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From experimental data to differential equations

Implicit versus explicit second order (higher order)
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—» Field of forces
—p A vector field on TQ



From forces to Lagrangian description on TQ

Euler-Lagrange equations as an equation for the Lagrangian:

dt Ov?  Ox’ 92L—dph=—AbF 9%L da*

N LT (R ) Qv gk dt

A linear PDE for the Lagrangian

Many fields of forces admit alternative Lagrangian descriptions!



Hamiltonian description on TQ

E— {H?:gi} - H=H(x,v)

dt

a2’ [H {H 2} = Fl(x,v)

oy

Unknown {, } and H, highly nonlinear equation.
Requiring localization {2’ 2"} = 0.

The Hamiltonian problem is included in the Lagrangian one.

Alternative descriptions.



Weyl systems for TQ
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Assuming Q =R", det

We may use as global coordinates for TQ

(Jj“} &C) = (xj,aj) —— da_},-/\dsr:f

" Qv

Weyl system Wz, a) € U(H):

W e\ W (e))Wi(e))\Wi(ey) = evclere2) ]



Weyl systems for TQ

On a Lagrangian subspace V:
H—L(V ) Wz, )] (y) = " Wi(z + )

—» Commutation relations
Alternative Lagrangians, alternative solutions of:
O°L ok oL = 0°L ok
Qiguk™ Ozl Ovidxk
— Alternative linear structures

—— Alternative commutation relations



Weyl systems for H

Replacing TQ with the Hilbert space H we may consider:

W (3pn), W (ah2) WH(ap1) W (ap) = e=vatel]

Along the way:
e |ntegrability;
e Geometrization of algebraic structures;

e Physical aspects of topology (monopoles, Berry phase, QHE).



