V workshop italiano sulla fisica p-p ad LHC Perugia, 30 Gennaio - 2 Febbraio

B-Physics: Theoretical Predictions in the LHC Era

Theoretical Approach and Tools
State of the art of the theoretical predictions

Cecilia Tarantino University of Rome and INFN Roma Tre

[G.D´Ambrosio et al., hep-ph/0207036], [A.J. Buras et al., hep-ph/0007085]

Beyond MFV:

New sources of flavour violation (V_i^{non-MFV}) can appear

New operators (Q_i^{MFV}, Q_i^{non-MFV}) can appear but their (long-distance) matrix elements are not affected by NP

Some Appealing NP Models

MFV

MSSM with MFV

(boson-fermion symmetry,minimal spectrum (sparticles,2 Higgs doublets,tanβ=v_u/v_d), R-parity)

Appelquist-Cheng-Dobrescu (ACD) Model

(1 universal extra-dimension \rightarrow SM particles propagate in 5 dimensions, in 4 dimensions Kaluza-Klein modes appear, KK—Parity conservation, only one additional free parameter: 1/R)

Beyond MFV

MSSM with a general Flavour Structure

27 new Flavour Changing couplings along the squark lines)

Littlest Higgs with T-Parity (LHT)

(Higgs= Goldstone boson of a spontaneously broken global symmetry SU(5) \xrightarrow{f} SO(5), heavy partners (W_H, Z_H, A_H, T, Φ)

+ a discrete symmetry (T-Parity)→ heavy particles forbidden at tree-level (to soften ew precision constraints: f>500GeV)

new mirror fermions with new flavour interactions)

Suppression within the SM

•FCNCs forbidden at tree-level in the SM (radiative and rare decays:b \rightarrow (s,d) γ , b \rightarrow (s,d) *I*+*I*, b \rightarrow sv \overline{v} , B_{d,s} \rightarrow *I*+*I*,...)

•CKM-, helicity-suppression

(semileptonic CP-asymmetry: A^{s}_{SL} ...,t-dep. CP-asymmetries: $A_{CP}(B \rightarrow K^{*}\gamma)$,...)

Small hadronic uncertaintes

Sensitivity to NP

•At most one hadron in the final state

(leptonic and semileptonic decays: $B_{d,s} \rightarrow l^{+} l$, $b \rightarrow (s,d) l^{+} l$, $b \rightarrow sv\overline{v},...$)

•Smearing of bound-effects in the final state

(Inclusive quantities: lifetimes, ΔM_q , $\Delta \Gamma_q / \Gamma_q$, A^q_{SL} , ϕ_s ,...)

•Suppression/cancellation of some hadronic uncertainties

(clean dominant contributions, peculiar ratios/correlations: $A_{CP}(B \rightarrow J_{\Psi} K_S)$, $\Delta M_s / \Delta M_d$,...)

Angles of the Unitarity Triangle

Great success of the SM
High level of precision (~few %)
Agreement among side and angle measurements determined

All 3 angles can be determined from B decays

Improving the (NP-free) determinations of CKM elements is a key ingredient to improve the SM predictions in processes sensitive to NP

mainly in ew penguins and FSI (irreducile theory error few%)

M.Bona et al. [UTfit coll.], hep-ph/0701204

on the hadronic matrix elements!

γ **(**φ₃**)**

 $V_{ub} = |V_{ub}| e^{-i\gamma}$

Determination of γ from B \rightarrow DK decays: [I.I.Y.Bigi, A.I.Sanda, 1988, A.B.Carter, A.I. Sanda, 1988] •B⁺ \rightarrow DK⁺ can produce both D⁰ and D⁰, via $\overline{b} \rightarrow \overline{cus}$ and $\overline{b} \rightarrow \overline{ucs}$ •D⁰ and D⁰ can decay to a common final state •The two amplitudes interfere with a relative phase $\delta_{B} \pm \gamma$, for B⁺(B⁻)

Remaining theoretical uncertainty from simplifying D-D mixing neglection (irreducile theory error 0.1%)

Various methods consider different final states:

 •CP-eigenstates (Gronau,London,Wyler [GLW]) (π⁺π⁻, K⁺K⁻, K_sπ⁰, K_sφ, K_sω,...)
 •doubly Cabibbo suppressed D modes (Atwood,Dunietz,Soni [ADS]) (K⁺π⁻, K⁺ρ⁻,K^{*}π⁻,...)
 •three-body D decaying modes (Dalitz plot analysis) (K_sπ⁺π⁻ provides the best estimate at present) [A.Giri, hep-ph/0303187]

The best strategy is a combined analysis taking into account many D and D* modes

M.Bona et al. [UTfit coll.], hep-ph/0501199

compatible with the result from the UT analysis

Similar results from a frequentist approach [CKMfitter]

The $\mu^+\mu^-$ modes are experimentally the best: •e⁺e⁻ is m_e^2/m_{μ}^2 suppressed

• $\tau^+\tau^-$ has at least other two missing v from decaying τ 's

 $B_s \rightarrow \phi / h, B_s \rightarrow \eta' / h$ (larger hadronic uncertainties in meson wave functions)

 $\Lambda_{b} \rightarrow \Lambda^{0} h' t$ (theoretically more complicated)

Conclusions

•There is plenty of interesting B-observables sensitive to NP and accessible at LHC

•A combined analysis, including clean correlations, plays an important role to identify a SM breakdown and its sources

•The NP flavour structure can only be determined with improved measurements in the flavour sector

see Paride's discussion of:
Interplay with Direct Searches
Lepton flavour violation

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.