B-physics at the TeVatron

Michael J. Morello University and INFN of Pisa for the CDF and DØ collaboration V Workshop Italiano sulla Fisica pp ad LHC January 30th – February 2nd, 2008, Perugia (Italy)

Outline

- Introduction
 - Tevatron, CDF and DØ detectors
 - B Physics at hadron colliders
- In this talk
 - B_{s}^{0} mixing: measurement of Δm_{s} .
 - Lifetime, lifetime difference $\Delta\Gamma$ and CP violation in neutral B⁰_s system
 - Untagged and tagged analysis of $B_s^0 \rightarrow J/\Psi \phi$.
 - Λ_{b}^{0} Lifetime.
 - Charm mixing.
 - BR and A_{CP} of $B^0/B^0_s \rightarrow h^+h^-$ and $\Lambda^0_b \rightarrow p\pi(K)$ decays.
 - γ from B⁺ \rightarrow D⁰_{CP}K⁺ and B⁰_s \rightarrow D_sK.
 - Ξ_{b} Baryon (First Observation)
 - FCNC: B⁰_s→μμ
- Conclusions.
- List of topics not covered.

Fermilab Tevatron

- ✓ pp collisions at 1.96 TeV
- 2.5 fb⁻¹ "good" data on tape (results today 1-2fb⁻¹)
- 1.7MHz collision rate (396 ns bunch spacing)
- Peak luminosity 2.92x10³²cm⁻²s⁻
 - Average ~5-6 pp interactions per bunch crossing
- Anticipate luminosity as high as 3x10³²cm⁻²s⁻¹
 - Challenging for the detector, trigger and event reconstruction

CDF detector

- Central tracking includes silicon vertex detector surrounded by drift chamber
 - p_T resolution $dp_T/p_T = 0.0015 p_T \text{ GeV}^{-1}$
 - excellent mass resolution ~14 MeV for J/ $\psi \rightarrow \mu\mu$, ~22 MeV for B \rightarrow hh
 - good vertex resolution ~100 fs
- Particle identification: dE/dx (1.5 σ K/ π @ p>2GeV) and ToF
- Good electron and muon identification by calorimeters and muon chambers.

DØ Detector

- Excellent coverage of Tracking and Muon Systems
- Excellent calorimetry and electron ID
- 2T Solenoid, polarity reversed weekly
- High efficiency muon trigger with muon p_T measurement at Level1 by toroids

B Physics at the Tevatron

- At Tevatron, large b production cross section
 - Tevatron experiments CDF and DØ enjoy rich B Physics program
- Plethora of states accessible: B_{s}^{0} , B_{c} , Λ_{b}^{0} , Ξ_{b} , Σ_{b} ...
 - complement the B factories physics program
- Total inelastic cross section at Tevatron is ~1000 larger that b cross section
 - large backgrounds suppressed by triggers that target specific decays.

B Triggers

J/ψ

Dimuon

Displaced Track

p_T(μ)>1.5GeV
J/ψ mass requirement
Opposite charge

p_T(μ)>1.5 or 2 GeV
 Triggers with/without charge requirement

p_T(track)>2 GeV

IP(track)>80 or 120 μm

Opposite charge

 $\begin{array}{l} \mathsf{B}^{0} \rightarrow \mathsf{J}/\psi \;\mathsf{K}^{0^{*}} \\ \mathsf{B}^{+} \rightarrow \mathsf{J}/\psi \;\mathsf{K}^{+} \\ \Lambda_{\mathsf{b}} \rightarrow \mathsf{J}/\psi \;\Lambda \\ \mathsf{B}_{\mathsf{c}} \rightarrow \mathsf{J}/\psi \;\Lambda \\ \mathsf{B}_{\mathsf{c}} \rightarrow \mathsf{J}/\psi \;\pi \\ \mathsf{B}^{0}{}_{\mathsf{s}} \rightarrow \mathsf{J}/\psi \;\varphi \\ \Xi_{\mathsf{b}}, \;\mathsf{B}^{**} \end{array}$

 $B \rightarrow \mu\mu$ +hadrons $B \rightarrow \mu\mu$ $bb \rightarrow \mu\mu$ $cc \rightarrow \mu\mu$

 $B \rightarrow D_{s}\pi$ $B \rightarrow D_{s}K$ $B \rightarrow hh$ $\Lambda \rightarrow ph$ $D \rightarrow K\pi$

7

B⁰_s Physics

- The mass eigenstates (H and L) are superpositions of B⁰_s and B⁰_s
- System characterized by 4 parameters (no CPV $\Leftrightarrow \phi_s=0$):
 - masses: m_H , m_L lifetimes: Γ_H , Γ_L (Γ =1/ τ)
- CPV $\Leftrightarrow \phi_s \neq 0$ then $\Delta \Gamma_s = |\Gamma_{12}| \cos(\phi_s)$, ϕ_s expected very small in SM.
- \bullet Δm_s has been measured very precisely.
- $\Delta\Gamma_s$ and ϕ_s so far measured imprecisely.

B_{s}^{0} mixing: Δm_{s}

 Δm_s consistent with Standard Model expectation.

New Physics can alter the weak phase ϕ_s of the mixing amplitude. The same New Physics phase would also be visible through $\Delta\Gamma_s < \Delta\Gamma_s(SM)$

 $\Delta m_s = 17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{(syst)} \text{ ps}^{-1} \text{(>}5\sigma\text{)}$

PRL 97, 242003 (2006) [hep-ex/0609040]

B_s Lifetime in $B_s^0 \rightarrow J/\psi\phi$ Decays

Most precise B_s lifetime measurements from $B_s \rightarrow J/\Psi\Phi$ decays CDF ~2500 signal events in ~1.7 fb⁻¹ DØ ~900 signal events in ~1.1 fb⁻¹

[arXiv:0712.2348 hep-ex]

 τ_s = 1.52 ± 0.04 (stat) ± 0.02 (syst) ps (world best measurement)

[Phys. Rev. Lett. 98, 121801 (2007)]

 $1.52 \pm 0.08(\text{stat}) + 0.01_{-0.03}(\text{syst}) \text{ ps}$

Width Difference $\Delta\Gamma_s$

CP-even (B_s^{light}) and CP-odd (B_s^{heavy}) components have different lifetimes $\rightarrow \Delta\Gamma \neq 0$

[arXiv:0712.2348 hep-ex]

 $\Delta\Gamma_{s} = 0.08 \pm 0.06 \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}^{-1}$ $\Delta\Gamma_{s} = 0.12 + 0.08 \text{ (stat)} \pm 0.02 \text{ (syst)} \text{ ps}^{-1} \text{ (world best measurement)}$

Cross check: CDF measures decay amplitudes and strong phases in high statistics $B^0 \rightarrow J/\Psi K^{*0}$ sample \rightarrow agreement and competitive with B factories

β_s in Un-tagged $B_s^0 \rightarrow J/\psi \phi$ Decays

Without identification of the initial B_s flavor still have sensitivity to β_{s} . Symmetries in the likelihood \rightarrow 4 solutions are possible in $2\beta_s$ - $\Delta\Gamma$ plane

Due to irregular likelihood and biases in fit, CDF only quotes confidence regions and *p*-value: **Standard Model probability 22%**. DØ quotes point estimate (solution closest to the SM prediction and fit biases included in the systematics): $\phi_s = -0.79 \pm 0.56$ (stat) $^{+0.14}_{-0.01}$ (syst).

