Physics with muon collider

M. Antonelli (LNF)

Muon based Colliders

- A μ⁺μ⁻ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μ s (at rest)
- Best performances in terms of luminosity and power consumption
- Great potentiality if the technology proves its feasibility:
 - cooled muon source
 - fast acceleration
 - μ Collider
 - radiation Safety (muon decay in accelerator and detector)

The strength of a μ -beam facility lies in its richness:

 μ -colliders can essentially do the HE program of e^+e^- colliders with added bonus (and some limitations)

Giudice

TeV/Multi-TeV Lepton Collider Basics

- At Vs=M_H resonant Higgs production
- For vs<500GeV

 SM threshold region: top pairs; W⁺W⁻; ZZ; Zh; ...
- For Vs>500GeV
 For SM pair production
 - $R = \sigma/\sigma QED(\mu^+\mu^- \rightarrow e^+e^-) \sim flat$
 - High luminosity required

#

MultiTeV Lepton Collider Basics

- For √s < 500 GeV
 - SM threshold region: top pairs; W⁺W⁻; Z⁰Z⁰; Z⁰h; ...
- For √s > 500 GeV
 - For SM pair production ($|\theta| > 10^{\circ}$)

 $\mathsf{R} = \sigma / \sigma_{\mathsf{QED}}(\mu^+\mu^- \to e^+e^-) \sim \mathsf{flat}$ $\sigma_{\mathsf{QED}}(\mu^+\mu^- \to e^+e^-) = \frac{4\pi\alpha^2}{3s} = \frac{86.8 \text{ fb}}{s(\text{TeV}^2)}$

- High luminosity required

Standard Model Cross Sections

$$\sqrt{s} = 3.0 \text{ TeV} \quad \mathcal{L} = 10^{34} \text{ cm}^{-2} \text{sec}^{-1}$$
$$\rightarrow 100 \text{ fb}^{-1} \text{year}^{-1}$$

 \Rightarrow 965 events/unit of R

Processes with $R \ge 0.1$ can be studied

Total - 540 K SM events per year

== 10³⁶ cm⁻² s⁻¹@ Vs 30 TeV

Muon Collider 2011 @ Telluride, CO

10⁸ 10⁶ 10² 107 $cm^{-2} sec^{-1}$ $\mu^+\mu^- \rightarrow X$ $\mu^+\mu^- \to X$ 10⁷ $cm^{-2} \sec^{-1} 0$ 10⁵ 10^{6} $\mu^+\mu^-$ (1° cut) $\mu^{+}\mu^{-}$ (20° cut) 10⁶ 10⁴ 10⁵ γνν (20°, 20 GeV) 10^{-7} 10^{-01} 10^{-10} $(qf)_{10^2}^{10^3}$ $\mu^{+}\mu^{-}$ (20° cut) 10⁴ WW,ZZ → $\left(\begin{array}{c} q \\ q \end{array} \right)_{10^3}$ $\nu\nu W^+W^-$ W⁺W ь W^+W^-Z ь $\gamma\gamma$ (20° cut) 10¹ 10² ______ e⁺e^{__} qq 10⁰ 10¹ WW,ZZ \rightarrow hh Zh (120) $e^+e^-/\tau^+\tau$ ____₁₀_5 5000 ____₁₀1 5000 10⁰ 10^{-1} 1000 2000 3000 4000 1000 2000 3000 4000 $\sqrt{s_{\mu\mu}}$ √s_{µµ} (GeV) (GeV)

SM at a muon collider:

Vector boson fusion

 $\sigma(s) = C \ln(\frac{s}{M_{\mathbf{x}}^2}) + \dots$

- For √s > 1 TeV Fusion Processes
 - Large cross sections
 - Increase with s.
 - Important at multi-Tev energies
 - M_X² < s
 - Backgrounds for SUSY processes
 - t-channel processes sensitive to angular cuts

CLIC (or MC e<-> μ)

Higgs Physics

M. Antonelli, Padova, July 16th 2015

Higgs boson production

- Muons are leptons, like electrons
 - Muon colliders can a priori do everything that e⁺e⁻ colliders can do, e.g.:

