Why does relativistic quantum mechanics need complex Hilbert spaces?

Valter Moretti
(joint works with Marco Oppio)
Math.Dept - Trento University and INFN-TIFPA

Physics and Geometry
Bologna 24-25 Novembre 2017

Summary

1. General structure of Quantum Theories
1.1 Abstract Orthomodular Lattice of Propositions;
1.2 The coordinatization problem: Piron-Solér's Theorem and the possible three types of Hilbert space.
1.3 A common formulation: Gleason-Varadarajan's Theorem
1.4 Problems: composite systems, symmetries/constants of motion, physical evidence of real/quaternionic systems.
2. Elementary (Relativistic) Quantum systems
2.1 von Neumann algebras and Schur's lemma
2.2 Elemantary Quantum Systems
2.3 Elementary Relativistic Quantum Systems
3. Equivalence with the Complex Hilbert Space Case
3.1 Main technical result
2.2 Equivalence with the Complex Hilbert Space Case
2.3 Conclusions: does some way out remain?

References

- V.M. and M.Oppio: Quantum theory in quaternionic Hilbert space: How Poincare symmetry reduces the theory to the standard complex one, submitted, arXiv:1709.09246 (71 pages)
- V.M. and M.Oppio: Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry
Rev.Math.Phys. 29 (2017) 1750021 (85 pages)
spectral theory, operator algebra theory, and functional analysis results in quaternionic Hilbert spaces.
- R.Ghiloni, V.M. and A.Perotti: Spectral representations of
normal operators via Intertwining Quaternionic PVMs
Rev.Math.Phys. 29 (2017) 1750034 (73 pages)
- R.Ghiloni, V.M. and A.Perotti: Continuous slice functional
calculus in quaternionic Hilbert spaces Rev.Math.Phys.25,

References

- V.M. and M.Oppio: Quantum theory in quaternionic Hilbert space: How Poincare symmetry reduces the theory to the standard complex one, submitted, arXiv:1709.09246 (71 pages)
- V.M. and M.Oppio: Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from
Poincaré symmetry
Rev.Math.Phys. 29 (2017) 1750021 (85 pages)
spectral theory, operator algebra theory, and functional analysis results in quaternionic Hilbert spaces.
- R.Ghiloni, V.M. and A.Perotti: Spectral representations of normal operators via Intertwining Quaternionic PVMs Rev.Math.Phys. 29 (2017) 1750034 (73 pages)
- R.Ghiloni, V.M. and A.Perotti: Continuous slice functional calculus in quaternionic Hilbert spaces Rev.Math.Phys.25, (2013) 1350006 (83 pages)

1. General structure of Quantum Theories

1.1. Abstract Orthomodular Lattice of Propositions

- QM in a \mathbb{C} Hilbert space H can be formulated using elementary observables with possibles outcomes 1 (TRUE) or 0 (FALSE) represented by orthogonal projectors $P \in \mathcal{L}(H)$.
- General obeservables $A=A^{\dagger}$ give rise to elementary observables $P_{E}^{(A)}=$ the outcome of A stays in $E \subset \sigma(A)$.
- $P_{E}^{(A)} \in \mathcal{L}(H)$ defines the spectral measure of A such that $A=\int_{\sigma(A)} \lambda d P^{(A)}(\lambda)$.
- $\mathcal{L}(\mathrm{H})$ is a lattice with respect to the operations $P \vee P^{\prime}$ (projector onto $\overline{P(\mathrm{H})+P^{\prime}(\mathrm{H})}$) and $P \wedge P^{\prime}$ (projector onto $P(\mathrm{H}) \cap P^{\prime}(\mathrm{H})$) with orthocomplement P^{\perp} (projector onto $\left.P(H)^{\perp}\right)$.
- ($\left.\mathcal{L}(\mathrm{H}), \vee, \wedge,^{\perp}\right)$ enjoys formal properties similar to those of the classical logic intepreting $\vee=O R, \wedge=A N D,{ }^{\perp}=N O T$, provided the involved projectors commute, i.e. are quantistically compatible.

