Graphene: Wafer scale production

Amaia Zurutuza Scientific Director

Content

- 1. Graphenea
- 2. Graphene production
- 3. Integration
- 4. Conclusions

Important milestones

We are expanding our global presence

Graphenea sites

CVD & GO Production Lab @ Miramon Technology Park (San Sebastian, Spain)

Research @ CIC nanogune (San Sebastian, Spain)

Graphene synthesis

New facilities

- New 8" CVD system
- Cleanroom class ISO7
- GO pilot plant 1Tone/year

Clean room CVD graphene

GO Pilot plant

Large team

Graphenea FTE (#)

Source: Graphenea

Graphenea GO Product Range

Graphene oxide

Form	Dispersion of graphene oxide sheets	Carbon	49-56%
Particle size	D90 29.05 - 32.9 μm	Hydrogen	0-1%
	D50 14.30 - 16.6 μm	Nitrogen	0-1%
	D10 5.90 - 6.63 µm	Sulfur	2-4%
рН	2,2-2,5	Oxygen	41-50%

SEM image

77-87%

0-1%

0-1% 0% 13-22%

Reduced graphene oxide

Form	Powder	Carbon
Electrical conductivity	≈ 667 S/m	Hydrogen
BET surface area	422.69-499.85 m ² /g	Nitrogen
Particle size (z-sizer in NMP at 0,1	260-295nm	Sulfur
mg/mL):		Oxygen
Density	1,91 g/cm ³	

SEM image

Functionalized graphene oxide

Customised functionalization:

Compatibilisation with matrix ٠

Graphenea CVD Product Range

Graphene on different substrates

Graphene on Cu

Raman shift (cm⁻¹)

G/SiO₂/Si

Graphenea CVD production capacity roadmap

Graphene is intrinsically cheap due to low marginal cost!

Source: Graphenea estimations

Graphene films

Production scale

- 3 cold walled CVD reactors
- Production of 100mm, 150mmm and 200mm graphene wafers

100mm CVD reactor

150mm CVD reactor & 200mm reactor

Research scale

Commercial scale

Monolayer Graphene Chemical Vapour Deposition (CVD)

Catalyst: Cu foil

GROWTH

- Advantages:
- Homogeneous growth
- >95% Monolayer
- Few defects
- Good properties
- Optimized transfer process

Nucleation	Coalescence	Continuous film

CVD Graphene Transfer

Graphene on catalyst

Graphene onto the desire substrate

 The quality of the transfer and the substrate supporting graphene together with the quality of the interface between graphene and the substrate have large impacts on the properties of graphene and device performance

CVD Graphene Transfer Importance of the substrate

The type of substrate will define the transfer process

- Structured substrates
- Perforated substrates: holes, cavities
- Water soluble substrates
- Number
- Size: 1x1mm² up to 4"
- Shape: rectangular, circular..
- Type of Material: CaF_2 , Si_3N_4 , Al_2O_3 ..
- Roughness
- Hydrophobicity

CVD Graphene Transfer

There is no standard process for all the substrates and applications

- Wet Transfer
- Dry Transfer
- Semi-dry Transfer

ANALYSIS

CVD Graphene characterisation

Scanning Electron Microscopy (SEM)

Transmission Electron Microscopy (TEM)

Atomic Force Microscopy

Electronic characterisation

Graphenea

X-Ray Photoelectron Spectroscopy (XPS)

ANALYSIS

CVD Graphene characterisation

- ✓ Monolayer continuous films
- \checkmark Polycrystalline: grain sizes up to 20 μm

INTEGRATION

Substrate effect on Graphene

Electronic characterisation

Substrate influence on mobility

Encapsulation

1500

1000

500 -

-6

Annealed at 225 °

 $\mu = 1500 - 2000 \text{ cr}$ n_a = 2*10¹² /cm²

Ambient air, organic solvents, chemicals, lithography resist

Lead to graphene doping and hysteretic behaviour in characteristics of FETs

Encapsulation of graphene with AI_2O_3

A.A. Asade et.al. Nanoscale 7, 3558 (2015)

