temperature divided by a factor e1/3.    
 
Reason? In weak coupling:  
The number equation in NSR approach then yields: 
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Recovering BCS critical temperature in the weak-coupling limit 

If the fermion propagators within the ladder series are dressed with first-order self-energy 
                          then                                   and the  BCS result for Tc is recovered. 
 
Diagrammatically, to lowest order in weak coupling, it corresponds to “dressing” the 
composite-boson propagator Γ with a “composite-boson self-energy” insertion ΣΒ . 
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Γ−1(Q = 0) = 0

 “Dressed” Thouless criterion 
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“Counter-term” 1/3 compensates -1/3 from expansion of kµ .  BCS result for Tc is recovered. 

For           ,  ln(µ/Τ)  originating from                          compensates the small parameter a ! 
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The GMB correction in the weak-coupling limit (I) 

But is BCS  expression for Tc really correct in the weak-coupling limit? No! 
  
Gorkov and Melik-Barkhudarov (1961): For a low density attractive Fermi gas, the BCS 
expression  is reduced by a factor (4e)1/3 ~ 2.2 in the weak-coupling limit. 
 
Reason? Same mechanism just discussed: compensation of  small parameter a with large 
factor ln(µ/Τ)  originating from particle-particle bubble                      . 
 
Dress  Γ with  following  “self-energy” insertion: 
 
 
 
 
 
 
 
 
which contains two pp bubbles and two  Γ0  ~ a  in weak coupling. 
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The GMB correction in the weak-coupling limit (II) 
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Note: for standard BCS potential, the GMB  
reduction  is instead  exp(ωD/EF) ~ 1 
since ωD << EF . GMB correction irrelevant 
in this case. 



GMB (and Popov) correction throughout the BCS-BEC crossover 
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Retain full momentum and frequency dependence of Γ and avoid all weak-coupling 
approximations when calculating          and   ΣPop

B ΣGMB
B :

Calculation quite non-trivial! 
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Numerical results: GMB and Popov self-energies at Tc 

Inclusion of both self-energies is important from weak coupling to past unitarity. 
To some extent, they  compensate each other.  
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Numerical results for the critical temperature 

The resulting curve for Tc converges to the GMB result for weak coupling and to 
the BE critical temperature for strong coupling. In the intermediate coupling 
region  it agrees very well  with diag-QMC and lattice QMC.   
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Summary and conclusions 

 
•  GMB  found that  for a dilute attractive Fermi gas the BCS critical temperature is 

reduced by a numerical factor. 

•  Their work was formulated in the weak coupling regime of the attraction. 
 
•  Standard diagrammatic approximations for the BCS-BEC crossover (NSR, T-

matrix) fail to recover GMB result in weak coupling. 

•  We have reformulated GMB’s work  in a way which is amenable to extension to 
the whole BCS-BEC crossover.  

•  Consistency in the weak-coupling limit required us to also include “Popov” two-
particle self-energy. 

 
•  The resulting curve for Tc  agrees very well with available QMC data. 

Thank you! 


