Why does relativistic quantum mechanics need complex Hilbert spaces?

Valter Moretti (joint works with Marco Oppio)

Math.Dept - Trento University and INFN-TIFPA

Physics and Geometry Bologna 24-25 Novembre 2017

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Summary

1. General structure of Quantum Theories

- 1.1 Abstract Orthomodular Lattice of Propositions;
- 1.2 The coordinatization problem: **Piron-Solér's Theorem** and the possible **three** types of Hilbert space.
- 1.3 A common formulation: Gleason-Varadarajan's Theorem
- 1.4 **Problems**: composite systems, symmetries/constants of motion, physical evidence of real/quaternionic systems.
- 2. Elementary (Relativistic) Quantum systems
 - 2.1 von Neumann algebras and Schur's lemma
 - 2.2 Elemantary Quantum Systems
 - 2.3 Elementary Relativistic Quantum Systems
- 3. Equivalence with the Complex Hilbert Space Case
 - 3.1 Main technical result
 - 2.2 Equivalence with the Complex Hilbert Space Case

うして ふゆう ふほう ふほう うらつ

2.3 Conclusions: does some way out remain?

References

- V.M. and M.Oppio: *Quantum theory in quaternionic Hilbert space: How Poincaré symmetry reduces the theory to the standard complex one*, submitted, arXiv:1709.09246 (71 pages)
- V.M. and M.Oppio: Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry Rev.Math.Phys.29 (2017) 1750021 (85 pages)

spectral theory, operator algebra theory, and functional analysis results in quaternionic Hilbert spaces.

- R.Ghiloni, V.M. and A.Perotti: Spectral representations of normal operators via Intertwining Quaternionic PVMs Rev.Math.Phys.29 (2017) 1750034 (73 pages)
- R.Ghiloni, V.M. and A.Perotti: Continuous slice functional calculus in quaternionic Hilbert spaces
 Rev.Math.Phys.25, (2013) 1350006 (83 pages)

References

- V.M. and M.Oppio: *Quantum theory in quaternionic Hilbert space: How Poincaré symmetry reduces the theory to the standard complex one*, submitted, arXiv:1709.09246 (71 pages)
- V.M. and M.Oppio: Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry Rev.Math.Phys.29 (2017) 1750021 (85 pages)

spectral theory, operator algebra theory, and functional analysis results in quaternionic Hilbert spaces.

- R.Ghiloni, V.M. and A.Perotti: Spectral representations of normal operators via Intertwining Quaternionic PVMs Rev.Math.Phys.29 (2017) 1750034 (73 pages)
- R.Ghiloni, V.M. and A.Perotti: Continuous slice functional calculus in quaternionic Hilbert spaces
 Rev.Math.Phys.25, (2013) 1350006 (83 pages)

1. General structure of Quantum Theories

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

1.1. Abstract Orthomodular Lattice of Propositions

- QM in a C Hilbert space H can be formulated using elementary observables with possibles outcomes 1 (TRUE) or 0 (FALSE) represented by *orthogonal projectors* P ∈ L(H).
- General observables A = A[†] give rise to elementary observables P^(A)_E =the outcome of A stays in E ⊂ σ(A).
- $P_E^{(A)} \in \mathcal{L}(H)$ defines the spectral measure of A such that $A = \int_{\sigma(A)} \lambda dP^{(A)}(\lambda)$.
- $\mathcal{L}(H)$ is a lattice with respect to the operations $P \lor P'$ (projector onto $\overline{P(H) + P'(H)}$) and $P \land P'$ (projector onto $P(H) \cap P'(H)$) with orthocomplement P^{\perp} (projector onto $P(H)^{\perp}$).
- (L(H), ∨, ∧,[⊥]) enjoys formal properties similar to those of the classical logic intepreting ∨ = OR, ∧ = AND, [⊥] = NOT, provided the involved projectors commute, i.e. are quantistically compatible.