1.2. The coordinatization problem

- $\left(\mathcal{L}(\mathrm{H}), \vee, \wedge,{ }^{\perp}\right)$ is not a classical logic (a Boolean lattice) due to incompatible elements. It includes minimal elements (projectors onto one-dimensional subspaces): atoms.
- $\left(\mathcal{L}(\mathrm{H}), \vee, \wedge,^{\perp}\right)$ has the abstract structure of an orthomodular, σ-complete, irreducible, atomic, lattice. Structure defined without referring to a Hilbert space.
- Every property of $\left(\mathcal{L}(\mathrm{H}), \vee, \wedge^{\perp}\right)$ has an operationistic interpretation.
- Coordinatization problem (since von Neumann ~1939): Is every orthomodular, σ-complete, irreducible, atomic lattice isomorphic to the concrete lattice $\mathcal{L}(\mathrm{H})$ over a complex Hilbert space?
- Several attempts, especially by Piron ~ 1960
- Solér's theorem (1995): Every such lattice with infinite orthogonal atoms is isomorphic to a concrete lattice of orthogonal projectors of a Hilbert space over \mathbb{R} or \mathbb{C} or \mathbb{H} (algebra of quaternions: $a+b i+c j+d k$).

1.3.1. A common formulation

Let H be a separable Hilbert space over \mathbb{R} or \mathbb{C} or \mathbb{H} indifferently.

- quantum states are σ-additive probability measures

$$
\mu: \mathcal{L}(\mathrm{H}) \ni P \mapsto \mu(P) \in[0,1]
$$

Gleason-Varadarajan's theorem: if $\operatorname{dim} \mathrm{H} \neq 2$ such measures are density matrices $\rho: \mathrm{H} \rightarrow \mathrm{H}$ and

$$
\mu_{\rho}(P)=\operatorname{tr}(P \rho) \quad \text { for } P \in \mathcal{L}(\mathrm{H})
$$

- extremal states called pure states are of the form $\rho=|\psi\rangle\langle\psi|$ with $\|\psi\|=1$ determined up to signs (\mathbb{R}, \mathbb{H}) or phases (\mathbb{C}).
- observables are collections of $P_{E} \in \mathcal{L}(\mathrm{H})$, with $E \subset \mathbb{R}$ Borel set, enjoying properties of Projection-Valued-Mesures over \mathbb{R}, e.g. $P_{E} P_{F}=P_{E \cap F}$.
- The spectral theorem holds and $A=\int_{\mathbb{R}} \lambda d P(\lambda)$ is a self-adjoint operator with $\sigma(A)=\operatorname{supp}(P) \subset \mathbb{R}$. Observables and self-adjoint operators are one-to-one.
1.3.2. A common formulation
- Lüders-von Neuamnn reduction postulate is valid for the three cases $\mathbb{R}, \mathbb{C}, \mathbb{H}$:

If P has outcome YES in the state ρ, after measurement

$$
\rho \rightarrow \frac{P \rho P}{\operatorname{tr}(P \rho)} .
$$

- Wigner-Kadison-Segal theorems hold: symmetries are always determined by unitary (\mathbb{R}, \mathbb{H}) or also anti-unitary (\mathbb{C}) operators $U: H \rightarrow H$, up to signs (\mathbb{R}, \mathbb{H}) or phases (\mathbb{C}).
- Continuous symmetries are strongly continuous one-paramiter groups of unitaries $\mathbb{R} \ni s \mapsto U_{s}$

REMARK: For a σ-complete sublattice $\mathcal{L} \subset \mathcal{L}(H)$ (e.g., presence of superselection rules) everything holds but
(1) correspondence states-density matrices not one-to-one
(2) arbitrary signs/phases of unitaries representing symmetries replaced by operators.

