s-process in stellar sites.

Sergio Cristallo

INAF – Osservatorio Astronomico d'Abruzzo (Italy)

The elements Table

First version by Mendeleev in 1869 to illustrate recurrent (periodic) properties of the known elements

Some minutes after the Bib Bang there were basically only hydrogen (\approx 75%) and helium (\approx 25%).

In the Sun there are 71% of hydrogen and 27% of helium. The remaining 2% are heavy elements (or metals).

In star forming regions hydrogen is about 65%, helium is about 31% and metal constitute the remaining 4%

H He Metals

The human body

99% of our bodies consist of six elements: oxygen, carbon, hydrogen, nitrogen, calcium and phosphorus.

Element	Percentage in mass (%)
Oxygen	65
Carbon	18
Hydrogen	10
Nitrogen	3
Calcium	1.5
Phosphorus	1.2
Potassium	0.2
Sulfur	0.2
Chlorine	0.2
Sodium	0.1
Magnesium	0.05

Trivia questions (for students only)

• Which element is labelled as Na?

- Which element is labelled as Au?
- Which element is labelled as Nb?

• Which element is labelled as Ce?

• Which element is labelled as Tm?

Solar System Abundances

Solar System Abundances

Their natural abundances are far greater that can be reproduced in nuclear statistical equilibrium, so that they seem to require a non-equilibrium mechanism.

Neutron capture reactions

 $^{A}X_{Z}(n,\gamma)^{A+1}X_{Z}$

With NO Coulomb barrier to overcome, heavy elements capture neutrons easily, even at extremely low energies.

Neutron cross section, in fact, generally INCREASES with decreasing energy

If the nucleus (Z,A+1) is stable, it waits until it captures another neutron, and so on.

If the nucleus (Z,A+1) is radioactive, the question whether it β -decays to (Z+1,A+1) or captures a second neutron depends upon the relative lifetimes of (Z,A+1) against β -decay and against capture of neutrons.

DEFINITION:
$$\tau_{_{n}}(X) = \frac{1}{N_{_{n}} < \sigma v > 0}$$

Mean lifetime of nucleus X against destruction by a neutron capture

($<\sigma v$ > represents the destruction rate of the nucleus)

 τ_{B} = beta-decay lifetime (seconds \rightarrow years)

if $\tau_n > \tau_\beta \implies$ unstable nucleus decays if $\tau_n < \tau_\beta \implies$ unstable reacts

$$\tau_{\beta} \gg \tau_{n} \quad \Leftrightarrow \quad N_{n} > 10^{20} \text{ n/cm}^{3}$$

Unstable nucleus captures another neutron before decaying

<u>The s-process</u>

 $\tau_{\beta} \leftrightarrow \tau_{n} \iff N_{n} \sim 10^{7} \text{ n/cm}^{3}$

Unstable nucleus decays before capturing another neutron

In principle one might expect to encounter astrophysical neutron fluxes in the large region between these two densities and have thereby a process intermediate to the s and r processes. Such events are apparently not common, and it is one of the fortunate simplifications in the application theory of synthesis by neutron capture that the most common fluxes are either quite small or quite large... **if you ignore the i-process**.₁₂

Who is **Roberto Gallino**?

"Chi non fa non falla..." You do not make mistakes if you don't work...

"Non credere mai a nessuno - nemmeno a me" Do not ever believe anyone - not even me

How neutron captures work?

Branching points: if $\tau_{\beta} \sim \tau_n \implies$ several paths are possible

The s-only isotopes solar distribution

Figure 4. As in Figure 3, but including a GCE calculation without the contribution from IMS AGBs (crosses). The *Reference* case (open dots) is shown by comparison. We have omitted error bars for clarity.

Seeds for the s-process

Main seeds are ⁵⁶Fe nuclei... Why not the most abundant ¹H, ⁴He or ¹²C???

