Monte Carlo generators for top physics at the LHC

B. Acharya (ICTP and ATLAS, Udine) F. Cavallari (CMS, Roma) G. Corcella (Centro E. Fermi and SNS, Pisa) [speaker] R. Di Sipio (ATLAS, Bologna) G. Petrucciani (CMS, Pisa)

- 1. Introduction
- 2. Parton-shower and matrix-element generators for top-quark signals and backgrounds
- 3. Results and comparisons at the LHC
- 4. Theoretical uncertainties on the top mass reconstruction
- 5. Conclusions

Great improvement in the latest few years in Monte Carlo generators for $t\bar{t}$ and single-top production, top decay, and backgrounds

HERWIG and PYTHIA to simulate parton showers and hadronization

Multiple radiation in soft or collinear approximation

HERWIG: $Q^2 \simeq E^2 \theta^2 \Rightarrow$ angular ordering in soft limit PYTHIA: $Q^2 = p^2$ or k_T^2 , with an option to veto non-angular-ordered showers

Parton showers equivalent to a LL resummation, with some NLLs

PYTHIA and **HERWIG** simulate $t\bar{t}$ and single-top production

HERWIG and TopRex+PYTHIA account for spin correlations in top decays

PYTHIA and **HERWIG** (interface with JIMMY) account for multiple interactions to model the underlying event

HERWIG++ and PYTHIA 8: new object-oriented versions in C++

PYTHIA 8: Transverse-momentum ordering, initial-, final-state radiation and multiple interactions interleaved in a common p_T ordering (fortran only initial-state radiation)

Multiple interactions for QCD $2\to 2$ processes, prompt photons, charmonia and bottomonia, low-mass Drell–Yan pairs

Not yet tested for top-quark signals or backgrounds (Sjostrand)

HERWIG ++: $Q^2 \to Q'^2 = Q^2 + \frac{\max(m_g^2, p^2)}{z^2} + \frac{k^2}{z^2(1-z)^2}$ (angular ordering)

Mass-dependent term in the splitting function: $P_{qq}(z) = C_F \left[\frac{1+z^2}{1-z} - \frac{2z(1-z)m^2}{p_T^2 + (1-z)^2m^2} \right]$ Better treatment of radiation off heavy quarks, improved fragmentation, especially *B*-hadrons ARIADNE and dipole cascade (L.Lönnblad) : $2 \rightarrow 3$ splittings rather than $1 \rightarrow 2$ Only parton showers: hard scattering and hadronization are taken from PYTHIA qg ($\bar{q}g$) dipole: $qg \rightarrow qgg$ splitting

Strong ordering in k_T : $k_{T,1}^2 \gg k_{T,2}^2 \gg \dots$ (no need for angular ordering) SHERPA

Multipurpose parton-level generator AMEGIC++ generates hard scattering

Clustering of jets using the k_T algorithm

Parton showers (APACIC++): ordering in virtuality, with possible enforcement of angular ordering (like PYTHIA)

Hadronization: Lund string model

Monte Carlo generators at NLO

MC@NLO (Frixione & Webber) : **NLO** (real+virtual) hard scattering: parton showers and hadronization are taken from HERWIG

Identical to HERWIG in soft or collinear regions, and to NLO computations for hard or large-angle radiation

Main improvements: cross sections are NLO, predicted observables are NLO

Drawbacks of MC@NLO: shower model specific (HERWIG), generates few events with negative weights

POWHEG (Nason, Frixione, Oleari and Ridolfi) : **NLO cross sections, interface to** any parton shower model, no negative weights

The hardest emission (p_T) is the first and is generated exactly at NLO

Veto in p_T for subsequent radiation

The procedure is independent of the MC program and works well for p_T -ordered showers; truncated showers for angular ordering

Matrix-element generators (ALPGEN, MadGraph, CalcHep, HELAC, etc.): Higher-jet multiplicites, e.g. W/Z + n jets, at LO interfaced to HERWIG and/or PYTHIA for showering and hadronization (Les Houches accord)

ALPGEN : $t\bar{t} + 6$ jets, V + 6 jets, $Wb\bar{b} + 4$ jets, VV + 3 jets

MadGraph: $t\bar{t} + 3$ jets, V + 4 jets, $V + b\bar{b} + 3$ jets, VV + 2 jets, etc.

Matching schemes (CKKW and MLM) to avoid double countings and prevent parton showers from generating radiation harder than matrix elements

CKKW (SHERPA, ARIADNE): k_T algorithm, y_{cut} , $y_{ij} = \frac{2\min\{E_i^2, E_j^2\}}{Q^2} [1 - \cos \theta_{ij}]$

Ex. 3 jets $(y_{12,13,23} > y_{cut}) y_{45} < y_{cut} \Rightarrow$ accept parton showers; $y_{45} > y_{cut} \Rightarrow$ reject **MLM matching (ALPGEN): define** n **cone jets** $(\Delta R > R_0, p_T > p_{t,min}, |\eta| < \eta_{max})$ shower and cluster the event into k jets

Accept the event if $k \ge n$ and each of the *n* original partons in a different jet