- FCC-ee luminosity: $0.5 1.1 \times 10^{35}$ cm⁻²s⁻¹ / IP and up to 4 IPs
- Muon collider luminosity: few× 10³³ cm⁻²s⁻¹ / IP
- Precision on branching ratios, couplings, width, mass, etc., with 2 IPs
 - A factor 10 better at FCC-ee (and twice better at ILC) than at a muon collider

SM Higgs resonance

• Resonant production

$$\sigma(\mu^+\mu^- \to H^0) = \frac{4\pi\Gamma_H^2 Br(H^0 \to \mu^+\mu^-)}{\left(\hat{s} - M_H^2\right)^2 + \Gamma_H^2 M_H^2}$$

- Convoluted with
 - Beam energy spectrum
 - Initial state radiation (ignored in most studies)
- The measurement of the lineshape gives access to
 - The Higgs mass, m_H
 - The Higgs width, $\Gamma_{\rm H}$
 - The branching ratio into $\mu^+\mu^-$, BR(H $\rightarrow \mu\mu$)
 - Hence, the coupling of the Higgs to the muon, g_{Huu}
 - Some branching fractions and couplings, with exclusive decays

SM Higgs resonance

- Muons are heavy, unlike electrons: $m_{\mu}/m_{e} \approx 200$
 - − Large direct coupling to the Higgs boson: $\sigma(\mu^+\mu^- \rightarrow H) \simeq 40,000 \times \sigma(e^+e^- \rightarrow H)$
 - Much less synchrotron radiation, hence potentially superb energy definition
 - $\delta E/E$ can be reduced to $3-4 \times 10^{-5}$ with more longitudinal cooling
 - Albeit with equivalent reduction of luminosity: $2 8 \times 10^{31}$ cm⁻²s⁻¹

• $\sigma(\mu^+\mu^- \rightarrow H) \sim 15 \text{ pb}$ (ISR often forgotten...)

- 200 800 pb⁻¹/ yr
- 3000 12000 Higgs / yr

Scan of the SM Higgs resonance

- Notes
 - Some optimism in these numbers (perfect b tag, only Z bkgd, no beam bkgd...)
 - Errors to be increased to account for ISR
 - A better scan strategy should be designed (less in the sides, more in the peak)
 - The numbers are for 5 years at low luminosity, and 1.2 year after lumi upgrade
 - Combined numbers (next slide) given for 5 (low lumi) + 5 (upgrade) years.

Possible results with 1 fb⁻¹

Simulated results with backgrounds and cuts
 1 fb⁻¹ = 1 yr (10⁷ sec) @ 1x10³²

Channel		$\Gamma_{H\to X}(MeV)$	$\Delta M_H(MeV)$	$Br(H^0\to X)$
Total	Raw	4.56 ± 1.52	0.13 ± 0.16	0.96 ± 0.04
Total	Cut	5.57 ± 1.33	-0.02 ± 0.14	0.65 ± 0.01
ьī	Raw	3.49 ± 1.83	-0.06 ± 0.19	0.67 ± 0.05
00	Cut	4.78 ± 0.48	0.01 ± 0.05	0.271 ± 0.001
14/14/*	Raw	4.06 ± 0.24	0.00 ± 0.07	0.217 ± 0.001
VV VV	Cut	3.96 ± 0.17	-0.16 ± 0.04	0.1271 ± 0.0002
=+=-	Raw	4.82 ± 4.46	-0.54 ± 0.47	0.0623 ± 0.0005
$T \uparrow T$	Cut	0.84 ± 2.97	1.07 ± 0.30	0.24 ± 0.23
0/0/	Raw	2.85 ± 5.73	-0.6 ± 0.9	0.0035 ± 0.0001
·γ·γ	Cut			

– Combined:

- $\sigma(M_{\rm H})$ ~ 0.03 MeV (<~ 100 MeV @ILC-500)
- $\sigma(\Gamma_{\rm H})$ ~ 0.16 MeV (0.08 MeV @ILC-500)

Muon Collider meeting, Settembre 2015

F. Bedeschi, INFN-Pisa

YKK FNAL study arxiv1308.2143

Higgs production for multiTev muon collider

VBF dominant production mode

- WHIZARD event generator for cross section computation
 - <u>http://whizard.hepforge.org/</u>