10⁶ - 10⁹ v

Stable Unknown

The reason lies in the nuclear structure of nuclei...and in the stars!!

RATE[H(n, γ)²H] \propto N(H) \downarrow 10⁻¹²

 $> 10^9 \text{ y}$

Seeds for the s-process

MAGIC NUCLEI

abundance curve for elements beyond iron

very small $\sigma(n,\gamma)$ at neutron <u>magic numbers</u>

At atomic wieghts far from the closed shells, we find that the cross sections are so large that the differences between these two products is much smaller than the magnitude of either one of them, so that:

$\sigma_{A}N_{A} \approx \sigma_{A-1}N_{A-1}$

(local approximation)

In magic-numbered heavy nuclei the number of resonances is not so large and, therefore, the shell structure of the nucleus becomes an important feature in reducing the level density of resonances.

Where do neutrons come from?

Free neutrons are NOT abundant in the major phases of nuclear burnings.

Neutrons are liberated to some extent by secondary reactions during helium burning in Asymptotic Giant Branch (AGB) stars. Moreover they are produced during core-He and shell-C burnings of massive stars.

Major neutron sources of the s-process

 $^{13}C(\alpha,n)^{16}O$

 $^{22}Ne(\alpha,n)^{25}Mg$

The nuclear paths

¹³C: main source for the Main component

 $^{12}C(p,\gamma)^{13}N(\beta^{+})^{13}C$

²²Ne: main source for the Weak component

¹⁴N(α , γ)¹⁸F(β ⁺)¹⁸O(α , γ)²²Ne

Primary and secondary elements (or isotopes)

* Primary element: produced from H & He directly: ¹²C,¹⁶O... Secondary element: its production requires the presence of some metals: ¹⁴N, ²⁷Al...

The ¹³C is <u>primary</u> like The ²²Ne is <u>secondary</u> like Iron seeds (⁵⁶Fe) are <u>secondary</u> like

The key quantity is the neutron/seed ratio, for example: $N(^{13}C)/N(^{56}Fe)$

The three s-process peaks

- $1^{st} \text{ peak} \rightarrow \underline{1s} \text{ elements } (Sr,Y,Zr) [N=50]$
- $2^{nd} \text{ peak} \rightarrow \underline{\text{hs}} \text{ elements} (Ba,La,Ce,Nd,Sm) [N=82]$
- $3^{rd} \text{ peak} \rightarrow \underline{\text{lead}} (208 \text{Pb}) [N=126 \& P=82]$

THE CLASSICAL COMPONENTS OF THE S PROCESS

Weak Component: A<90

Core-He and C-shell burning In Massive Stars

Main Component: 90<A<204

AGB stars

Strong Component: 204 < A < 210

Low Metallicity AGB stars

SURFACE DISTRIBUTION

SURFACE DISTRIBUTION

Low metallicity AGBs produce a lot of lead and, therefore, a strong component is not requested!

Atomic Number, Z

Gallino's models

Asymptotic Giant Branch (AGB) stars

 $\tau_{\rm MS} \approx 1 \ {\rm Gyr}$ $\tau_{\rm AGB} \approx 1 \ {\rm Myr}$

AGBs: marvellous stellar cauldrons

- *C* (1.5-4.0 M_{SUN})
- N (4.0-7.0 M_{SUN})
- F (1.5-4.0 M_{SUN})
- Na (all)
- Mg&Al (5.0-7.0 M_{SUN})
- Half of the heavy elements is synthesized in AGBs

The s-process in AGB stars

$^{22}Ne(\alpha,n)^{25}Mg$ reaction

The s-process in AGB stars

Resuming...