$D \emptyset \cdot S \emptyset / \delta C.L.$

DØ: 39% C.L.

• (radians)
•

Flavor Tagging at CDF

Quarks produced in pairs at Tevatron. Tag either b quark which produces $B_s^0 \rightarrow J/\psi \phi$ (SST), or other b quark Opposite Side (OST).

Assuming the SM predicted values for $2\beta_s = 0.04$ and $\Delta\Gamma_s = 0.096$ ps⁻¹ the p-value corresponding to our data is 15% (compatible at 1.5 σ).

-0.6

n

 β_{s} (rad)

Confidence regions procedure without external constraints:

2β.

- 2βs in [0.32, 2.82] at the 68% C.L.
- Confidence regions with external constraints on strong phases, lifetime and $\Delta\Gamma_s = 0.096 + 0.039$:
 - 2βs in [0.40, 1.20] at 68% C.L.

-0.4

-2

Available β_s parameter space is greatly reduced when using flavor tagging.

 $2\beta_{s}$

 π

 $2\beta_{s}$

Future sensitivity for β_s at CDF

Pseudo-experiments 6 fb⁻¹ generated with $\beta_s = 0.02$

Projected Confidence Regions in 6 fb⁻¹ assuming same yield per fb⁻¹ in future and same tagging efficiency and dilution.

Charge Asymmetry in Semileptonic $B_s^0 \rightarrow \mu D_s X$ Decays

Study
$$B_s^0 \to \mu^+ D_s^- \nu X$$
 with $D_s^- \to \phi \pi^- \phi \to K^+ K^-$
L = 1.3 fb⁻¹ with total signal yield ~27K events
Compare decay rates of B_s and B_s:

$$A_{SL}^{s,unt} = \frac{N(\mu^+ D_s^-) - N(\mu^- D_s^+)}{N(\mu^+ D_s^-) + N(\mu^- D_s^+)} = [1.23 \pm 0.97 \,(\text{stat}) \pm 0.17 \,(\text{syst})] \times 10^{-2}$$

Suppressed systematic uncertainties do to regular change of magnet polarization at $D\emptyset$.

Semileptonic charge asymmetry is related to ϕ_s

$$\phi_s = \arg(-M_{12}/\Gamma_{12})$$

$$A_{SL}^{s,unt} = \frac{1}{2} \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s$$

Can combine this result with β_s measurement in $B_s \rightarrow J/\psi \phi$ to constrain NP

Combined DØ Constraints on B⁰_s Width Difference and CP Violation Phase

Combine width difference and CP violation phase from time dependent angular analysis $B^0_s \rightarrow J/\psi \phi$ with measurements from charge asymmetry in semileptonic decays

Contours indicate 39% C.L. regions:

Final combined DØ results with $\sim 1 \text{ fb}^{-1}$:

 $\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$ $\phi_s = -0.70^{+0.47}_{-0.39}.$

From tagged $B_s \rightarrow J/\psi \phi$ analysis, CDF excludes ~half available space in ϕ_s - $\Delta\Gamma_s$ plane.

Based on flavor SU(3) symmetry, CDF constrains strong phases to B factories measurements \rightarrow bottom – left solution is suppressed as well.

Expect tagged $B_s^0 \rightarrow J/\psi \phi$ analysis from DØ soon Expect updated analyses with 2x data from both experiments soon

Λ⁰_b Lifetime

Important test of models that describe quark interactions between heavy and light quarks within bound states HQET + Lattice QCD predicts: $\tau(\Lambda_b)/\tau(B^0) = 0.88 \pm 0.05$ DØ measures Λ_b lifetime two decay modes:

Λ⁰_b Lifetime Current Status

DØ measurements are in agreement with the theoretical predictions and with the world average $\tau(\Lambda_b^0) = 1.230 \pm 0.074$ ps

CDF measurement in $\Lambda_b \rightarrow J/\psi \Lambda \approx 3\sigma$ high w.r.t world average

Expect CDF measurement in hadronic mode soon

Charm Mixing

- Mixing in Bottom and Strange systems larger due to top participating in box diagram
- Sign of new physics if mixing oscillation different from expected
- B factories have presented evidence of charm mixing $D^0 \rightarrow K\pi/KK/\pi\pi$.
- Large charm samples in CDF data
 D^{*-}→D⁰π_{soft}, D⁰→ Kπ
- π_{soft} charge tags D flavour at production
- RS: $D^{*-} \rightarrow D^0 \pi_{soft}$
- WS: D⁰ mixed or DCS decay

WS/RS ratio:

$$R(t) = R_D + y'\sqrt{R_D}t + \frac{x'^2 + y'^2}{4}t^2$$

$$x' = x \cos \delta + y \sin \delta$$
 and $y' = -x \sin \delta + y \cos \delta$
 $x = \Delta M / \Gamma$ $y = \Delta \Gamma / 2\Gamma$

Charm Mixing at CDF

Mixing

Signif.

3.8

3.9

2.0

Perform binned fits to ratio of WS to RS as function of time of D⁰ decay Probability of no mixing is 0.13% (Equivalent to 3.8σ significance)

Allowed regions of charm mixing parameter phase space:

$B \rightarrow \mu\mu$ in the Standard Model

• In Standard Model FCNC decay $B \rightarrow \mu\mu$ heavily suppressed

Standard Model predicts:

 $BR(B_s \to \mu^+ \mu^-) = (3.4 \pm 0.5) \times 10^{-9}$ $BR(B_d \to \mu^+ \mu^-) = (1.00 \pm 0.14) \times 10^{-10}$ [A. Buras Phys. Lett. B 566,115]

- $B_d \rightarrow \mu\mu$ further suppressed by CKM coupling $(V_{td}/V_{ts})^2$
- Below sensitivity of Tevatron experiments
- SUSY scenarios (MSSM,RPV,mSUGRA) boost the BR by up to 100x

Observe no events \Rightarrow set limits on new physics Observe events \Rightarrow clear evidence for new physics

Methodology

Aim to measure BR or set limit:

$$BR(B_{s} \to \mu^{+}\mu^{-}) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{u}}{f_{s}} BR(B^{+} \to J/\psi K^{+}) BR(J/\psi \to \mu^{+}\mu^{-})$$

- Use $B^+ \rightarrow J/\psi K^+$ as a control mode
- Neural network selection
- \checkmark Use particle ID to suppress B \rightarrow hh, fake muon backgrounds
- Measure remaining background
- Measure acceptance and efficiency ratios

In case of observation CDF mass resolution allows to separate B^0 from B^0_s .

