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1. General structure of Quantum Theories



1.1. Abstract Orthomodular Lattice of Propositions
• QM in a C Hilbert space H can be formulated using
elementary observables with possibles outcomes 1 (TRUE)
or 0 (FALSE) represented by orthogonal projectors P ∈ L(H).

• General obeservables A = A† give rise to elementary
observables P(A)

E =the outcome of A stays in E ⊂ σ(A).

• P(A)
E ∈ L(H) defines the spectral measure of A such that

A =
∫
σ(A) λdP(A)(λ).

• L(H) is a lattice with respect to the operations P∨P ′

(projector onto P(H) + P ′(H)) and P∧P ′ (projector onto
P(H) ∩ P ′(H)) with orthocomplement P⊥ (projector onto
P(H)⊥).

• (L(H),∨,∧,⊥ ) enjoys formal properties similar to those of the
classical logic intepreting ∨ = OR , ∧ = AND, ⊥ = NOT ,
provided the involved projectors commute, i.e. are
quantistically compatible.



1.2. The coordinatization problem
• (L(H),∨,∧,⊥ ) is not a classical logic (a Boolean lattice) due
to incompatible elements. It includes minimal elements
(projectors onto one-dimensional subspaces): atoms.

• (L(H),∨,∧,⊥ ) has the abstract structure of an orthomodular,
σ-complete, irreducible, atomic, lattice. Structure defined
without referring to a Hilbert space.

• Every property of (L(H),∨,∧⊥) has an operationistic
interpretation.

• Coordinatization problem (since von Neumann ∼ 1939):
Is every orthomodular, σ -complete, irreducible, atomic lattice
isomorphic to the concrete lattice L(H) over a complex Hilbert
space?

• Several attempts, especially by Piron ∼ 1960
• Solér’s theorem (1995): Every such lattice with infinite
orthogonal atoms is isomorphic to a concrete lattice of
orthogonal projectors of a Hilbert space over R or C or H
(algebra of quaternions: a + bi + cj + dk).



1.3.1. A common formulation
Let H be a separable Hilbert space over R or C or H indifferently.

• quantum states are σ-additive probability measures
µ : L(H) 3 P 7→ µ(P) ∈ [0, 1]

Gleason-Varadarajan’s theorem: if dimH 6= 2 such
measures are density matrices ρ : H→ H and

µρ(P) = tr(Pρ) for P ∈ L(H) 2

• extremal states called pure states are of the form ρ = |ψ〉〈ψ|
with ||ψ|| = 1 determined up to signs (R, H) or phases (C).

• observables are collections of PE ∈ L(H), with E ⊂ R Borel
set, enjoying properties of Projection-Valued-Mesures over R,
e.g. PEPF = PE∩F .

• The spectral theorem holds and A =
∫
R λdP(λ) is a

self-adjoint operator with σ(A) = supp(P) ⊂ R.
Observables and self-adjoint operators are one-to-one.



1.3.2. A common formulation
• Lüders-von Neuamnn reduction postulate is valid for the
three cases R, C, H:

If P has outcome YES in the state ρ, after measurement
ρ→ PρP

tr(Pρ) .

• Wigner-Kadison-Segal theorems hold: symmetries are
always determined by unitary (R, H) or also anti-unitary (C)
operators U : H→ H, up to signs (R, H) or phases (C).

• Continuous symmetries are strongly continuous
one-paramiter groups of unitaries R 3 s 7→ Us

REMARK: For a σ-complete sublattice L ⊂ L(H) (e.g., presence
of superselection rules) everything holds but
(1) correspondence states-density matrices not one-to-one
(2) arbitrary signs/phases of unitaries representing symmetries
replaced by operators.



1.4. Problems
• Composite systems ⇔ tensor product.
PROBLEM: ⊗ does not exist in quaternionic Hilbert spaces.
(candidate solutions exist)

• Continuous dynamical symmetries Us ⇔ generators A
constant of motion using Stone theorem Us = esA0 with
A†0 = −A0 and A := −iA0 is an observable.
PROBLEM: Stone theorem holds in real and quaternionic
spaces but i does not exist in R Hilbert spaces and, in a sense,
there are no or too many i in H Hilbert spaces. (candidate
solutions exist)

• C-Hilbert space formulation revealed to be the
fundamental description of quantum physics (at elementary
level at least)
PROBLEM: Though theoretically permitted, there is no
physical evidence of elementary quantum systems described in
R- or H-Hilbert space.