VBF Higgs production

@sqrt(s) = 3 TeV μμ->vvH : 495 fb μμ->μμh : 52 fb R Di Nardo, M Rotondo, G Simi Analysis study to be performed

arXiv:1405.5910

SM Higgs

- Resonant Higgs production:
 - Unique measurements of *mh* and *Γh*
 - (mh ~ 0.1 MeV, *Гh* ~ 0.2 MeV)
 - Best test of 2nd generation Higgs couplings (h $\rightarrow \mu + \mu -$)
- HZ production:

Error on	μμ resonance	ILC	FCC-ee	
m _H (MeV)	0.06	30	8	
Г _н (MeV)	0.17	0.16	0.04	
g _{Hbb}	2.3%	1.5%	0.4%	
g _{HWW}	2.2%	0.8%	0.2%	
g _{Hrt}	5%	1.9%	0.5%	
g_{Hγγ}	10%	7.8%	1.5%	
g _{Ημμ}	2.1%	20%	6.2%	
g _{HZZ}	_	0.6%	0.15%	
g _{Hcc}	-	2.7%	0.7%	
g _{Hgg}	_	2.3%	0.8%	P. Janot
BR _{invis}	-	<0.5%	<0.1%	

- Similar to e⁺e⁻ measurements but lower statistics factor 10 (ILC/ CEPC) 100 FCC-ee
- VBF at mutiTeV
 - High xs(O(1Pb)@6TeV) & high lumi better statistics than FCCee ?
 - Competitive (probably best) measurement of HH production

BSM Higgs Physics

M. Antonelli, Padova, July 16th 2015

BSM Higgs boson production

• Resonant H/A production $\mu^+\mu^- \rightarrow H,A$ 2 states separation $\sqrt{s}<900 \text{ GeV}$

• Pair production like e⁺e⁻

Radiative return H/A production

- Automatic mass scan with radiative returns ٠ in $\mu\mu$ collisions
 - Select event with an energetic photon

- Can "see" H and A
 - If $tan\beta > 5$

6

sig/6

BSM Physics

SUSY

- $\mu^+\mu^- \rightarrow \tilde{e}_1^+\tilde{e}_1^- \rightarrow \tilde{\chi}_1^0\tilde{\chi}_1^0e^+e^-$
 - Angular cut at 20° from beam direction:
 - 50% reduction for smuon pairs
 - 20% reduction for selectron pairs
 - Mass measurements using edge method better for MC than CLIC:

$$E_{\text{max/min}} = \frac{1}{2} M_{\tilde{e}} \left[1 - \frac{M_{\tilde{\chi}_1^0}^2}{M_{\tilde{e}}^2} \right] \gamma (1 \pm \beta)$$

Effect of beamstrahlung

Resonances

- Can use to set minimum required luminosity for a muon colider:
 - Likely new physics candidates:
 - scalars: h, H⁰, A⁰,...
 - gauge bosons: Z'
 - new dynamics: bound states
 - ED: KK modes
 - Example new gauge boson: Z'
 - SSM, E6, LRM
 - 5σ discovery limits: 4–5 TeV at LHC (@ 300 fb⁻¹)

Minimum luminosity at Z' peak: $\mathcal{L} = 0.5-5.0 \times 10^{30} \text{ cm}^{-2} \text{ sec}^{-1}$ for M(Z') -> 1.5-5.0 TeV

1000 $\mu^+\mu^- \rightarrow Z'$ events on the peak

Strong dynamics

• Solves the Naturalness Problem: Electroweak Symmetry Breaking is generated dynamically at a nearby scale. May or may not be a light Higgs boson.

Theoretical issues

- What is the spectrum of low-lying states?
- What is the ultraviolet completion? Gauge group? Fermion representations?
- What is the energy scale of the new dynamics?
- Any new insight into quark and/or lepton flavor mixing and CP violation?

Technicolor, ETC, Walking TC, Topcolor , ...

For example with a new strong interaction at TeV scale expect:

- Technipions s channel production (Higgs like)
- Technirhos Nearby resonances (ρ_T, ω_T)- need fine energy resolution of muon collider.

Extradimensions

• Solves the Naturalness Problem: The effective GUT scale is moved closer.