1.2. The coordinatization problem

- (L(H), ∨, ∧,[⊥]) is not a classical logic (a Boolean lattice) due to incompatible elements. It includes minimal elements (projectors onto one-dimensional subspaces): atoms.
- (L(H), ∨, ∧,[⊥]) has the abstract structure of an orthomodular, *σ*-complete, irreducible, atomic, lattice. Structure defined without referring to a Hilbert space.
- Every property of (L(H), ∨, ∧[⊥]) has an operationistic interpretation.
- Coordinatization problem (since von Neumann ~ 1939): Is every orthomodular, σ -complete, irreducible, atomic lattice isomorphic to the concrete lattice $\mathcal{L}(H)$ over a complex Hilbert space?
- Several attempts, especially by Piron \sim 1960
- Solér's theorem (1995): Every such lattice with infinite orthogonal atoms is isomorphic to a concrete lattice of orthogonal projectors of a Hilbert space over ℝ or ℂ or ℍ (algebra of quaternions: a + bi + cj + dk).

1.3.1. A common formulation

Let H be a separable Hilbert space over $\mathbb R$ or $\mathbb C$ or $\mathbb H$ indifferently.

• quantum states are σ -additive probability measures

$$\mu: \mathcal{L}(\mathsf{H}) \ni P \mapsto \mu(P) \in [0,1]$$

Gleason-Varadarajan's theorem: if dim H \neq 2 such measures are **density matrices** ρ : H \rightarrow H and

$$\mu_{
ho}(P) = tr(P
ho) \quad \text{for } P \in \mathcal{L}(\mathsf{H}) \qquad \Box$$

- extremal states called **pure states** are of the form $\rho = |\psi\rangle\langle\psi|$ with $||\psi|| = 1$ determined up to signs (\mathbb{R} , \mathbb{H}) or phases (\mathbb{C}).
- observables are collections of P_E ∈ L(H), with E ⊂ ℝ Borel set, enjoying properties of Projection-Valued-Mesures over ℝ, e.g. P_EP_F = P_{E∩F}.
- The spectral theorem holds and A = ∫_ℝ λdP(λ) is a self-adjoint operator with σ(A) = supp(P) ⊂ ℝ.
 Observables and self-adjoint operators are one-to-one.

- 1.3.2. A common formulation
 - Lüders-von Neuamnn reduction postulate is valid for the three cases $\mathbb{R}, \mathbb{C}, \mathbb{H}$:

If P has outcome YES in the state ρ , after measurement $\rho \rightarrow \frac{P\rho P}{tr(P\rho)}$.

- Wigner-Kadison-Segal theorems hold: symmetries are always determined by unitary (ℝ, ℍ) or also anti-unitary (ℂ) operators U : H → H, up to signs (ℝ, ℍ) or phases (ℂ).
- Continuous symmetries are strongly continuous one-paramiter groups of unitaries ℝ ∋ s → Us

REMARK: For a σ -complete sublattice $\mathcal{L} \subset \mathcal{L}(H)$ (e.g., presence of superselection rules) everything holds but

(1) correspondence states-density matrices not one-to-one
(2) arbitrary signs/phases of unitaries representing symmetries replaced by operators.

1.4. Problems

- Composite systems ⇔ tensor product.
 PROBLEM: ⊗ does not exist in quaternionic Hilbert spaces. (candidate solutions exist)
- Continuous dynamical symmetries U_s ⇔ generators A constant of motion using Stone theorem U_s = e^{sA₀} with A[†]₀ = -A₀ and A := -iA₀ is an observable.
 PROBLEM: Stone theorem holds in real and quaternionic spaces but *i* does not exist in ℝ Hilbert spaces and, in a sense, there are no or too many *i* in ⊞ Hilbert spaces. (candidate solutions exist)
- C-Hilbert space formulation revealed to be the fundamental description of quantum physics (at elementary level at least)
 PROBLEM: Though theoretically permitted, there is no physical evidence of elementary quantum systems described in R- or H-Hilbert space.

2. Elementary (Relativistic) Quantum Systems

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

2.1. von Neumann Algebras and Schur's Lemma

- Unbounded observables of a quantum system S are (strong) limits of bounded observables. Bounded observables are the self-adjoint elements of a *-algebra R_S of operators called the von Neumann algebra of the quantum system enjoying important algebraic and topological properties.
- *R_S* includes other relevant operators like those representing symmetries etc. *R_S* includes the full information on the system.