2. Elementary (Relativistic) Quantum Systems



2.1. von Neumann Algebras and Schur’s Lemma

• Unbounded observables of a quantum system S are (strong)
limits of bounded observables. Bounded observables are
the self-adjoint elements of a ∗-algebra RS of operators called
the von Neumann algebra of the quantum system enjoying
important algebraic and topological properties.

• RS includes other relevant operators like those representing
symmetries etc. RS includes the full information on the system.

• RS is irreducible if there are no non-trivial orthogonal
projectors P ∈ L(H) such that AP = PA for every A ∈ RS

• The commutant R ′S is the set of bounded operators
commuting with every operator in RS . It holds (von
Neumann double commutant theorem): RS = R ′′S



2.1. von Neumann Algebras and Schur’s Lemma

Complex Schur’s lemma: R vN algebra over a C-Hilbert space. R
irriducible ⇔ R ′ = {cI}c∈C. Therefore R = R ′′ = CI ′′ = B(H). 2

Real and Quaternionic Schur’s lemma: R vN algebra over an
either R- or H-Hilbert space.
R irreducible ⇔ one of the three possibilities occurs for R ′:
• (real type) R ′ = {rI}r∈R;
• (complex type) R ′ = {aI + bJ}a,b∈R, where JJ = −I and

J∗ = −J is fixed up to sign and J ∈ R ∩ R ′.
• (quaternionic type) R ′ = {aI + bJ1 + cJ2 + dJ3}a,b,c,d∈R,
where JrJr = −I , J∗r = −Jr and JrJs = −JsJr .

The center ZR := R ∩ R ′ is
• ZR = {rI}r∈R in the real and quaternionc case,
• ZR = {aI + bJ}a,b∈R in the complex case. 2



2.2. Elementary Quantum Systems

Assume the lattice of elementary observables LS of a quantum
system S is the set of orthogonal projectors of a certain vN algebra
RS , nomatter if HS is over R, C or H.

DEF. S is elementary if RS is irreducible.

MOTIVATION
• The Hilbert space HS describes only S : R ′S cannot be
intepreted as the vN algebra of a complementary
independent system S ′ since R ′S does not includes non-trivial
observables.

• In C-Hilbert spaces HS , Wigner’s notion of elementary
particle and the standard non-relativistic particle with spin
are elementary systems: RS = B(HS)

• RS is irreducible under standard conditions (1)+(2):
(1) absence of superselection rules (center of LS trivial)
(2) existence of a maximal set of commuting observables.



2.2. Elementary Relativistic Quantum Systems

DEF. S is relativistic if it supports a (locally faithful)
representation

SL(2,C)nR4 3 g 7→ h(S)g

in terms of automorphism h(S)g : LS → LS of the lattice LS ⊂ RS

of elementary observables and g 7→ µ(h(S)g (P)) is continuous for
every state µ and P ∈ LS .

THM. If S is elementary and h(S) is irreducible (no invariant P),
then there is a strongly-continuous unitary representation

SL(2,C)nR4 3 g 7→ U(S)
g

such that (*) hg (P) = U(S)
g PU(S)†

g for P ∈ LS , g ∈ SL(2,C)nR4.
U(S)

g is determined by (*) up to elements of the center ZRS .



2.2. Elementary Relativistic Quantum Systems

An elementary relativistic quantum system;
• is elementary as a quantum system,
• admits a continuous action of Poincaré group
• no non-trivial elementary observables is fixed under the
representation;

• its vN algebra is completely determined by its symmetry group.
DEF. S is an elementary relativistic quantum system if is
elementary, relativistic, the representation h is irreducible, and its
unitary implementation U generates the vN algebra RS of the
system (RS = U(S) ∨ ZRS )

NB: If HS is complex, S is an elementary quantum system if and
only if is an elementary perticle according to Wigner’s definition.



