Commissioning della fisica con W, Z

M.Bellomo⁽¹⁾, *M. Malberti⁽²⁾*

⁽¹⁾INFN Pavia ⁽²⁾⁾INFN Milano-Bicocca

V Workshop italiano sulla Fisica p-p a LHC Perugia, 30/01-02/02 2008

1

- Focus on W and Z production with L = 10-100 pb⁻¹
- Calibration issues: momentum scale, resolution and alignment with Z events
- W, Z inclusive cross section (electrons, muons) :
 - MC NLO predictions and acceptance studies
 - trigger and offline efficiency from data
 - events selection and backgrounds
- τ production from W, Z and τ identification
- Conclusions and outlook

LHC early data

- First physics run at very low luminosity (~10³¹ cm⁻²s⁻¹)
 - detector understanding and event structure studies:10 pb⁻¹ integrated luminosity
- Low luminosity "Physics run" (10³³ cm⁻²s⁻¹)
 - nominal LHC values: ~1-2 fb⁻¹ integrated luminosity

Process	σ x Br [pb]	ε(estimate)	Events 10 pb ⁻¹	
Z → II	2000	20%	4000	Good event rates
$W \rightarrow I_V$	20000	20%	40000	even with modest
ttbar → Iv +X	370	1.5%	< 100	luminosty
Jet E⊤> 25 GeV	3 · 10 ⁹	100%	3 · 10¹⁰ x p.f.	
Minimum bias	10 ¹¹	100%	10 ¹² x p.f.	

- Aim of first data (50-100 pb⁻¹): detector understanding/calibration and first physics measurements
 - Single W/Z boson production is a clean process with large cross section
 - <u>"Standard candles" for detector calibration/understanding</u>
 - monitor collider luminosity and constrain PDFs looking at σ_{TOT}, W rapidity,...(see talk by Diglio, Rovelli)
 - cross section measurements

Momentum scale/resolution from $Z \rightarrow \mu \mu$

units

Arbitrary

Determination of μ momentum scale/resolution from Z decay

- peak position \rightarrow momentum scale
- peak width \rightarrow momentum resolution
 - momentum range ~20-80GeV
- Monte Carlo Spectra method
 - "Adjust" the MC reconstructed momentum
 - Comparison of reconstructed M_m in data and MC
 - Momentum scale can be estimated to roughly 0.6%, with gaussian resolution ~12% for a misaligned geometry (with 30.000 events)
- Parametrized shape method
 - As above, but resolution is parametrized as a function
 - the reconstructed momentum can be obtained on MC truth level
 - momentum Scale can be determined on 1% level for an aligned muon spectrometer layout

Momentum scale from $Z \rightarrow \mu\mu$

- use $Z \rightarrow \mu \mu$ events to correct muon scale biases due to
 - effectiveness of the muon reconstruction procedure
 - imperfect knowledge of the detector conditions
- studied for 10 pb⁻¹ with different scenarios
 - normal detector conditions
 - tracker misalignment
 - muon system misalignment
 - modified B-field intensity
- correct μ scale as a function of muon kinematics: $p^{T} = k \times p^{T}$ with $k = F(p^{T}, \eta, \phi; \alpha...)$
- scale corrections improve also systematics on cross section measurements (acceptance uncertainties)

Alignment with $Z \rightarrow \mu \mu$

- Observation: decrease of momentum resolution is first order due to sagitta-shifts in towers
 Z boson mass constraint

 - muons from Z boson reconstructed in tower A, have other partner muons in different tower, independently misaligned
 - Results for 1 day at 10³³ cm⁻²s⁻¹ more statistics allow for in-tower corrections with further reduction of standard deviation

- Cross section measurement related issues :
 - Acceptance studies with best NLO QCD and EW theoretical predictions
 - Efficiencies measurement <u>from data</u> to not rely on MC simulations
 - Event selections and background estimation
 - Detailed systematics studies (impact of alignment, calibration...)

