

➡ Data taking conditions

The 'final problem'

- In clinical case conditions.. are we going to have enough tracks to perform our 'online monitoring'?
 - How many fragment exit?
 - What is the rate in clinical case conditions? (DP developed to sustain @ 10 kHz rate)

The L. Piersanti *et al* statement: 1k tracks in homog target → 3 mm resolution on BP

- → Using @ 90°: run 'rundo*87'
 - taken 25 07 @ 2:45. DD log file: *_004120_QA/beam4fluka.txt .
 - #12C 0.99 10⁹;
 - data taking time: 27s;
 - #events reconstructed:1.1 10⁵;
 - #total tracks: 1. 10⁵;
 - number of tracks from RANDO 7.9 10⁴

(a)90° the DPwas placed(a) 46cmfrom TGT

Conservative approach (CA): use the number of tracks from RANDO.
 Best case scenario (BCS): use the number of events.

- CA: 8 10⁴ tracks for 10^9 carbon ions
- BCS: 10⁵ tracks for 10⁹ carbon ions

L		-		N-1-7				 			
		RANDO	Fix1_C_C_20170725_004120_QA	FIX (0,0)	221	999983480	27.0669	87	108555	100786	79421
	1				1	1	1		1	1	

- → Using @ 60°: run 'rundo*104'
 - taken 25 07 @ 4:23. DD log file: *_021906_QA/beam4fluka.txt .
 - #¹²C 0.99 10⁹;
 - data taking time: 27s;
 - #events reconstructed:1.16 10⁵;
 - #total tracks: 1. 12 10⁵;
 - number of tracks from RANDO 9.5 10⁴

(a) 60° the DP
was placed
(a) 1m from
TGT

Conservative approach (CA): use the number of tracks from RANDO.
 Best case scenario (BCS): use the number of events.

- CA: 1 10⁵ tracks for 10^9 carbon ions
- BCS: 1.2 10⁵ tracks for 10⁹ carbon ions

Small difference btw raw 90° and 60° [DT is not accounted for, no solid angle correction is applied]

			N							
DP@60º	RANDO	Fix1_C_C_20170725_021906_QA	FIX (0,0)	221	999994176	27.4010	104	116690	112569	95112
	1				1					_

Carbon ions scenarios

- To understand how many tracks are expected in real life conditions we have different options:
 - Take as input a PB/slice in a given **real** treatment plan.
 - Take as input a PB/slice in a simulation in which a 1Gy dose was shot in water cube.
- ➡ Real treatment plan input:
 - @ 220 MeV: Tot of 13 10⁶ in 154 single PB (spots). Particles per 'slice': 1.3 10⁷ and particles per PB: 8.510⁴.
- ➡ Giuseppe TP for 1Gy dose in Water cube:
 - Last slice (223.56 MeV/u) at ~10 cm of depth: 7.5 10⁷ total, **3.3 10⁵ per PB**, (8.3 10⁶ in 0.2 cm x 1 cm²)
 - First slice (186.57 MeV/u) at ~7 cm of depth: 7.3 10⁶ total,
 3.2 10⁴ per PB (8.1 10⁵ in 0.2 cm x 1 cm²)

Track yield estimate @ 90°

	real TP, PB	real TP, slice	water TP last slice, PB	Water TP last slice, slice	Water TP, last slice, 1cm2	water TP first slice, PB	Water TP first slice, slice	Water TP, first slice, 1cm2
CA	7	1k	26	6k	664	3	580	65
BCS	8.5	1.3k	33	7.5k	830	3.2	730	81

To get what happens @ 60° in nominal conditions remember the following factors: x1.2 [ratio of charged production in DP as measured from data] and x4.7 [solid angle scaling factor].

DT has to be account ed for!

90° vs 60° (MC)

- Simulation from Giuseppe suggests that comparing 90° and 60° tracks exiting from RANDO a factor ~ 8 is expected (this is without accounting for DT!).
 - Different solid angle in MC can be accounted for rescaling 'by hand' the flux /4.7 to get the expected rate @ data taking pos.
 - Have also to account for the DT impact

Our main concern: Dead Time

Rate expectations

- ➡ Calculations based on MC expectations (a factor 2 is allowed in both directions... x2 .. /2):
 - $@60^{\circ}$ we have 1.5k tracks per 10^6 primary 12C ions
 - @90° we have 0.2k tracks per 10^6 primary 12C ions
- → From the DD log file we see that:
 - both @ 90° and 60° : ~0.7 10⁸ ions per second are shoot. [data]
 - Conservative Assumption: assume 1 10⁸ ions per second
- → The corresponding rates, from MC expected in the DP are:
 - 150 kHz @ 60° [in nominal position], 30 kHz @ 1m from RANDO
 20 kHz @ 90°
- The DP has been developed, aiming for a 10 kHz max rate. The DT optimisation has not been done yet.