1.4. Problems

- Composite systems \Leftrightarrow tensor product. PROBLEM: \otimes does not exist in quaternionic Hilbert spaces. (candidate solutions exist)
- Continuous dynamical symmetries $U_{s} \Leftrightarrow$ generators A constant of motion using Stone theorem $U_{s}=e^{s A_{0}}$ with $A_{0}^{\dagger}=-A_{0}$ and $A:=-i A_{0}$ is an observable.
PROBLEM: Stone theorem holds in real and quaternionic spaces but i does not exist in \mathbb{R} Hilbert spaces and, in a sense, there are no or too many i in \mathbb{H} Hilbert spaces. (candidate solutions exist)
- \mathbb{C}-Hilbert space formulation revealed to be the fundamental description of quantum physics (at elementary level at least)
PROBLEM: Though theoretically permitted, there is no physical evidence of elementary quantum systems described in \mathbb{R} - or \mathbb{H}-Hilbert space.

2. Elementary (Relativistic) Quantum Systems

2.1. von Neumann Algebras and Schur's Lemma

- Unbounded observables of a quantum system S are (strong) limits of bounded observables. Bounded observables are the self-adjoint elements of a *-algebra R_{S} of operators called the von Neumann algebra of the quantum system enjoying important algebraic and topological properties.
- R_{S} includes other relevant operators like those representing symmetries etc. R_{S} includes the full information on the system.
- R_{S} is irreducible if there are no non-trivial orthogonal projectors $P \in \mathcal{L}(\mathrm{H})$ such that $A P=P A$ for every $A \in R_{S}$
- The commutant R_{S}^{\prime} is the set of bounded operators commuting with every operator in R_{S}. It holds (von Neumann double commutant theorem): $R_{S}=R_{S}^{\prime \prime}$

2.1. von Neumann Algebras and Schur's Lemma

Complex Schur's lemma: $R \mathrm{vN}$ algebra over a \mathbb{C}-Hilbert space. R irriducible $\Leftrightarrow R^{\prime}=\{c l\}_{c \in \mathbb{C}}$. Therefore $R=R^{\prime \prime}=\mathbb{C} I^{\prime \prime}=B(\mathrm{H})$.

Real and Quaternionic Schur's lemma: R vN algebra over an either \mathbb{R} - or \mathbb{H}-Hilbert space. R irreducible \Leftrightarrow one of the three possibilities occurs for R^{\prime} :

- (real type) $R^{\prime}=\{r l\}_{r \in \mathbb{R}}$;
- (complex type) $R^{\prime}=\{a l+b J\}_{a, b \in \mathbb{R}}$, where $J J=-I$ and $J^{*}=-J$ is fixed up to sign and $J \in R \cap R^{\prime}$.
- (quaternionic type) $R^{\prime}=\left\{a l+b J_{1}+c J_{2}+d J_{3}\right\}_{a, b, c, d \in \mathbb{R}}$, where $J_{r} J_{r}=-I, J_{r}^{*}=-J_{r}$ and $J_{r} J_{s}=-J_{s} J_{r}$.
The center $Z_{R}:=R \cap R^{\prime}$ is
- $Z_{R}=\{r l\}_{r \in \mathbb{R}}$ in the real and quaternionc case,
- $Z_{R}=\{a l+b J\}_{a, b \in \mathbb{R}}$ in the complex case. \square

2.2. Elementary Quantum Systems

Assume the lattice of elementary observables \mathcal{L}_{S} of a quantum system S is the set of orthogonal projectors of a certain vN algebra R_{S}, nomatter if H_{S} is over \mathbb{R}, \mathbb{C} or \mathbb{H}.

DEF. S is elementary if R_{S} is irreducible.

MOTIVATION

- The Hilbert space H_{S} describes only $S: R_{S}^{\prime}$ cannot be intepreted as the vN algebra of a complementary independent system S^{\prime} since R_{S}^{\prime} does not includes non-trivial observables.
- In \mathbb{C}-Hilbert spaces H_{S}, Wigner's notion of elementary particle and the standard non-relativistic particle with spin are elementary systems: $R_{S}=B\left(\mathrm{H}_{S}\right)$
- R_{S} is irreducible under standard conditions $(1)+(2)$:
(1) absence of superselection rules (center of \mathcal{L}_{S} trivial)
(2) existence of a maximal set of commuting observables.