Acceptance studies in $W \rightarrow \mu \nu$

- Study the acceptance corrections due to geometrical coverage of detector and trigger system
 - Theoretical description with NLO QCD and EW corrections
 - MC@NLO, Photos and Horace generators with Herwig parton shower

- Transverse momentum and pseudorapidity curves
 - LO and NLO comparison
 - QCD corrections up to 2%
 - Iower impact from EW corrections (<1%)</p>

CMS AN 2007/031,CMS AN 2007/026

- NLO EW and QCD corrections
 - comparison MC@NLO+PHOTOS vs RESBOS-A
 - comparison HORACE vs LO MC+PHOTOS
 - MC@NLO + PHOTOS → overall theoretical uncertainties on Z acceptance at the percent level
- PDF uncertainties ~ O(1%)
 - with CTEQ6.5 and comparison with other PDF sets

Efficiency measurements

The "Tag&Probe" method

Use of $Z \rightarrow ee (\mu\mu)$ events to provide an unbiased, high purity electron (muon) sample to measure the efficiency of a particular selection

<u>TAG</u> electron (muon) selected with tight criteria

<u>PROBE</u> electron(muon) candidate with loose selections depending on the efficiencies under study

- tag-probe invariant mass within a narrow window around M(Z)
 + possible additional requirement on ∆Φ(tag-probe)
- tight selections + kinematic cuts to ensure a high purity sample

- map efficiencies as a function of p_{T} , η, Φ
 for phyisics analysis
- critical issues of the method
 - residual background contamination (QCD, W+jets) to be subtracted
 - check correlations and dependencies on the selections applied

Tag & Probe

L1 L1+L2

11

L1+L2

MC gen.

L1+L2+EF

11+L2+EF

- Measurements wrt ID or offline muon reconstruction:
 - c₁*c₂<0,81<M_{µµ}<101 GeV, p^T>20 GeV
- Background rejection with kinematical and tight isolation cuts:
 - $\label{eq:ID} \begin{array}{l} \bullet \hspace{0.1cm} \Sigma N^{\text{ID}} < 4, \hspace{0.1cm} \Sigma p_{\text{T}}^{\text{ID}} < 8 GeV, \\ \hline \textbf{Calo} \Rightarrow E_{\text{jet}} < 15 GeV, \hspace{0.1cm} \Sigma E_{\text{T}}^{\text{EM}} < 6 \hspace{0.1cm} GeV \end{array}$

Frigger efficiency

0.8

0.6

0.4

0.2

f Ldt = 100 pb

Trigger efficiency from $Z \rightarrow \mu^+ \mu^-$

Use standalone and combined reconstructions to cope with early data requirements

e.g. ID-MS alignment

Statistical uncertainty for 50 pb⁻¹ \approx 0.3% Systematic uncertainty \approx 0.5% Background contribution <0.5%

in a similar way, use "Tag&Probe" to measure offline efficiencies

 $W \rightarrow \mu \nu$

mu20i

 $Z \rightarrow \mu \mu$

 c_{mu20i}

- to apply efficiency measured with Z→II to W→Iv, ε(p^T,η) is needed to account for different kinematic distributions of leptons from Z and W
- comparison between "Tag&Probe" and MC efficiency in W \rightarrow ev events performed as a function of E^T and slices in η
 - good agreement between Tag&Probe and MC truth

 0.004 ± 0.001

 0.008 ± 0.001

 0.005 ± 0.001

electron tracking efficiency

Tag: HLT electron, E^T >15GeV,track isol. Probe: ECAL SC, E^T >20 GeV 85 GeV < M(tag-probe) < 95 GeV

Systematic uncertainties

- Efficiency of isolation requirement also determined via Tag&Probe
 - Avoid correlations by determination versus number of reconstructed jets Early Data:
 - $\Delta \varepsilon_{iso} / \varepsilon_{iso} = 0.002 (stat) \pm 0.003 (sys)$

High Luminosity

- $\Delta \varepsilon_{iso} / \varepsilon_{iso} = 0.000 (stat) \pm 0.001 (sys)$
- Main systematics from background
- Uncertainty on impact-parameter and misalignments should be negligible
- Efficiency of kinematic cuts Uncertainty arises from uncertainty on momentum scale measurement

 $\epsilon_{\text{kinematic}}{=}0.906{\pm}0.003(\text{sys})$

Selections:

- two isolated leptons with opposite charge within detector acceptance
 - Iepton ID based on simple but robust cuts
- high p^T (well above trigger thresholds)
- invariant mass in a window around M(Z)
- final background contamination almost negligible [~ few ‰]

Muon Spectrometer reconstruction for muon tracks in $|\eta| < 2.5 + isolation$ Uncertainty from bkg. expected $\approx 0.2\%$

di-jets, W+jets \rightarrow can be estimated from data

Background estimation in Z→II events

- QCD and W+jets residual contamination can be estimated from data
 - background subtraction needed for a correct estimation of efficiencies with T&P and cross section
- Different techniques under investigation
 - (1) "Charge Correlation" Method:

look at "same-sign"(SS) and "opposite-sign"(OS) events

(2) "Side Bands" Method:

count the number of events in the upper and lower mass side band regions and extrapolate to the signal region