3. Equivalence to the Complex Hilbert Space Case



3.1. Main Technical Result

THEOREM. Let S be a elementary relativistic quantum system
real, complex or quaternionic.
If the anti-selfadjoint generators of spacetime displacements Pµ
of the Poincaré unitary representation U satisfy

P0P0 −
∑3

k=1 PkPk ≥ 0

on Gårding’s domain. The following facts hold
(a) the commutant R ′S of the vN algebra RS of the system
• is trivial {cI | c ∈ C} for complex HS ,
• is of complex type R ′S = {aI + bJ}a,b∈R, where JJ = −I and

J∗ = −J is fixed up to sign and J ∈ RS ∩ R ′S
for real and quaternionic HS .

(b) J|P0| = P0 is the polar decomposition of P0.
(c) J is Poincaré invariant: U(S)

g JU(S)†
g = J.

(d) The representation U(S) alone generates the full vN algebra RS .



3.2.1. Equivalence with the Complex Hilbert Space Case
Suppose HS is real, define the complex Hilbert space HSJdefining

(a + ib)ψ := aψ + bJψ, a, b ∈ R, ψ ∈ HS = HSJ

〈ψ|ψ′〉J := 〈ψ|ψ′〉 − i〈ψ|Jψ′〉 , ψ, ψ′ ∈ HS = HSJ

• Only the operators in RS ( B(HS) are C-linear (commute
with J) and can be viewed as operators in HSJ .

• RS 3 A 7→ A ∈ B(HSJ) and LRS 3 P 7→ P ∈ L(HSJ)
continuous ∗-isomorphism of real (vN) algebras and
isomorphism of orthocomplemented lattices.

• B(HSJ) includes exactly the relevant operators describing S .
• Quantum states (probability measures) on LRS are exaclty
density matrices on L(HSJ), in particular pure states ≡ unit
vectors up to phases.

• The representation US viewed in HSJ is a standard Wigner
elementary particle (with m2 ≥ 0).



3.2.2. Equivalence with the Complex Hilbert Space Case
Suppose HS is quaternionic, define the complex Hilbert space

HSJ := {ψ ∈ HS | Jψ = iψ}

that is a complex subspace but not a quaternionic subspace,

〈ψ|ψ′〉J := 〈ψ|ψ′〉 , ψ, ψ′ ∈ HSJ ⊂ HS

• Only the operators in RS ( B(HS) leave HSJ invariant
(commute with J) and can be viewed as operators in HSJ .

• RS 3 A 7→ A|HSJ ∈ B(HSJ) and LRS 3 P 7→ P|HSJ ∈ L(HSJ)
continuous ∗-isomorphism of real (vN) algebras and
isomorphism of orthocomplemented lattices.

• B(HSJ) includes exactly the relevant operators describing S .
• Quantum states (probability measures) on LRS are exaclty
density matrices on L(HSJ), in particular pure states ≡ unit
vectors up to phases.

• The representation US restricted to HSJ is a standard Wigner
elementary particle (with m2 ≥ 0).



3.3.1 Conclusions: does some way out remain?
A relativistic elementary system (absence of superselection rules,
maximal set of commuting observables, irreducible representation of
Poincaré group determining the algebra of observables) always
admits a faithful complex-Hilbert space description even if
starting form real or quaternionic Hilbert spaces.
• The arising complex description is of Wigner type.
• The Poincaré invariant complex structure J responsible for
the complex description arises form the symmetry group: it is
suggested by physics.

• The complex description is non-redundant with respect to the
real and quaternionic one as all self-adjoint operators have a
physical role of observables.



3.3.2 Conclusions: does some way out remain?
QUESTION. Do real or quaternionic theories make sense?
There are very important physical systems whose description in
complex Hilbert spaces is given in terms of von Neumann algebras
that are not isomorfic to some B(H) differently from the studied
cases.
• extended thermodynamical systems (type-III vN algebras)
• local algebras of quantum fields (type-III vN algebras))
• elementary quantum systems with internal nonAbelian gauge
group like quarks (non-trivial R ′ in complex Hilbert space)

Are there some corresponding descriptions in real or quaternionic
Hilbert spaces perhaps involving new physics?



Thank you very much for your attention!