13/09/17 A. Sarti

ARPG meeting

3500 **ED**T

DT vs time

- ightarrow Run (*a*) 60°
- DT has no evident correlation with time.

Dead time

- The impact from the measured dead time (~80 µs) and the measured rate can be guessed from the formula on the right
 - For a DP rate of 6 kHz and 80µs
 DT we are between 10 and 20
 kHz incoming rate....
 - For a DP rate of 7 kHz and DT of 120 μ s very large rates (~ 60 kHz) are compatible

To be kept in mind...

- That a 'zero DT' option is not what we have to compare to. We can assume that a DT of 20 μs is a sensible goal and evaluate in 'nominal' 60° conditions, what is the impact of such DT.
- ➡ Idea:
 - take the data with the current DT, correct for the 'event by event' value and get the real rate, rescale for the solid angle @ 60°, guess the 'true rate' expected @ 60° in nominal position and apply a 20µs dead time correction. The ratio btw the measured rate and the nominal rate @ 20µs DT will tell us the gain that we can expect....
- ➡ The multiplication factors for 20µs DT are: 1.83 @ 90° and 4.4 @ 60°.
 - Factors a 10µs and 0 DT have been computed as well, for reference:
 - $@10\mu s$ factors are: 2.1 and 6.3
 - (a) 0 μ s factors are: 2.5 and 11.7

Track yield estimate @ 90°

	real TP, PB	real TP, 9PB	real TP, slice	water TP last slice, PB	Water TP last slice, slice	Water TP, last slice, 1cm2	water TP first slice, PB	Water TP first slice, slice	Water TP, first slice, 1cm2
BCS	8.5	77	1.3k	33	7.5k	830	3.2	730	81
BCS 20µs , 60°	37	333	5.7k	145	33k	3.6k	14	3.2k	360
BCS 10µs , 60°	53	476	8.1k	207	47k	5.1k	20	4.6k	515
BCS 0μs, 60°	100	885	15k	386	87k	9.5k	37	8.6k	960

Not only numbers...

• we gave anyway a first look at the track distributions...

.. also track distributions

Next steps

- Check against thin target (with arms data) and against PMMA thick target (against HIT and GSI measurements) that we see a number of tracks that is consistent with what expected. This is the final proof that we have the full chain under control
- Go trough the data collected and understand the correlation with DD information
- Check the Emission spectra and try to get an estimate on the BP position precision achievable with RANDO data.

Other info (for future)

90° vs 60° (data)

➡ On thick target what have we measured? Not a big difference...

$$\Phi_p^{90^\circ} = (4.90 \pm 0.06_{stat} \pm 0.57_{sys}) \times 10^{-3} \ sr^{-1}$$

$$\Phi_d^{90^\circ} = (0.70 \pm 0.02_{stat} \pm 0.12_{sys}) \times 10^{-3} \ sr^{-1}$$

$$\Phi_p^{60^\circ} = (11.28 \pm 0.05_{stat} \pm 2.30_{sys}) \times 10^{-3} \ sr^{-1}$$

$$\Phi_d^{60^\circ} = (2.15 \pm 0.02_{stat} \pm 0.44_{sys}) \times 10^{-3} \ sr^{-1}$$

From reanalysis GSI paper.

Keep this in mind when trying to interpret the flux (a) 60° predicted by MC in RANDO runs

- → LOG fixed pos 150
- ➡ LOG fixed pos 150
- ➡ LOG fixed pos 220
- ➡ Run 99 *_022220_QA/beam4fluka.txt 9x9 Grid 280 MeV.

- ➡ *_025045_QA/beam4fluka.txt
- ➡ Fixed pos.
- → 115 MeV ->> 400 MeV

- *_025550_QA/beam4fluka.txt
- ➡ Fixed pos.
- ➡ 60 MeV ->> 226 MeV

Grid @ 118 MeV

*_033127_QA/beam4fluka.txtEnergy:

Grid @ 257 MeV

(05) 280 MeV/n, DP 60°, matrice, 10° primari/spor h0426 rate NIOKH, 120k ev Negli utrimi 4 run la distauza tra il DP (messo a 609) e Rando era di 109 cm -

- ➡ *_034038_QA/beam4fluka.txt
- → Energy: 257.500000
- → Tot particles 1800176767 [griglia.]

- ➡ 220 MeV
 - Rando:

run			#carbon i	time	#ev DP	#track s	#track s rando
RANDO 85	bomba, preso il 25 luglio alle 2:25	*_002724_QA/ beam4fluka.txt					
RANDO 86	bomba, preso il 25 luglio alle 2:30						
RANDO 87	preso il 25 luglio alle 2:45	*_004120_QA/ beam4fluka.txt	0.99 10 ⁹	27s	<i>1.1 10⁵</i>	<i>1. 10⁵</i>	7.9 10 ⁴