- *R_S* is irreducible if there are no non-trivial orthogonal projectors *P* ∈ *L*(H) such that *AP* = *PA* for every *A* ∈ *R_S*
- The commutant R'_S is the set of bounded operators commuting with every operator in R_S. It holds (von Neumann double commutant theorem): R_S = R''_S

2.1. von Neumann Algebras and Schur's Lemma

Complex Schur's lemma: $R \vee N$ algebra over a \mathbb{C} -Hilbert space. R irriducible $\Leftrightarrow R' = \{cl\}_{c \in \mathbb{C}}$. Therefore $R = R'' = \mathbb{C}l'' = B(H)$. \Box

Real and Quaternionic Schur's lemma: $R \vee N$ algebra over an either \mathbb{R} - or \mathbb{H} -Hilbert space.

R irreducible \Leftrightarrow one of the three possibilities occurs for *R*':

- (real type) $R' = \{rI\}_{r \in \mathbb{R}};$
- (complex type) $R' = \{aI + bJ\}_{a,b \in \mathbb{R}}$, where JJ = -I and $J^* = -J$ is fixed up to sign and $J \in R \cap R'$.
- (quaternionic type) $R' = \{aI + bJ_1 + cJ_2 + dJ_3\}_{a,b,c,d \in \mathbb{R}},$ where $J_r J_r = -I$, $J_r^* = -J_r$ and $J_r J_s = -J_s J_r$.

The center $Z_R := R \cap R'$ is

- $Z_R = \{rl\}_{r \in \mathbb{R}}$ in the real and quaternionc case,
- $Z_R = \{aI + bJ\}_{a,b \in \mathbb{R}}$ in the complex case. \Box

2.2. Elementary Quantum Systems

Assume the lattice of elementary observables \mathcal{L}_S of a quantum system S is the set of orthogonal projectors of a certain vN algebra R_S , nomatter if H_S is over \mathbb{R} , \mathbb{C} or \mathbb{H} .

DEF. S is elementary if R_S is irreducible.

MOTIVATION

- The Hilbert space H_S describes only S: R'_S cannot be intepreted as the vN algebra of a complementary independent system S' since R'_S does not includes non-trivial observables.
- In C-Hilbert spaces H_S, Wigner's notion of elementary particle and the standard non-relativistic particle with spin are elementary systems: R_S = B(H_S)
- R_S is irreducible under standard conditions (1)+(2):
 - (1) absence of superselection rules (center of \mathcal{L}_S trivial)
 - (2) existence of a maximal set of commuting observables.

2.2. Elementary Relativistic Quantum Systems

DEF. S is relativistic if it supports a (locally faithful) representation

$$SL(2,\mathbb{C})\ltimes\mathbb{R}^4
i g\mapsto h_g^{(S)}$$

in terms of **automorphism** $h_g^{(S)} : \mathcal{L}_S \to \mathcal{L}_S$ of the lattice $\mathcal{L}_S \subset R_S$ of elementary observables and $g \mapsto \mu(h_g^{(S)}(P))$ is **continuous** for every state μ and $P \in \mathcal{L}_S$.

THM. If S is elementary and $h^{(S)}$ is irreducible (no invariant P), then there is a strongly-continuous unitary representation

$$SL(2,\mathbb{C})\ltimes\mathbb{R}^4
i g\mapsto U_g^{(S)}$$

such that (*) $h_g(P) = U_g^{(S)} P U_g^{(S)\dagger}$ for $P \in \mathcal{L}_S$, $g \in SL(2, \mathbb{C}) \ltimes \mathbb{R}^4$. $U_g^{(S)}$ is determined by (*) up to elements of the center Z_{R_S} .

2.2. Elementary Relativistic Quantum Systems

An elementary relativistic quantum system;

- is elementary as a quantum system,
- admits a continuous action of Poincaré group
- no non-trivial elementary observables is fixed under the representation;
- its vN algebra is completely determined by its symmetry group.

DEF. S is an elementary relativistic quantum system if is elementary, relativistic, the representation h is irreducible, and its unitary implementation U generates the vN algebra R_S of the system ($R_S = U^{(S)} \lor Z_{R_S}$)

NB: If H_S is complex, S is an elementary quantum system if and only if is an elementary perticle according to Wigner's definition.

3. Equivalence to the Complex Hilbert Space Case

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

3.1. Main Technical Result

THEOREM. Let S be a elementary relativistic quantum system real, complex or quaternionic.