-6

-2

✓ Direct deposition of Al₂O₃ by ALD

INTEGRATION

✓ AI seed layer growth by e-beam evaporation + AI_2O_3 by ALD

Oxide growth on seed layer

A.A. Asade et.al. Nanoscale 7, 3558 (2015)

Encapsulation

INTEGRATION

Direct growth of AI_2O_3 by ALD

- ✓ Hysteresis
- ✓ Not stable over time

Al seed layer + AI_2O_3 by ALD

- ✓ No hysteresis
- ✓ Stable over time

A.A. Asade et.al. Nanoscale 7, 3558 (2015)

75% of passivated transistors exhibited a conductance minimum and low hysteresis

٠

E_{gate} (V/nm)

INTEGRATION

Graphene optoelectronic mixer

THALES

- ✓ 30 GHz optoelectronic mixing
- ✓ Frequency down conversion to 100MHz

A. Montanaro et.al. Nano Lett. 16, 2988 (2016)

Graphene Integration

The application will define the graphene requirements

- Properties: Mobility, sheet resistance, transparency...
- Contamination limits: polymer residues, metal content
- Integration: Suspended, back-end, front-end..

Multilayer samples Stacking

Suspended graphene Encapsulation Image: Constraint of the second seco

APPLICATIONS

Graphene in NEMS/MEMS

Suspended graphene in pressure sensors

Development of homogeneous and high quality CVD graphene

APPLICATIONS

Graphene Interferometric Modulator Display (GIMOD)

Graphene for mechanical pixels

Bilayer CVD Graphene suspended onto 50microns cavities that compose the Flagship logo

GRAPHENE

Broadband image sensor array

Graphene-quantum dot photodetector array

- Monolithic integration of CMOS ROIC with graphene
- Graphene operates as a high mobility phototransistor
- QDs sensitising layer (PbS)
- Sensitive to UV, visible and IR light (300-2,000nm)

The Institute of Photonic Sciences

S. Goossens et.al. Nat. Photon. 11, 366 (2017)

Broadband image sensor array

Operates as digital camera

APPLICATIONS

 Graphene-QD image sensor captures reflection images from objects illuminated by a light source (office illumination)

99.8% of pixels functional

conditions

GRAP

○ >95% pixels sensitive to irradiance corresponding to partial-moon and twilight

oossens et.al. Nat. Photon. **11**, 366 (2017)

APPLICATIONS

Ultra-sensitive and low-cost Graphene Quantum-Dot Photodetector

Non-invasive health monitoring applications

- ✓ Flexible and transparent
- Blood volume
- ✓ Heart rate
- ✓ Ultra-sensitive with a gain of 10⁸ carriers per absorbed photon
- ✓ Sensitive to both visible and infrared light
- ✓ No cooling required

APPLICATIONS

GRAPHENE

Graphene flexible WiFi receiver

- 2.4 GHz receiver circuits on plastic
- Ideal for IoT and flexible electronics

Source: McKinsey

Power Sun Roof

APPLICATIONS

Graphene flexible Hall sensor

- High sensitivity, linearity and flexibility
- The key factor determining sensitivity of Hall effect sensors is high electron mobility

Source: Honeywell

Challenges

It is necessary to develop a customised material depending on the application and provide an easy integration method in order to promote graphene into commercial applications

Integration Opportunities - GFET platform

Strategy to aid graphene integration into commercial products

- Semiconductor industry not interested in few thousand wafers market – fill gap in value chain
- Commercialise GFET wafers
- Targeted markets: biosensors, sensors (photosensors), etc.

GFET platform

Graphene market is very small and driven by Researchrelated demand

Global Graphene market forecast (\$M)

Source: Graphenea estimations

Time to market – Aerospace industry

Source: ESA

C Graphenea Each application requires a specific type and grade of graphene

Illustrative TRL application map

Advanced materials that needed > 20 yrs

- ✓ Transistor
- ✓ Carbon fibre
- ✓ Fluorescent lamp
- ✓ Liquid crystals
- ✓ Kevlar
- ✓ PVC
- ✓ PE

Bell Labs 1947

Quantum dots - How things can change dramatically

Conclusions

- Customised graphene material is required for each specific application
- ✓ Many technological challenges still remain
- Many diverse multifunctional prototypes have been successfully fabricated
- We hope graphene will be a success story similar to QDs