2007

1000

<u>Results on B $\rightarrow \mu^+\mu^-$ </u>

Combined Tevatron limit (unofficial) $BR(B_{s}^{0} \rightarrow \mu\mu) < 4.5 \cdot 10^{-8} @ 95\%CL (13 \times SM)$

Tevatron sensitivity to $B^0_s \rightarrow \mu^+ \mu^-$

- Expectations from analysis performed on previous analysis (780 pb⁻¹), this is not a projection.
- Conservative: in the past measurements were better than predictions.
- Today CDF sensitivity (with 2 fb⁻¹) is equal to the previous la sensitivity estimated for CDF+D0
- Possible further improvements of the analysis:
 - binned→unbinned analysis (a la B→hh)

FNAL directorate plan is to run through 2010.

Direct $A_{CP}(B^0 \rightarrow K^+\pi^-)$

[hep-ex/0612018]

B⁰ yields comparable to e⁺e⁻ 4045 \pm 84 B⁰ \rightarrow K⁺ π ⁻ Large B⁰_s \rightarrow K⁺K⁻ sample

Discrepancy with $A_{CP}(B^+ \rightarrow K^+ \pi^0)$ up to 4.9 σ .

$$\frac{\mathcal{B}(\overline{B}^0 \to K^- \pi^+) - \mathcal{B}(B^0 \to K^+ \pi^-)}{\mathcal{B}(\overline{B}^0 \to K^- \pi^+) + \mathcal{B}(B^0 \to K^+ \pi^-)} = -0.086 \pm 0.023 \ (stat.) \pm 0.009 \ (syst.).$$
(13.14)

Goal with Full Run II statistics 1%

3.5 σ

1 16-1

$B^0_{s} \rightarrow K^-\pi^+$

Selection optimized to observe and limit setting of $B^0_{s} \rightarrow K^-\pi^+$

First observation of three rare charmless decays: $B^0_s \rightarrow K^-\pi^+$, $\Lambda^0_b \rightarrow p\pi^-$ and $\Lambda^0_b \rightarrow pK^-$

Probability Ratio (PR) for data and projection shows the good separation achieved between $B^0_s \rightarrow K^-\pi^+$ and the rest (backgrounds and other signals) (mass, mometa and dE/dx of both tracks)

7 B-1

Direct $A_{CP}(B^0_s \rightarrow K^-\pi^+)$

$$\frac{\mathcal{B}(\overline{B}_{s}^{0} \to K^{+}\pi^{-}) - \mathcal{B}(B_{s}^{0} \to K^{-}\pi^{+})}{\mathcal{B}(\overline{B}_{s}^{0} \to K^{+}\pi^{-}) + \mathcal{B}(B_{s}^{0} \to K^{-}\pi^{+})} = 0.39 \pm 0.15 \ (stat.) \ \pm 0.08 \ (syst.)$$

It is different from 0 by 2.3σ (stat. + syst.).

First measurement of DCPV in the $B_s^0 \rightarrow K^-\pi^+$. Our measurement favors large CP violation as expected in the SM. On the other hand it is also compatible with 0 due to the large uncertainty.

Unique opportunity of checking for the SM origin of direct CP violation. Proposed by Gronau [Phys.Rev. B482, 71(2000)], later shown to hold under much weaker assumptions by Lipkin [Phys. Lett. B621,126, (2005)]

~

(SM =-1)

$$\frac{\Gamma(\overline{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(\overline{B}^0_s \to K^+ \pi^-) - \Gamma(B^0_s \to K^- \pi^+)} = -0.78 \pm 0.39 \; (stat.) \pm 0.12 \; (syst.).$$

BR and A_{CP} in $\Lambda_b \rightarrow p\pi(K)$

First study of CP asymmetry in b baryon decays (SM prediction ~10%) Use large sample collected by two displaced track trigger along with B \rightarrow hh. Additionally, first branching fractions relative to B⁰ \rightarrow K π decays:

$A_{CP}(\Lambda_b^0 \to p\pi^-) = \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)}{\mathcal{B}(\Lambda_b^0 \to p\pi^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}\pi^+)} = 0.03 \pm 0.17 \; (stat.) \pm 0.05 \; (syst.)$
$\mathcal{L}_{CP}(\Lambda_b^0 \to pK^-) = \frac{\mathcal{B}(\Lambda_b^0 \to pK^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)}{\mathcal{B}(\Lambda_b^0 \to pK^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p}K^+)} = 0.37 \pm 0.17 \; (stat.) \pm 0.03 \; (syst.)$
$\frac{\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV}/c)}{\mathcal{B}(\Lambda_b^0 \to p\pi^-)} = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (sust.)}$
$\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV}/c) \mathcal{B}(B^0 \to K^+\pi^-)$
$\frac{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV}/c)}{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV}/c)} \frac{\sigma(r_0 \to P^{-1})}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}$

Minimal Supersymmetric Extensions of SM violating the R-parity could both suppress A_{CP} and enhance by factors ~100 BR with respect to SM predictions. [PRD63,056006(2001)]

BR and A_{CP} of $B^+ \rightarrow D^0_{CP} K^+$

- Motivation: theorethically clean Measurement of CKM angle γ via GLW (Gronau-London-Wyler) method [PLB253,483 and PLB265,172]
- ✓ Method: Unbinned kinematics+dE/dx fit, simultaneous of modes B⁺→D⁰K⁺ with D^{0}_{CP} → K⁺K⁻/ $\pi^{+}\pi^{-}$, D^{0}_{flav} → $\pi^{+}K^{-}$.

BR and A_{CP} of $B^+ \rightarrow D^0_{CP} K^+$

R —	$\frac{BR(B^- \to D^0 K^-) + BR(B^+ \to \overline{D}^0 K^+)}{D^0 K^+} = 0.0745 \pm 0.0043(stat) \pm 0.0045(syst)$
11 -	$B^- \to D^0 \pi^-) + BR(B^+ \to \overline{D}^0 \pi^+) = 0.0145 \pm 0.0045(stat.) \pm 0.0045(styst.)$
Rant -	$\frac{BR(B^- \to D^0_{CP+}K^-) + BR(B^+ \to D^0_{CP+}K^+)}{1.57 \pm 0.24(stat) \pm 0.12(sust)}$
$m_{CP+} =$	$\frac{D^{+}}{[BR(B^{-} \to D^{0}K^{-}) + BR(B^{+} \to \overline{D}^{0}K^{+})]/2} = 1.57 \pm 0.12(3934) \pm 0.12(39$

$$A_{CP+} = \frac{BR(B^- \to D^0_{CP+}K^-) - BR(B^+ \to D^0_{CP+}K^+)}{BR(B^- \to D^0_{CP+}K^-) + BR(B^+ \to D^0_{CP+}K^+)} = 0.37 \pm 0.14(stat.) \pm 0.04(syst.) + 0.04(syst.) \pm 0.04(syst.) + 0.04(syst.) \pm 0.04(syst.) + 0.04(syst.) \pm 0.04(sy$$

A first at a hadron collider. 1fb⁻¹ \rightarrow same precision of e⁺e⁻ Next step is to combine with Atwood-Dunietz-Soni (ADS) method to extract γ [PRD 63,036005 and PRL 78,3257].