Measurements of the ¹³C(α,n)¹⁶O reaction

- Trippella+ 2017
- Avila+ 2015
- La Cognata+ 2013
- Xu+ 2013
- La Cognata+ 2012
- Guo+ 2012
- Heil+ 2008
- Kubono+ 2003
- Angulo+ 1999
- Drotleff+ 1993

Asymptotic normalization coefficient (ANC) and the Trojan Horse Method (THM)

Fig. 4.— Comparison between S(E)-factor calculated in this paper (red band) with recent indirect determinations by La Cognata et al. (2013) and Avila et al. (2015) (green and purple band, respectively). The cyan band, instead, shows the astrophysical factor and the corresponding uncertainties suggested by NACRE II compilation (Xu et al. 2013). For ease of comparison, the same data set of Fig. 3 is shown in the low-energy region between 0.06 and 0.8 MeV where the contribution of the $1/2^+$ state is more effective.

4

Measurements of the ¹³C(α,n)¹⁶O reaction

- Trippella+ 2017
- Avila+ 2015
- La Cognata+ 2013
- Xu+ 2013
- La Cognața+ 2012

Asymptotic normalization coefficient (ANC) and the Trojan Horse Method (THM)

- Guo+ 201 LUNA experiment
 Heil+ 200
- Kubono+ n_TOF experiment

actor calcuent indirect (2013) and band, reshows the

- Angulo+ 1,...
- Drotleff+ 1993

astrophysical factor and the corresponding uncertainties suggested by NACRE II compilation (Xu et al. 2013). For ease of comparison, the same data set of Fig. 3 is shown in the low-energy region between 0.06 and 0.8 MeV where the contribution of the $1/2^+$ state is more effective.

How does the ¹³C pocket form?

- Opacity induced overshoot
- Convective Boundary Mixing
- Magnetic fields

How does the ¹³C pocket change?

- ✓ Rotation mixing
- ✓ Magnetic fields

The formation of the ¹³C pocket

Rotation induced instabilities during the AGB phase

NET EFFECT

It mixes ¹⁴N in ¹³C-rich layers (and viceversa), thus implying a decrease of the local neutron density and an increase of the iron seeds. As a consequence, the surface s-process distributions change.

39

s-process indexes with rotation: [hs/ls]

s-process indexes with rotation: [hs/ls]

Different contributors

The contribution from intermediate mass AGBs

Figure 3. Ratio between the mass of H-depleted dredged-up material (δM_{TDU}) and the envelope mass (M_{env}) for different masses at $Z = 10^{-2}$ (upper panel) and $Z = 2.4 \times 10^{-4}$ (lower panel).

Cristallo+ 2015

Moreover, the temperature attained at the base of the convective shell largely increases, For instance at low metallicities:

 $1.5 M_{SUN} \approx 2.8 \times 10^8 K$ $2.5 M_{SUN} \approx 3.5 \times 10^8 K$ $5.0 M_{SUN} \approx 3.8 \times 10^8 K$ The TDU efficiency decreases, but the number of thermal pulses is definitely larger. For instance, at low metallicities: $1.5 \text{ M}_{\text{SUN}} \approx 10 \text{ TDUs}$ $2.5 \text{ M}_{\text{SUN}} \approx 20 \text{ TDUs}$ $5.0 \text{ M}_{\text{SUN}} \approx 80 \text{ TDUs}$

The contribution from intermediate mass AGBs

Figure 3. Ratio between the mass of H-depleted dredged-up material (δM_{TDU}) and the envelope mass (M_{env}) for different masses at $Z = 10^{-2}$ (upper panel) and $Z = 2.4 \times 10^{-4}$ (lower panel).