2.2. Elementary Relativistic Quantum Systems

DEF. S is relativistic if it supports a (locally faithful) representation

$$
S L(2, \mathbb{C}) \ltimes \mathbb{R}^{4} \ni g \mapsto h_{g}^{(S)}
$$

in terms of automorphism $h_{g}^{(S)}: \mathcal{L}_{S} \rightarrow \mathcal{L}_{S}$ of the lattice $\mathcal{L}_{S} \subset R_{S}$ of elementary observables and $g \mapsto \mu\left(h_{g}^{(S)}(P)\right)$ is continuous for every state μ and $P \in \mathcal{L}_{s}$.
THM. If S is elementary and $h^{(S)}$ is irreducible (no invariant P), then there is a strongly-continuous unitary representation

$$
S L(2, \mathbb{C}) \ltimes \mathbb{R}^{4} \ni g \mapsto U_{g}^{(S)}
$$

such that $\left(^{*}\right) h_{g}(P)=U_{g}^{(S)} P U_{g}^{(S) \dagger}$ for $P \in \mathcal{L}_{S}, g \in S L(2, \mathbb{C}) \ltimes \mathbb{R}^{4}$.
$U_{g}^{(S)}$ is determined by $\left(^{*}\right)$ up to elements of the center $Z_{R_{S}}$.

2.2. Elementary Relativistic Quantum Systems

An elementary relativistic quantum system;

- is elementary as a quantum system,
- admits a continuous action of Poincaré group
- no non-trivial elementary observables is fixed under the representation;
- its vN algebra is completely determined by its symmetry group.

DEF. S is an elementary relativistic quantum system if is elementary, relativistic, the representation h is irreducible, and its unitary implementation U generates the v N algebra R_{S} of the system $\left(R_{S}=U^{(S)} \vee Z_{R_{S}}\right)$

NB: If H_{S} is complex, S is an elementary quantum system if and only if is an elementary perticle according to Wigner's definition.

3. Equivalence to the Complex Hilbert Space Case

3.1. Main Technical Result

THEOREM. Let S be a elementary relativistic quantum system real, complex or quaternionic.
If the anti-selfadjoint generators of spacetime displacements P_{μ} of the Poincaré unitary representation U satisfy

$$
P_{0} P_{0}-\sum_{k=1}^{3} P_{k} P_{k} \geq 0
$$

on Gårding's domain. The following facts hold
(a) the commutant R_{S}^{\prime} of the vN algebra R_{S} of the system

- is trivial $\{c \| \mid c \in \mathbb{C}\}$ for complex H_{S},
- is of complex type $R_{S}^{\prime}=\{a l+b J\}_{a, b \in \mathbb{R}}$, where $J J=-I$ and $J^{*}=-J$ is fixed up to sign and $J \in R_{S} \cap R_{S}^{\prime}$ for real and quaternionic H_{S}.
(b) $J\left|P_{0}\right|=P_{0}$ is the polar decomposition of P_{0}.
(c) J is Poincaré invariant: $U_{g}^{(S)} J U_{g}^{(S) \dagger}=J$.
(d) The representation $U^{(S)}$ alone generates the full $v \mathrm{~N}$ algebra R_{S}.

3.2.1. Equivalence with the Complex Hilbert Space Case

Suppose H_{S} is real, define the complex Hilbert space $\mathrm{H}_{S J}$ defining

$$
\begin{aligned}
& (a+i b) \psi:=a \psi+b J \psi, \quad a, b \in \mathbb{R}, \psi \in \mathrm{H}_{S}=\mathrm{H}_{S J} \\
& \left\langle\psi \mid \psi^{\prime}\right\rangle_{J}:=\left\langle\psi \mid \psi^{\prime}\right\rangle-i\left\langle\psi \mid J \psi^{\prime}\right\rangle, \quad \psi, \psi^{\prime} \in \mathrm{H}_{S}=\mathrm{H}_{S J}
\end{aligned}
$$