$B_{s}^{0} \rightarrow D_{s}K \text{ mode}$

✓ Final states of both sign are accessible by both B⁰_s and antiB⁰_s mesons with similar size amplitude (~ λ^3)

$$B_s^0 \to D_s^{\pm} K^{\mp}$$
$$\overline{B}_s^0 \to D_s^{\mp} K^{\pm}$$

- CP violation due to mixing can occur from the mixed and unmixed interference paths
- Need time-dependent CP asymmetries measurement
- ✓ Interesting comparison: $B_s^0 \rightarrow D_s K$ can be suppressed or enhanced compared with $B^0 \rightarrow DK$
- First step: observation and BR measurement.

Untagged lifetime of $B_s^0 \rightarrow D_s K$ may resolve the sign ambiguity in sen(2 β_s) recent paper \rightarrow [arXiv:0801.0143 hep-ph]

[Phys. C54,653 (1992) Nucl.Phys.B659:321-355,2003]

32

$\frac{\mathsf{BR}(\mathsf{B}^0{}_{\mathrm{s}}\to\mathsf{D}_{\mathrm{s}}\mathsf{K})}{\mathsf{First observation}}$

- Combined mass and PID maximum likelihood fit on 1.2 fb⁻¹
 - $M_{D_s\pi} (B^0_s \rightarrow D_s X \rightarrow [\phi\pi]X)$
 - dE/dx for the B-daughter track
- Important features:
 - Accurate study of physics background components from MC: $B^0_s \rightarrow D^{(*)}_s X, D_s \rho$ etc.
 - FSR tail from $B_s^0 \rightarrow D_s \pi(n\gamma)$
- Main systematics from dEdx templates

7.9 σ Yield ~109 ±19 B⁰_s \rightarrow D_sK events

 $\mathcal{B}(\overline{B}^0_s \to D^\pm_s K^\mp) / \mathcal{B}(\overline{B}^0_s \to D^+_s \pi^-) = 0.107 \pm 0.019 (\text{stat}) \pm 0.008 (\text{sys})$

Ξ_{b} Baryon (First Observation)

The third observed b baryon after Λ_b^0 and CDF's recent discovery of Σ_b^0 Study b baryons \rightarrow great way to test QCD which predicts $M(\Lambda_b) < M(\Xi_b) < M(\Sigma_b)$ Predicted mass: 5805.7 ± 8.1 MeV Discovery decay mode at DØ:

Ξ_b Mass Measurement

35

Clear excess in $\Xi_{\rm b}$ invariant mass distribution Significance ~5.5 σ

Number of signal events: $15.2 \pm 4.4(\text{stat})^{+1.9}_{-0.4}$ (syst) Mass: $5.774 \pm 0.011(\text{stat}) \pm 0.015(\text{syst})$ GeV (prediction 5805.7 ± 8.1 MeV) Width: 0.037 ± 0.008 GeV in good agreement with MC expectation 0.035 GeV

Production relative to $\Lambda_h \rightarrow J/\Psi \Lambda$

$$\frac{f(b \to \Xi_b^-) \cdot Br(\Xi_b^- \to J/\psi \Xi^-)}{f(b \to \Lambda_b) \cdot Br(\Lambda_b \to J/\psi \Lambda)} = 0.28 \pm 0.09 \,(\text{stat.})^{+0.09}_{-0.08} \,(\text{syst.})$$

where $f(b \rightarrow X)$: fraction of times b quark hadronizes to X

$\Xi_{\rm b}$ Mass Measurement

 $M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$ most precise measurement at 7.8 σ significance
Conclusions

- Very rich B physics program at the Tevatron
- ✓ Great Tevatron performance \rightarrow accumulate data fast and expect ~6 fb⁻¹ by the end of the run.
- Expect updates of many analyses.
- Exciting time to study CP violation and search for new phenomena in B physics at Tevatron !

Topics not covered

- Charge asymmetry in semileptonic B⁰_s decays,
- \bullet first observation of $\Sigma_{\rm b}$,
- $B_s^0 \rightarrow D_s^{(*)} D_s^{(*)}$
- $\Psi(2S)$ production,
- Y(1S), Y(2S) polarization,
- $B_0 \rightarrow J/\psi K^{*0}$ angular analysis,
- orbitally excited B mesons,
- b-b correlations,
- B_c mass and lifetime
- and many others....

Backup

Δm_s

PRL 97 021802 (2006) [hep-ex/0603029]

B_{s}^{0} mixing: Δm_{s}

Lifetime: $B_s^0 \rightarrow J/\psi \phi$

Extremely physics rich decay mode

Can measure lifetime, decay width, and, using known Δm_s , CP violating phase β_s

The decay of B_s (spin 0) to J/ Ψ (spin 1) Φ (spin 1) leads to three different angular momentum final states:

L = 0 (s-wave), 2 (d-wave) → CP even \approx L = 1 (p-wave) → CP odd \approx

three decay angles $\vec{\rho} = (\theta, \phi, \psi)$ describe directions of final decay products

$B^0_s \rightarrow J/\psi \phi$ Phenomenology

Three angular momentum states form a basis for the final state

Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either:

 \rightarrow CP even

- longitudinal (0)
- transverse () parallel to each other) \rightarrow CP even
- transverse ($^{\perp}$ perpendicular to each other) \rightarrow CP odd

Corresponding decay amplitudes: A_0 , A_{\parallel} , A_{\perp}

At good approximation, mass eigenstates $|B_s^L\rangle$ and $|B_s^H\rangle$ are CP eigenstates \rightarrow use angular information to separate heavy and light states \rightarrow determine decay width difference $\Delta\Gamma = \Gamma_L - \Gamma_H$

 \rightarrow some sensitivity to CP violation phase β_s

Determine B_s flavor at production (flavor tagging) \rightarrow improve sensitivity to CP violation phase β_s

$B_{s}^{0} \rightarrow J/\psi\phi$ Formulogy

B_s decay rate as function of time, decay angles and initial B_s flavor:

$$\frac{d^4 P(t,\vec{\rho})}{dtd\vec{\rho}} \propto |A_0|^2 \mathcal{I}_+ f_1(\vec{\rho}) + |A_{\parallel}|^2 \mathcal{I}_+ f_2(\vec{\rho})$$
time dependence terms
+ $|A_{\perp}|^2 \mathcal{I}_- f_3(\vec{\rho}) + |A_{\parallel}| |A_{\perp}| \mathcal{U}_+ f_4(\vec{\rho})$ + $|A_0||A_{\parallel}| \cos(\delta_{\parallel}) \mathcal{I}_+ f_5(\vec{\rho})$ + $|A_0||A_{\perp}| \mathcal{V}_+ f_6(\vec{\rho}),$ terms with β_s dependence

$$T_{\pm} = e^{-\Gamma t} \times [\cosh(\Delta\Gamma t/2) \mp (\cos(2\beta_s)) \sinh(\Delta\Gamma t/2) \\ \mp \eta \sin(2\beta_s) \sin(\Delta m_s t)],$$