Cristallo+ 2015

Moreover, the temperature attained at the base of the convective shell largely increases, For instance at low metallicities:

The TDU efficiency decreases, but the number of thermal pulses is definitely larger. For instance, at low metallicities: $1.5 \text{ M}_{\text{SUN}} \approx 10 \text{ TDUs}$ $2.5 \text{ M}_{\text{SUN}} \approx 20 \text{ TDUs}$ $5.0 \text{ M}_{\text{SUN}} \approx 80 \text{ TDUs}$

0.8

Larger contribution from the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction

 $5.0 \text{ M}_{\text{SUN}} \approx 3.8 \text{x} 10^8 \text{ K}$

0.6

 $M_{\rm H}$ [M_o] Cristallo+ 2015

s-rich Globular Clusters: the importance of massive AGBs

Straniero+ 2014

Shingles+ 2014

An unambiguous spin/parity assignment of the corresponding excited states in ²⁶Mg

Experimental upper limits of the reaction rates for ${}^{22}Ne(\alpha,n){}^{25}Mg$ and ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$, potentially leading to a significantly higher $(\alpha,n)/(\alpha,\gamma)$ ratio than previously evaluated.

Massimi+ 2017 (n_TOF collaboration)

 $^{25}Mg(n,\gamma)$ and $^{25}Mg(n,tot)$

The weak s-process and the evolution of massive stars

Oh, Be A Fine Girl Kiss Me Right Now!

Core He-burning phase

 $3a \rightarrow {}^{12}C$ ${}^{12}C(a,\gamma){}^{16}O$ ${}^{14}N(a,\gamma){}^{18}F(\beta^{+}){}^{18}O(a,\gamma){}^{22}Ne$ $\tau \approx 1 Myr$

When $T \sim 3x 10^8$ K the ²²Ne(α ,n)²⁵Mg is efficiently activated

The resulting neutron density is low (~10⁶ n/cm³) Similar to the Classical s-process

Core C-burning phase

 $\frac{12C(12C,\alpha)^{20}Ne}{12C(12C,p)^{23}Na}$ $\frac{12C(12C,p)^{23}Na}{12C(12C,n)^{23}Mg^{*}}$ $\tau \approx 1 \text{ Kyr}$

Some ²²Ne is left after He burning

All (α ,n) channels are activated: ¹³C(α ,n)¹⁶O - ¹⁷O(α ,n)²⁰Ne ¹⁸O(α ,n)²¹Ne - ²¹Ne(α ,n)²⁴Mg ²²Ne(α ,n)²⁵Mg - ²⁵Mg(α ,n)²⁸Si ²⁶Mg(α ,n)²⁹Si

The resulting neutron density is very high, BUT...

Shell C-burning phase

All (α ,n) channels are activated: ¹³C(α ,n)¹⁶O - ¹⁷O(α ,n)²⁰Ne ¹⁸O(α ,n)²¹Ne - ²¹Ne(α ,n)²⁴Mg ²²Ne(α ,n)²⁵Mg - ²⁵Mg(α ,n)²⁸Si ²⁶Mg(α ,n)²⁹Si $1^{2}C(1^{2}C,\alpha)^{20}Ne$ $1^{2}C(1^{2}C,p)^{23}Na$ $1^{2}C(1^{2}C,n)^{23}Mg*$

Why not the ${}^{13}C(\alpha,n){}^{16}O?$ Because at T~1x10⁹ K the ${}^{13}N(\gamma,p){}^{12}C*$ works!!

The resulting neutron density is very high: 10^{11} - 10^{12} n/cm³

Secondary nature of the weak s-process

Both ²²Ne (neutron source) and ²⁵Mg (main neutron poison) scale with metallicity. Thus, weak s-process yields strongly depend on the initial metallicity.

An example: the Cu evolution

Bisterzo+ 2004

Uncertainties of the weak s-process: cross sections

$^{12}C(^{12}C,x)x - ^{22}Ne(\alpha,x)x - ^{12}C(\alpha,\gamma)^{16}O$

Uncertainties of the weak s-process: stellar modelling

Convection - Rotation

Strong production of primary ¹⁴N at low metallicities

${ m ^{13}C/^{14}N\simeq}~5.7\cdot 10^{-3}$

In any case the dominant source is the $^{22}Ne(\alpha,n)^{25}Mg$

Courtesy of A. Chieffi

The effect of rotation: differences in the stellar ejecta

"We are stardust" Joni Mitchell, Woodstock

Thank you!