If the anti-selfadjoint generators of spacetime displacements P_{μ} of the Poincaré unitary representation U satisfy

$$P_0 P_0 - \sum_{k=1}^3 P_k P_k \ge 0$$

on **Gårding's domain**. The following facts hold (a) the commutant R'_{S} of the vN algebra R_{S} of the system

- is trivial $\{cl \mid c \in \mathbb{C}\}$ for complex H_S ,
- is of complex type $R'_{S} = \{aI + bJ\}_{a,b\in\mathbb{R}}$, where JJ = -I and $J^* = -J$ is fixed up to sign and $J \in R_S \cap R'_S$ for real and quaternionic H_S .

(b) J|P₀| = P₀ is the polar decomposition of P₀.
(c) J is Poincaré invariant: U^(S)_gJU^{(S)†}_g = J.
(d) The representation U^(S) alone generates the full vN algebra R₅.

3.2.1. Equivalence with the Complex Hilbert Space Case Suppose H_S is real, define the complex Hilbert space H_{SJ} defining

$$(a+ib)\psi := a\psi + bJ\psi, \quad a, b \in \mathbb{R}, \ \psi \in \mathsf{H}_S = \mathsf{H}_{SJ}$$

 $\langle \psi | \psi' \rangle_J := \langle \psi | \psi' \rangle - i \langle \psi | J \psi' \rangle , \quad \psi, \psi' \in \mathsf{H}_S = \mathsf{H}_{SJ}$

- Only the operators in R_S ⊊ B(H_S) are C-linear (commute with J) and can be viewed as operators in H_{SJ}.
- R_S ∋ A → A ∈ B(H_{SJ}) and L_{R_S} ∋ P → P ∈ L(H_{SJ}) continuous *-isomorphism of real (vN) algebras and isomorphism of orthocomplemented lattices.
- $B(H_{SJ})$ includes exactly the relevant operators describing S.
- Quantum states (probability measures) on \mathcal{L}_{Rs} are exactly density matrices on $\mathcal{L}(H_{SJ})$, in particular pure states \equiv unit vectors up to phases.
- The representation U_S viewed in H_{SJ} is a standard Wigner elementary particle (with $m^2 \ge 0$).

3.2.2. Equivalence with the Complex Hilbert Space Case Suppose H_S is quaternionic, define the complex Hilbert space $H_{SJ} := \{\psi \in H_S \mid J\psi = i\psi\}$

that is a complex subspace but not a quaternionic subspace,

 $\langle \psi | \psi' \rangle_J := \langle \psi | \psi' \rangle, \quad \psi, \psi' \in \mathsf{H}_{SJ} \subset \mathsf{H}_S$

- Only the operators in R_S ⊊ B(H_S) leave H_{SJ} invariant (commute with J) and can be viewed as operators in H_{SJ}.
- R_S ∋ A → A|_{H_{SJ}} ∈ B(H_{SJ}) and L_{R_S} ∋ P → P|_{H_{SJ}} ∈ L(H_{SJ}) continuous *-isomorphism of real (vN) algebras and isomorphism of orthocomplemented lattices.
- $B(H_{SJ})$ includes exactly the relevant operators describing S.
- Quantum states (probability measures) on \mathcal{L}_{R_S} are exactly density matrices on $\mathcal{L}(H_{SJ})$, in particular pure states \equiv unit vectors up to phases.
- The representation U_S restricted to H_{SJ} is a standard Wigner elementary particle (with $m^2 \ge 0$).

3.3.1 Conclusions: does some way out remain?

A relativistic elementary system (absence of superselection rules, maximal set of commuting observables, irreducible representation of Poincaré group determining the algebra of observables) always admits a faithful complex-Hilbert space description even if starting form real or quaternionic Hilbert spaces.

- The arising complex description is of Wigner type.
- The Poincaré invariant complex structure *J* responsible for the complex description arises form the symmetry group: it is suggested by physics.
- The complex description is non-redundant with respect to the real and quaternionic one as all self-adjoint operators have a physical role of observables.

3.3.2 Conclusions: does some way out remain?

QUESTION. Do real or quaternionic theories make sense?

There are very important **physical systems** whose description in complex Hilbert spaces is given in terms of von Neumann algebras that are **not** isomorfic to some B(H) differently from the studied cases.

- extended thermodynamical systems (type-III vN algebras)
- local algebras of quantum fields (*type-III* vN algebras))
- elementary quantum systems with internal **nonAbelian gauge group** like **quarks** (non-trivial *R*' in complex Hilbert space)

Are there some corresponding descriptions in real or quaternionic Hilbert spaces perhaps involving new physics?

Thank you very much for your attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○