terms with Δm_s dependence due to initial state flavor tagging

$$\begin{aligned} \mathcal{U}_{\pm} &= \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) \right]^{2} \\ &= \cos(\delta_{\perp} - \delta_{\parallel}) \cos(2\beta_s) \sin(\Delta m_s t) \\ &\pm \cos(\delta_{\perp} - \delta_{\parallel}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right] \\ \mathcal{V}_{\pm} &= \pm e^{-\Gamma t} \times \left[\sin(\delta_{\perp}) \cos(\Delta m_s t) \right] \\ &= \cos(\delta_{\perp}) \cos(2\beta_s) \sin(\Delta m_s t) \\ &\pm \cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2) \right]. \end{aligned}$$

$$\begin{aligned} \text{`strong' phases:} \\ \delta_{\parallel} &\equiv \arg(A_{\parallel}^*A_0) \\ \text{I} \ \delta_{\perp} &\equiv \arg(A_{\perp}^*A_0) \end{aligned}$$

erms

CP Violation Phase β_s in Un-tagged B⁰_s $\rightarrow J/\psi\phi$ Decays

Without identification of the initial B_s flavor still have sensitivity to β_s

Due to irregular likelihood and biases in fit, CDF only quotes Feldman-Cousins confidence regions (Standard Model probability 22%) DØ quotes point estimate: $\Phi_s = -0.79 \pm 0.56$ (stat) $^{+0.14}_{-0.01}$ (syst)

Symmetries in the likelihood \rightarrow 4 solutions are possible in $2\beta_s$ - $\Delta\Gamma$ plane

CP Violation Phase β_s in Tagged $B^0_s \rightarrow J/\psi \phi$ Decays

Likelihood expression predicts better sensitivity to β_{s} but still double minima

due to symmetry: $2\beta_s \rightarrow \pi - 2\beta_s$

$$\begin{array}{l} \Delta\Gamma \to -\Delta\Gamma \\ \delta_{\parallel} \to 2\pi - \delta_{\parallel} \\ \delta_{\perp} \to \pi - \delta_{\perp} \end{array}$$

Study expected effect of tagging using pseudo-experiments

Improvement of parameter resolution is small due to limited tagging power ($\epsilon D^2 \sim 4.5\%$ compared to B factories ~30%)

However, $\beta_s \rightarrow -\beta_s$ no longer a symmetry \rightarrow 4-fold ambiguity reduced to 2-fold ambiguity \rightarrow allowed region for β_s is reduced to half

β_s - $\Delta\Gamma$ likelihood profile

 β_{s} (rad)

CP Violation Phase β_s in Tagged $B^0_s \rightarrow J/\psi \phi$ Decays

First tagged analysis of $B_s^0 \rightarrow J/\psi \phi$ (1.4 fb⁻¹). Signal B_s yield ~2000 events with S/B ~ 1. As in un-tagged analysis, irregular likelihood does not allow quoting point estimate. Quote Feldman-Cousins confidence regions.

Confidence regions are underestimated when using 2∆logL = 2.3 (6.0) to approximate 68% (95%) C.L. regions

β_s in Tagged $B_s^0 \rightarrow J/\psi \phi$ Decays with External Constraints (CDF)

Spectator model of B mesons suggests that B_s and B⁰ have similar lifetimes and strong phases

Likelihood profiles with external constraints from B factories:

constrain strong phases:

constrain lifetime and strong phases:

External constraints on strong phases remove residual 2-fold ambiguity

β_s in Tagged $B^0_s \rightarrow J/\psi \phi$ Decays Final Results (CDF)

1D Feldman-Cousins procedure without external constraints:

 $2\beta_{\rm s}$ 2β_s in [0.32, 2.82] at the 68% C.L. 1D Feldman-Cousins with external constraints on strong phases, lifetime and $\Delta \Gamma = 0.096 \pm 0.039$: $2\beta_s$

2β_s in [0.40, 1.20] at 68% C.L.

Available β_s parameter space is greatly reduced when using flavor tagging:

DØ results on β_s using flavor tagging expected soon.

Charge Asymmetry in Semileptonic $B_{s}^{0} \rightarrow \mu D_{s} X$ Decays (DØ, 1.3 fb⁻¹)

Study
$$B_s^0 \to \mu^+ D_s^- \nu X$$
 with $D_s^- \to \phi \pi^- \phi \to K^+ K^-$
L = 1.3 fb⁻¹ with total signal yield ~27K events
Compare decay rates of B_s and B_s:

$$A_{SL}^{s,unt} = \frac{N(\mu^+ D_s^-) - N(\mu^- D_s^+)}{N(\mu^+ D_s^-) + N(\mu^- D_s^+)} = [1.23 \pm 0.97 \text{ (stat)} \pm 0.17 \text{ (syst)}] \times 10^{-2}$$

Suppressed systematic uncertainties do to regular change of magnet polarization at DØ.

Semileptonic charge asymmetry is related to

$$\phi_s = \arg(-M_{12}/\Gamma_{12})$$

$$A_{SL}^{s,unt} = \frac{1}{2} \frac{\Delta \Gamma_s}{\Delta m_s} \tan \phi_s$$

In SM Φ_s is predicted to be very small $\phi_s^{SM} = 4 \times 10^{-3}$ NP can significantly modify SM prediction $\phi_s = \phi_s^{SM} + \phi_s^{NP}$ If ϕ_s^{NP} dominates $2\beta_s = -\phi_s^{NP} = -\phi_s$

Can combine this result with β_s measurement in $B_s \rightarrow J/\Psi \Phi$ to constrain NP

Charge Asymmetry in Inclusive B⁰_s Decays (DØ, CDF)

Measure same sign muon charge asymmetry at DØ with 1 fb-1:

$$A = \frac{N^{++} - N^{--}}{N^{++} + N^{--}} = \frac{1}{4f} \left[A_{B^0} + \frac{f_s \chi_{s0}}{f_d \chi_{d0}} A_{B_s^0} \right]$$

 $f \cdot A = -0.0023 \pm 0.0011 \text{ (stat)} \pm 0.0008 \text{ (syst)}$

With knowledge of fragmentation fractions f_s and f_d , the integrated oscillation probabilities χ_d and χ_s and known B⁰ semileptonic asymmetry from B factories:

 A_{s} = -0.0064 ± 0.0101 (stat+syst)

Similar measurement at CDF with 1.6 fb⁻¹:

 $A_s = 0.020 \pm 0.021$ (stat) ± 0.016 (syst) ± 0.009 (inputs)

These measurements can be combined with asymmetries in $B_s \rightarrow \mu D_s X$ to further constraint CP violation phase.