- Only the operators in $R_{S} \subsetneq B\left(\mathrm{H}_{S}\right)$ are \mathbb{C}-linear (commute with J) and can be viewed as operators in $\mathrm{H}_{S J}$.
- $R_{S} \ni A \mapsto A \in B\left(\mathrm{H}_{S J}\right)$ and $\mathcal{L}_{R_{S}} \ni P \mapsto P \in \mathcal{L}\left(\mathrm{H}_{S J}\right)$ continuous ${ }^{*}$-isomorphism of real (vN) algebras and isomorphism of orthocomplemented lattices.
- $B\left(\mathrm{H}_{S J}\right)$ includes exactly the relevant operators describing S.
- Quantum states (probability measures) on $\mathcal{L}_{R_{S}}$ are exaclty density matrices on $\mathcal{L}\left(\mathrm{H}_{S J}\right)$, in particular pure states \equiv unit vectors up to phases.
- The representation U_{S} viewed in $\mathrm{H}_{S J}$ is a standard Wigner elementary particle (with $m^{2} \geq 0$).

3.2.2. Equivalence with the Complex Hilbert Space Case

 Suppose H_{S} is quaternionic, define the complex Hilbert space$$
\mathrm{H}_{S J}:=\left\{\psi \in \mathrm{H}_{S} \mid J \psi=i \psi\right\}
$$

that is a complex subspace but not a quaternionic subspace,

$$
\left\langle\psi \mid \psi^{\prime}\right\rangle_{J}:=\left\langle\psi \mid \psi^{\prime}\right\rangle, \quad \psi, \psi^{\prime} \in \mathrm{H}_{S J} \subset \mathrm{H}_{S}
$$

- Only the operators in $R_{S} \subsetneq B\left(\mathrm{H}_{S}\right)$ leave $\mathrm{H}_{S J}$ invariant (commute with J) and can be viewed as operators in $\mathrm{H}_{S J}$.
- $\left.R_{S} \ni A \mapsto A\right|_{\mathrm{H}_{S J}} \in B\left(\mathrm{H}_{S J}\right)$ and $\left.\mathcal{L}_{R_{S}} \ni P \mapsto P\right|_{\mathrm{H}_{S J}} \in \mathcal{L}\left(\mathrm{H}_{S J}\right)$ continuous ${ }^{*}$-isomorphism of real (vN) algebras and isomorphism of orthocomplemented lattices.
- $B\left(\mathrm{H}_{S J}\right)$ includes exactly the relevant operators describing S.
- Quantum states (probability measures) on $\mathcal{L}_{R_{S}}$ are exaclty density matrices on $\mathcal{L}\left(\mathrm{H}_{S J}\right)$, in particular pure states \equiv unit vectors up to phases.
- The representation U_{S} restricted to $\mathrm{H}_{S J}$ is a standard Wigner elementary particle (with $m^{2} \geq 0$).
3.3.1 Conclusions: does some way out remain?

A relativistic elementary system (absence of superselection rules, maximal set of commuting observables, irreducible representation of Poincaré group determining the algebra of observables) always admits a faithful complex-Hilbert space description even if starting form real or quaternionic Hilbert spaces.

- The arising complex description is of Wigner type.
- The Poincaré invariant complex structure J responsible for the complex description arises form the symmetry group: it is suggested by physics.
- The complex description is non-redundant with respect to the real and quaternionic one as all self-adjoint operators have a physical role of observables.
3.3.2 Conclusions: does some way out remain?

QUESTION. Do real or quaternionic theories make sense?
There are very important physical systems whose description in complex Hilbert spaces is given in terms of von Neumann algebras that are not isomorfic to some $B(\mathrm{H})$ differently from the studied cases.

- extended thermodynamical systems (type-/I/ vN algebras)
- local algebras of quantum fields (type-/// vN algebras))
- elementary quantum systems with internal nonAbelian gauge group like quarks (non-trivial R^{\prime} in complex Hilbert space)
Are there some corresponding descriptions in real or quaternionic Hilbert spaces perhaps involving new physics?

Thank you very much for your attention!