Comparing MC@NLO, HERWIG and NLO results

POWHEG vs. MC@NLO

ALPGEN vs. MCONLO for $t\bar{t}$ production (Mangano, Moretti, Piccinini, Treccani)

Cone algorithm (R = 0.7, $E_T > 20$ GeV, $|\eta| \le 6$): general agreement, but discrepancy for y_1

Very little contribution of $t\bar{t}g$ hard process in MC@NLO

Preliminary result from $t\bar{t}$ + jet at NLO similar to ALPGEN and POWHEG

Workshop MC4LHC: comparison of different matrix-element generators

Parton-level jet cross sections after cuts:

 $p_{i,T}>20$ GeV, $|\eta_i|<2.5,~\Delta R=\sqrt{\Delta\phi^2+\Delta\eta^2}>0.4$ (table by F. Piccinini)

Cross sections in pb for $(Z/\gamma^* \rightarrow e^+e^-) + n$ jets

$e^+e^- + n$ QCD jets	0	1	2	3	4	5	6
ALPGEN	723.4(9)	188.3(3)	69.9(3)	27.2(1)	10.95(5)	4.6(1)	1.85(1)
SHERPA	723.9(7)	189.6(9)	71.4(4)	30(2)			
CompHEP	730.9(1)	190.20(7)	70.22(7)				
MadEvent	723(1)	188.6(3)	69.3(1)	27.1(2)	10.6(1)		
GR@APPA	744(7)	182.77(8)	67.70(3)				

Cross sections in pb for $(Z/\gamma^* \rightarrow e^+e^-) + b\bar{b} + n$ jets

$e^+e^- + b\overline{b} + n$ QCD jets	0	1	2	3	4
ALPGEN	18.95(8)	6.80(3)	3.13(2)	1.58(1)	0.80(1)
SHERPA	18.8(2)				
CompHEP	19.45(2)				
MadEvent	18.7(1)	6.72(2)	2.96(1)		

Whenever a given process is implemented, the four generators agree

More recent exclusive studies on W+jets (J.Alwall et al.)

Single top production in MC@NLO (Frixione, Laenen, Motylinski, Webber)

Background at NLO (MCFM): $pp \rightarrow Wjj$, with a tagged *b*-quark

(Campbell, Ellis, Maltoni, Willenbrock)

Non-perturbative physics and top mass reconstruction (P. Skands and D. Wicke)

Lepton+jets channel: $t\bar{t} \rightarrow b\bar{b}q\bar{q}'\ell\nu$; Three jets in hadronic top decay, $p_T > 15$ GeV and $\Delta R = 0.5$ Run PYTHIA with 165 GeV $< m_t^{\text{gen}} < 185$ GeV and fit m_t^{fit} within 15 GeV Rescale accounting for JES: $m_t^{\text{scaled}} = s_{\text{JES}}m_t^{\text{fit}}$, $s_{\text{JES}} = 80.4$ GeV/ m_W

Scale and parton distribution uncertainties (R. Frederix and F. Maltoni) MCFM: MC@NLO:

MCFM:

Bottom-quark fragmentation from e^+e^- to top decay (G.C. and V. Drollinger)

HERWIG 6.506	PYTHIA 6.202		
CLSMR(1) = 0.4 (0.0)			
CLSMR(2) = 0.3 (0.0)	$PARJ(41) = 0.85 \ (0.30)$		
DECWT = $0.7 (1.0)$	$PARJ(42) = 1.03 \; (0.58)$		
CLPOW = 2.1 (2.0)	$PARJ(46) = 0.85 \ (1.00)$		
PSPLT(2) = 0.33 (1.00)			
$\chi^2/{ m dof} =$ 222.4/61 (739.4/61)	$\chi^2/{ m dof} =$ 45.7/61 (467.9/61)		

In progress: uncertainty on m_t due to *b*-quark fragmentation

HERWIG ++: improved treament of heavy quarks and better description of baryon formation, treated independently of mesons

 $\chi^2/dof \simeq \mathcal{O}(1)$ vs. SLD B mesons/baryons, tuning only the shower cutoff δ

Systematic errors on the top mass reconstruction (M.H. Seymour and C. Tevlin) 'Lepton + jets': top quark reconstruction as W + b-jet combination Investigating FSR, ISR, underlying event and hadronization k_T clustering algorithm (KtJet package)

Cone algorithm (PxCone, mid-point algorithm, infrared safe)

 k_T algorithm mostly affected by ISR and UE; cone algorithm by FSR and hadronization

Useful employing both algorithms

Conclusions

Great improvement in Monte Carlo generators for top physics

Parton-shower generators HERWIG and PYTHIA, now rewritten in C++

MC@NLO and POWHEG: top production at NLO, plus showering

Matrix-element generators (ALPGEN, MadGraph, etc.) for multi-jet production

Available NLO calculations (MCFM, $t\bar{t}j$, etc.) not yet interfaced for parton showers and hadronization

Work devoted to estimate theoretical systematics: pdfs, underlying event, ISR, FSR, bottom-quark fragmentation

Several generators are now available to describe top quark signals and backgrounds

For any given analysis, using two codes and comparing is always advisable