Combined DØ Constraints on B⁰_s Width Difference and CP Violation Phase

Combine width difference and CP violation phase from time dependent angular analysis $B^0_s \rightarrow J/\psi \phi$ with measurements from charge asymmetry in semileptonic decays

Contours indicate 39% C.L. regions:

Final combined DØ results with $\sim 1 \text{ fb}^{-1}$:

 $\Delta \Gamma_s = 0.13 \pm 0.09 \text{ ps}^{-1}$ $\phi_s = -0.70^{+0.47}_{-0.39}.$

From tagged $B_s \rightarrow J/\Psi \Phi$ analysis, CDF excludes ~half available space in Φ_s - $\Delta\Gamma$ plane (two RHS solutions)

Based on flavor SU(3) symmetry, CDF constrains strong phases to B factories measurements \rightarrow bottom – left solution is suppressed as well.

Expect tagged $B_s^0 \rightarrow J/\psi \phi$ analysis from DØ soon Expect updated analyses with 2x data from both experiments soon

D⁰ Mixing

- After recent observation of fastest neutral meson oscillations in B_s system by CDF and DØ \rightarrow time to look at the slowest oscillation of D⁰ mesons \bigcirc

- D⁰ mixing in SM occurs through either:

'short range' processes (negligible in SM)

'long range' processes

	$\Delta M/\Gamma$	$\Delta\Gamma/\Gamma$
K ⁰	0.474	0.997
B ⁰	0.77	<0.01
Bs	27	0.15
D ⁰	< few%	< few%

 $\begin{array}{c} \textit{Belle} \\ D^0 \rightarrow \pi\pi, \ \textit{KK} \ (\textit{CP eigenstates}) \\ \textit{compared to } D^0 \rightarrow \textit{K}\pi \end{array}$

BaBar doubly Cabibbo suppressed (DCS) $D^0 \rightarrow K^+\pi^$ compared to Cabibbo favored (CF) $D^0 \rightarrow K^-\pi^+$ (Belle does not see evidence in this mode)

Evidence for D⁰ Mixing at CDF (1.5 fb⁻¹)

- CDF sees evidence for D⁰ mixing at 3.8σ significance by comparing DCS D⁰ \rightarrow K⁺ π ⁻ decay time distribution to CF D⁰ \rightarrow K⁻ π ⁺ (confirms *BaBar*) - Ratio of decay time distributions:

$$R(t/\tau) = R_D + \sqrt{R_D}y'(t/\tau) + \frac{x'^2 + y'^2}{4}(t/\tau)^2$$

where $x' = x \cos \delta + y \sin \delta$ and $y' = -x \sin \delta + y \cos \delta$ δ is strong phase between DCS and CF amplitudes

mixing parameters $x = \Delta M / \Gamma$ $y = \Delta \Gamma / 2\Gamma$ are 0 in absence of mixing

$B \rightarrow h^+h^-$ signal (loose cuts)

Selection optimized to minimize statistical uncertainty on $A_{CP}(B^0 \rightarrow K\pi)$

Despite good mass resolution (\cong 22 MeV/c²), individual modes overlap in a single peak (width ~35 MeV/c²)

Note that the use of a single mass assignment $(\pi\pi)$ causes overlap even with perfect resolution

Blinded region of unobserved modes: $B_{s}^{0} \rightarrow K\pi, B_{s}^{0} \rightarrow \pi\pi, \Lambda_{b}^{0} \rightarrow p\pi/pK.$

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).

$B \rightarrow h^+h^-$ signal (loose cuts)

Selection optimized to minimize statistical uncertainty on $A_{CP}(B^0 \rightarrow K\pi)$

Despite good mass resolution (\cong 22 MeV/c²), individual modes overlap in a single peak (width ~35 MeV/c²)

Note that the use of a single mass assignment $(\pi\pi)$ causes overlap even with perfect resolution

Blinded region of unobserved modes: $B^{0}_{s} \rightarrow K\pi, B^{0}_{s} \rightarrow \pi\pi, \Lambda^{0}_{b} \rightarrow p\pi/pK.$

Need to determine signal composition with a Likelihood fit, combining information from kinematics (mass and momenta) and particle ID (dE/dx).

B →h⁺h⁻

Very challenging analysis, it starts at trigger level. Then ML fit exploits information from invariant mass, momentum imbalance and dE/dx.

- 1) $M_{\pi\pi}$ invariant $\pi\pi$ -mass
- 2) $\alpha = (1-p_{min}/p_{max})q_{min}$ signed p-imbalance
- 3) p_{tot}= p_{min}+p_{max} scalar sum of 3-momenta

dE/dx carefully calibrated on pure K and π samples from 1.5M decays: D^{*+} \rightarrow D⁰ π^+ \rightarrow [K⁻ π^+] π^+ (sign of D^{*+} pion tags D⁰ sign)

1.50 K/ π power separation for track p>2GeV/c achieve a statistical uncertainty on separating classes of particles which is just 60% worse than 'perfect' PID (=75% for 2 particles) [arXiv:physics/0611219]

$B^0_{s} \rightarrow K^-\pi^+$

Selection optimized to observe and limit setting of $B^0_s \rightarrow K^- \pi^+$

First observation of three rare charmless decays: $B^0_s \rightarrow K^-\pi^+$, $\Lambda^0_b \rightarrow p\pi^-$ and $\Lambda^0_b \rightarrow pK^-$

BR(B⁰_s \rightarrow K⁻ π^+) theoretical expectations are strongly related to α and γ : QCDF, pQCD [6 ÷ 10] ·10⁻⁶ [Beneke&Neubert, NP B675, 333(2003)] [Yu, Li, Lu, PRD71,074026 (2005)] SCET: (4.9±1.8)·10⁻⁶ [Williamson,Zupan,PRD74, 014003(2006)]

 $B_{s}^{0} \rightarrow K\pi$ yield = 230 ± 34(stat.) ± 16(syst.)

 $BR(B_s^0 \to K^- \pi^+) = (5.0 \pm 0.75 \ (stat.) \pm 1.0 \ (syst.)) \times 10^{-6}$

[hep-ex/0612018]

Direct $A_{CP}(B^0_s \rightarrow K^- \pi^+)$

Observation of this decay offers a unique opportunity of checking for the SM origin of direct CP violation. Proposed in [Gronau Rosner Phys.Rev. B482, 71(2000)], later shown to hold under much weaker assumptions in [Lipkin, Phys. Lett. B621,126, (2005)].

$$\Gamma(\overline{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-) = \Gamma(B^0_s \to K^- \pi^+) - \Gamma(\overline{B}^0_s \to K^+ \pi^-)$$

Currently unique to CDF. From our measured BR, we can predict DCPV using:

$$A_{CP}(B_s^0 \to K^- \pi^+) = -A_{CP}(B^0 \to K^+ \pi^-) \cdot \frac{\mathcal{B}(B^0 \to K^+ \pi^-)}{\mathcal{B}(B_s^0 \to K^- \pi^+)} \cdot \frac{\tau(B^0)}{\tau(B_s^0)}$$

Low $BR(B_s^0 \rightarrow K^+\pi^-)$ implies large asymmetry: $DCPV \cong +37\%$ Interesting case of large DCPV predicted under SM