Theoretical issues

- How many dimensions?
- Which interactions (other than gravity) extend into the extra dimensions?
- At what scale does gravity become a strong interaction? -
- What happens above that scale?

possible KK modes

- Randall-Sundrum model: warped extra dimensions
- two parameters: _

-

•••

.

- mass scale ∝ first KK mode;
 width ∝ 5D curvature / effective 4D Planck scale.

Muon collider vs hadron collider

- Study the same benchmark used for White Paper:
 - New heavy particles, both colored and EW charged (~vector like quarks)→ xsec can be predicted
 - FCC reach stops at $M_X = 7 \text{ TeV}$
- Hadron machine pays the price of the exponentially falling PDF → multi-TeV muon machine can be competitive!

Experimental environment

1. the luminosity and frequency of crossings are such that pile-up will not be a problem. Situation better than LHC/CLIC/FCC-hh

2. the main background arises from $\mu \rightarrow evv$ decays with off momentum/axis electron radiate or hit material around the detector (low beta point is most achromatic) 10^{12} muons $\rightarrow 10^9 e^{\pm}$ produced per turn \rightarrow produce lots of photons and neutrons.

Shielding against these backgrounds is necessary. 10-15° cones of tungsten have been proposed seems OK. Never worse than the background at HL-LHC! But much lower physics rates Much work to do. Situation worse than e+e- colliders.

much reduced with the e+e- muon source option

3. luminosity measurement with $\mu\mu \rightarrow \mu\mu$ (muon equivalent to Bhabha scattering) has to be done through this shielding (probably OK, needs to be demonstrated)

4. HF design similar to that of ILC/CLIC detectors (beam constraint is more constraining)

5. High energy collider more similar to LHC

18 Nov 2015

A Blondel

U.S. Muon Accelerator Program

Figure 23: Cross sectional view of a possible Higgs Factory Muon Collider detector showing the tungsten cones shielding the detector from beam related backgrounds.

18 Nov 2015

A Blondel

Background Sources

- Muon Decay Background
 - Electron Showers from high energy electrons.
 - Bremsstrahlung Radiation for decay electrons in magnetic fields.
 - Photonuclear Interactions
 - Source of hadrons background.
 - Bethe-Heitler muon production.
- Beam Halo
 - Beam Scraping at 180° from IP to reduce halo. Could it cause some?
 - Collider sources such as magnet misalignments.
- Beam-Beam Interactions.
 - Believed to be small.

Muon Decay Background

- Upper figure shows electron energy spectrum from decay of 2 TeV muons.
 - 2×10¹² Muons/bunch in each beam
 - 2.6×10⁵ decays/meter
 - Mean Decay Electron energy = 700 GeV
- Lower figure shows trajectories of decay electrons.
 - Electron decay angles are of the order of ~10 microradians.
 - In the final focus section, the decay electrons tend to stay in the beam pipe until they see the final focus quad fields.

Neutron Background

S. Kahn -- Muon Collider Detector Backgrounds

Time Distribution of Neutron Background

- The top distribution shows the time distribution of the neutron background generated.
- The lower distribution shows the time distribution of the neutron background that is seen in the tracker.
- The neutron flux has fallen by two orders of magnitude before the next bunch crossing (10 µs later).

Pion Background in the Detector

Bethe-Heitler Muon Trajectories for the 2×2 TeV Collider

Muon pair production at beam pipe for example $\mu N \rightarrow \mu \mu^+ \mu^- N$ eN->e $\mu^+ \mu^- N$ (electrons are more likely to hit beam pipe).

Machine Detector Interface

 Backgrounds appear manageable with suitable detector pixelation and timing rejection

M. Palmer

- Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors of <2
 - Significant improvement in our confidence of detector performance

Conclusion

- Higgs Factory (~125 GeV)
 - Very precise determinations of *mh* and Γh
 - Test of Higgs $\mu\mu$ coupling
- Higgs physics at higher energies
 - ZH ~factor 10 in accuracy worse wrt FCCee (2 wrt ILC/CEPC)
 - Very promising H and HH σ values at MultiTeV (need to be studied)
- BSM physics
 - Explore very high energy frontier with pair production (provided sufficient luminosity) up to ?
 - Best for new resonances (negligible beamstrahlung, reduced ISR) additional Higgs bosons in particular
 - BSM in VBF not studied yet