2.5 o

$$A_{\mathsf{CP}} = \frac{N(\overline{B}_s^0 \to K^+ \pi^-) - N(B_s^0 \to K^- \pi^+)}{N(\overline{B}_s^0 \to K^+ \pi^-) + N(B_s^0 \to K^- \pi^+)} = 0.39 \pm 0.15 \ (stat.) \pm 0.08 \ (syst.)$$

[hep-ex/0612018]

$$\frac{\Gamma(\overline{B}^0 \to K^- \pi^+) - \Gamma(B^0 \to K^+ \pi^-)}{\Gamma(B^0_s \to K^- \pi^+) - \Gamma(\overline{B}^0_s \to K^+ \pi^-)} =$$

First measurement of DCPV in the B_s^0 Sign and magnitude agree with SM predictions within errors \Rightarrow no evidence for 'exotic' sources of CP violation (yet)

It can shed light on the Belle and BaBar discrepancy. Assuming perfect SU(3) symmetry and neglecting annihilation diagrams [Buras et al., Nucl. Phys. B697, 133,2004] : $A_{CP}(B^0 \rightarrow \pi^+\pi^-) \approx A_{CP}(B^0_s \rightarrow K^-\pi^+)$. Exciting to pursue with more data, already on tape 2.5 fb⁻¹.

Gronau-Lipkin test

$$R_{3} = \frac{\Gamma(\overline{B}^{0} \to K^{-}\pi^{+}) - \Gamma(B^{0} \to K^{+}\pi^{-})}{\Gamma(\overline{B}^{0}_{s} \to K^{+}\pi^{-}) - \Gamma(B^{0}_{s} \to K^{-}\pi^{+})} = -0.78 \pm 0.39 \ (stat.) \pm 0.12 \ (syst.).$$

Test is still marginal but sign and magnitude agree with SM predictions \Rightarrow no evidence for exotic sources of CP violation (yet).

DCPV $B_{s}^{0} \rightarrow K^{-}\pi^{+}$: prospect

Assuming SM hypothesis \Rightarrow Gronau-Lipkin relation true

Very interesting to pursue with more data, in any case !

$$BR(B_s^0 \to K^+K^-) = (24.4 \pm 1.4 \ (stat.) \pm 4.6 \ (syst.)) \times 10^{-6}$$

[hep-ex/0612018]

Interesting comparison to predictions to evaluate the SU(3)-breaking size.

Ingredients for a time-dependent $A_{CP}(t)$ ready: large samples (1300 ev/fb⁻¹) tag dilutions calibrated, x_s measured

Can have $\sigma(A_{CP}) \sim 0.2 \div 0.15$ in runII (translate to sensitivity on $\gamma \sim 10$ deg.)

This resolution allows tests for NP. [Baek et al, hep-ph/0610109]

$B^0_s \rightarrow D_s K$

- CP violation interesting place to probe new physics
- First need to understand CP processes in SM framework
- B meson system can help constrain hadronic uncertainties
- CDF provides results in B⁰_s system
- In $B_s^0 \rightarrow D_s^-K^+$ decays, both B_s^0 and anti B_s^0 decays similar amplitude

- CP violation due to mixing can occur from the mixed and unmixed
- interference paths
- Need time dependent CP asymmetry measurement (later compare with $B^0 \rightarrow DK$)
- However! First step is observation and BR measurement.

$B_{s}^{0} \rightarrow D_{s}^{K}$

- Use displaced track trigger to gather these decays
- Use $B^0 \rightarrow D\pi$ as control mode
- Combined mass and particle identification
- likelihood fit
 - Mass($D_s \pi/K$)
 - dE/dx of B daughter track (π/K)
- Detailed study of background
- components in MC
- FSR tail from $B_s^0 \rightarrow D_s \pi$ (+n γ)

 $\mathcal{B}(\overline{B}^0_s \to D^\pm_s K^\mp) / \mathcal{B}(\overline{B}^0_s \to D^+_s \pi^-) = 0.107 \pm 0.019 (\text{stat}) \pm 0.008 (\text{sys})$

B⁰_s mixing

$$b \xrightarrow{V_{tb}} V_{ts}^* \xrightarrow{V_{ts}} s$$

$$\overline{s} \xrightarrow{V_{ts}} V_{ts}^* \xrightarrow{V_{tb}} \overline{b} B_s^0$$

 $=\xi^{2}\frac{m_{B_{s}}}{m_{B_{d}}}\frac{|V_{ts}|^{2}}{|V_{td}|^{2}}$

$$\Delta m_{s} \sim m_{B_{s}} f_{B_{s}}^{2} B_{B_{s}} |V_{tb} V_{ts}^{*}|^{2}$$
$$\Delta m_{d} \sim m_{B_{d}} f_{B_{d}}^{2} B_{B_{d}} |V_{tb} V_{td}^{*}|^{2}$$

$$\xi = \frac{f_{B_s}}{f_{B_d}} \sqrt{\frac{B_{B_s}}{B_{B_d}}} = 1.210^{+0.047}_{-0.035}$$

 $m_{Bs}/m_{Bd} = 0.9830$ PDG 2006 $\Delta m_{d} = 0.507 \pm 0.005$ PDG 2006

From lattice QCD [hep-lat/051013]

 $\frac{\Delta m_s}{\Delta m_d} =$

Search for B⁰_s Oscillations

- Reconstruct B_s decays
- Measure proper decay time precisely
- Identify initial flavor state (B_s or B_s)

 $\begin{array}{l} \underline{ Effective tagging power}:\\ \epsilon = efficiency of taggers\\ D = 1 - 2w \qquad w = mistag prob.\\ \epsilon D^2 \ figure \ of \ merit \end{array}$

$$ct = \frac{L_{xy}}{\beta_T \gamma} = \frac{L_{xy} m(B)}{p_T(B)}$$

vertexing and momentum resolution

$$\sigma_{ct} = \left(\frac{\sigma_{L_{xy}} \cdot m(B)}{p_T(B)}\right) \oplus \left(\frac{\sigma_{p_T}}{p_T(B)}\right) \cdot ct$$

εD² ~ 1.5 % OST εD² ~ 4 % SST

 $\sigma_{ct} \sim 87$ fs for hadronic decays σ_{ct} for semileptonic decays is worse

$B_s \rightarrow J/\Psi \Phi$ Phenomenology

Three angular momentum states form a basis for the final state

Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either:

 \rightarrow CP even

- longitudinal (0)
- transverse () parallel to each other) \rightarrow CP even
- transverse ($^{\perp}$ perpendicular to each other) \rightarrow CP odd

Corresponding decay amplitudes: A_0 , A_{\parallel} , A_{\perp}

At good approximation, mass eigenstates $|B_s^L\rangle$ ind $|B_s^H\rangle$ is CP eigenstates \rightarrow use angular information to separate heavy and light states \rightarrow determine decay width difference $\Delta\Gamma = \Gamma_L - \Gamma_H$

 \rightarrow some sensitivity to CP violation phase β_s

Determine B_s flavor at production (flavor tagging) \rightarrow improve sensitivity to CP violation phase β_s

Flavor Tagging

The dominant b quark production mechanism produce bb pairs. We can define two zones:

Soft Lepton (e,m) due to b→ℓnX ℓ charge correlated to b-flavour Same Side Kaon: for B_s^0 is likely to have close in DR a K+ from fragmentation

60

Combined Tags

- OST
 - $\varepsilon = (96 \pm 1)\%$, average $\mathcal{D} = (11 \pm 2)\%$
- SSKT
 - $\varepsilon = (50 \pm 1)\%$, average $D = (27 \pm 4)\%$
 - Calibrated only for first 1.35 fb⁻¹ of data

Direct CP Violation in $B^+ \rightarrow J/\Psi K^+$ Decays (DØ, 1.6 fb⁻¹)

SM predicts small (~1%) direct CP violation in $B^+ \rightarrow J/\Psi K^+$ Due to interference between direct and annihilation amplitudes

Signal yield ~28K B⁺ \rightarrow J/ Ψ K⁺ decays DØ reverses magnet polarities frequently \rightarrow good control of systematic

uncertainties in charge asymmetry measurements

Correct for K⁺/K⁻ asymmetry

$$A = \frac{N(B^- \to J/\psi K^-) - N(B^+ \to J/\psi K^+)}{N(B^- \to J/\psi K^-) + N(B^+ \to J/\psi K^+)} = +0.0067 \pm 0.0074(stat) \pm 0.0026(syst)$$

Consistent with world average: $A_{CP}(B^+ \rightarrow J/\psi K^+) = +0.015 \pm 0.017$ but factor of two better precision \rightarrow best measurement

Λ_{b}^{0} Lifetime (DØ, 1.3 fb⁻¹)

Important test of models that describe quark interactions between heavy and light quarks within bound states HQET + Lattice QCD predicts: $\tau(\Lambda_b)/\tau(B^0) = 0.88 \pm 0.05$ DØ measures Λ_b lifetime two decay modes:

Λ⁰_b Lifetime Current Status

DØ measurements are in agreement with the theoretical predictions and with the world average $\tau(\Lambda_b^0) = 1.230 \pm 0.074$ ps

CDF measurement in $\Lambda_b \rightarrow J/\psi \Lambda \approx 3\sigma$ high w.r.t world average

Expect CDF measurement in hadronic mode soon

$\Xi_{\rm b}$ Baryons (DØ, 1.3 fb⁻¹)

The third observed b baryon after Λ_b^0 and CDF's recent discovery of Σ_b^0 Study b baryons \rightarrow great way to test QCD which predicts $M(\Lambda_b) < M(\Xi_b) < M(\Sigma_b)$ Predicted mass: 5805.7 ± 8.1 MeV Discovery decay mode at DØ:

$\Xi_{\rm b}$ Mass Measurement (DØ, 1.3 fb-1)

Clear excess in $\Xi_{\rm b}$ invariant mass distribution Significance ~5.5 σ

Number of signal events: $15.2 \pm 4.4(\text{stat}) + 1.9_{-0.4}$ (syst) Mass: $5.774 \pm 0.011(\text{stat}) \pm 0.015(\text{syst})$ GeV (prediction 5805.7 ± 8.1 MeV)

Width: 0.037 ± 0.008 GeV in good agreement with MC expectation 0.035 GeV Production relative to $\Lambda_h \rightarrow J/\Psi \Lambda$

$$\frac{f(b \to \Xi_b^-) \cdot Br(\Xi_b^- \to J/\psi \Xi^-)}{f(b \to \Lambda_b) \cdot Br(\Lambda_b \to J/\psi \Lambda)} = 0.28 \pm 0.09 \,(\text{stat.})^{+0.09}_{-0.08} \,(\text{syst.})^{+0.09}_{-0.08}$$

where $f(b \rightarrow X)$: fraction of times b quark hadronizes to X

$\Xi_{\rm b}$ Mass Measurement (CDF, 1.9 fb-1)

 Ξ tracked in SVX for the first time at hadron collider

- \rightarrow reduce background
- \rightarrow improve secondary vertex precision

 $M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$ most precise measurement at 7.8 σ significance

$\Xi_{\rm b}$ Current Status

 $\Xi_{\rm b}$ also observed in hadronic decays at CDF With more data will study other properties of $\Xi_{\rm b}$

$B_c \rightarrow J/\psi \pi (2.2 \text{ fb}^{-1})$

- B_c is not produced at B factories
- Precision test of lattice QCD
- Full reconstruction and CDF tracking give precise mass measurement
- New analysis
 - Tune selection on the data:
 - $B^+ \rightarrow J/\psi \ K \ control \ mode$
 - Measure mass of the B_c

Poisson probability of background fluctuation to the observed excess is 1.1×10^{-19} (Corresponds to 9σ)

$$M(B_c) = 6274.1 \pm 3.2 \pm 2.6 \text{ MeV/c}^2$$

 $M(B_c)_{Lattice} = 6304 \pm 12^{+18}_{-0} MeV/c^{-1}$

B_c Mass in $B_c \rightarrow J/\Psi\pi$ (CDF, 2.2 fb⁻¹)

 B_c contains both heavy quarks b, $c \rightarrow$ each quark can decay Mass predictions:

NR potential models 6247 - 6286 MeV

lattice QCD 6304 +/- 12 ⁺¹⁸-0 MeV

Three decay possibilities:

c quark decays: $B_c^+ \to B_s^0 \pi^+$, and $B_c^+ \to B_s^0 \ell^+ \nu$ b quark decays: $B_c^+ \to J/\psi \pi^+$; $B_c^+ \to J/\psi D_{s-}^+$ $B_c^+ \to J/\psi \ell^+ \nu$

annihilation: $B_c^+ \rightarrow J/\psi \ell^+ \nu$

Best mass measurement:

6275.6 \pm 2.9 (stat.) \pm 2.5 (syst.) ${\rm MeV}/c^2$

B_c Lifetime in $B_c \rightarrow J/\Psi \mu X (DØ, 1.4 \text{ fb}^{-1})$

Lifetime expected ~1/3 of other B mesons Main challenge in partially reconstructed mode $B_c^+ \rightarrow J/\psi \ell^+ \nu$ is understanding multiple backgrounds: real J/Ψ + fake muon fake J/Ψ + real muon real J/Ψ + real muon \rightarrow from bb events $B^+ \rightarrow J/\psi K^+$ where K $\rightarrow \mu \nu \nu$ prompt J/Ψ + μ

Mass – lifetime simultaneous fit used to disentangle small signal fraction among large fraction of backgrounds

- Most precise B_c lifetime measurement:

 $\tau(B_c^{\pm}) = 0.444^{+0.039}_{-0.036} \,(\text{stat})^{+0.039}_{-0.034} \,(\text{sys}) \,\text{ps}.$

Implications

Gli spazi per New Physics si riducono...

tan(b)~50 constrained by unification of Yukawa couplings

Pink regions are excluded by either theory or other experiments

Green region is the WMAP preferred region

Blue dashed line is the Br(Bs \rightarrow mm) contour. Light blue region excluded by old Bs \rightarrow mm analysis