(3) fit with background (or signal+background) templates of a discriminating variable

- more sophisticated
- may require higher luminosities (i.e. with enough data to model background shapes)

(1) and (2) are simple but robust methods:

- desirable for a start-up scenario
- adequate for the level of background expected in ~10 pb⁻¹

- General assumption: no charge correlation in lepton pairs from hadronic events
 - under this assumption: N(SS) = N(OS)
 - correction for charge mismeasurement probability in the signal needed (from MC)
 - need to verify that the charge correlation is negligible

 QCD enriched sample from data (like-sign) and normalization to signal selection from MC (ratio OS/SS) or with side-bands techniques from data

Events selections and backgrounds in $W \rightarrow Iv$

- Selections
 - one well reconstructed lepton within detector acceptance and passing HLT requirements
 - Iepton isolation
 - lepton p^T > 20-25 GeV
 - transverse mass or MET cut + possible jet veto to reduce hadronic backgrounds
- Electroweak backgrounds
 - W $\rightarrow \tau v$, Z/ $\gamma^* \rightarrow 11$, Z $\rightarrow \tau \tau$, ttbar (~ few %)
 - WW,WZ,ZZ,tW: ~ negligible
 - can be reliably estimated from MC simulation
- Hadronic backgrounds
 - highest uncertainty
 - can be estimated from data

Background from data: "Matrix method"

General technique used by CDF and D0

- consider two variables with signal/background discrimination power
 - main assumption: the two variables are largely uncorrelated
 - e.g. lepton isolation and MET (M^T)
 - Iook at Var1%Var2
- Simplest approach: assuming that Ba, Bb, Bc are *only QCD* events, the number of bkg events Bd in the signal region is

$$Bb Bc Bc Bc Bc R= \dots \Rightarrow Bd = \dots$$

 $Ba \quad Bd \quad R$

may require "non-QCD" contamination correction in regions a, b, c

Example of QCD bkg estimation in $W \rightarrow \mu \nu$

 results after "non-QCD" events subtraction in control regions and using 0.5 pb⁻¹ (for different control region choices)

no of events

- Event selections:
 - triggered electron with E_T > 25 GeV, |η| <
 1.37 or 1.52 < |η| < 2.4
 - E_T^{miss} > 25 GeV
 - Jet veto: E_{jet} < 30 GeV</p>
- Highest uncertainty on QCD bkg.
- Z→ee removed via calculation of invariant mass with e-e, e-γ and e-EMjet pairs

QCD shape parametrized from pure QCD sample (99.8%) from photon selection and normalized using sidebands

- MET distribution in QCD events almost independent of whether the candidates pass or fail the isolation requirement
- MET in QCD events can then be modeled on ANTI-ISOLATED electrons

τ production from W, Z

$Z{\rightarrow}\tau\tau$, $W{\rightarrow}\tau\nu$

- useful for validation, tuning algorithms, calibration, measurement of τ-ID efficiency
- cross section analysis

Identification of hadronic τ decays

selection based on calorimetric isolation
 + tracker isolation

good background rejection (ϵ (QCD)~4-6%) with ~70% efficiency for τ jets

HLT efficiency: $W \rightarrow \tau \nu \rightarrow \tau - jet + MET$

Table 5.3: Efficiencies of the TauWithMET HLT path.

	$W \rightarrow \tau \nu$	QCD $\hat{p_{\rm T}}$ 120-170
Level-2 $\not\!$	53%	35%
Level-2 Jet Reconstruction		
and Ecal Isolation	78%	57%
Level-2.5 SiStrip Isolation in the small rectangle	37%	30%
Level-3 SiStrip Isolation in the final rectangle	61%	20%
HLT	10%	1.2%
L1 * HLT	1.8%	

- Study of Trigger performance under start-up conditions
 (L = 10³²cm⁻²s⁻¹)
- HLT algorithms based on isolation

HLT efficiency: $Z \rightarrow \tau \tau \rightarrow \tau - jet + \tau - jet$

Table 5.4: Efficiencies and rates of the DoubleTau HLT path.

	$Z \rightarrow \tau \tau$	$QCD \hat{p_T}$ 120-170
Level-2 jet reconstruction	91%	58%
Level-2 Ecal Isolation	86%	37%
Level-2.5 Pixel Isolation	28%	0.77%
HLT	22%	0.17%
L1 * HLT	8.6%	

Also combined trigger studies on signals $Z \rightarrow \tau \tau \rightarrow e + \tau - jet$ or $Z \rightarrow \tau \tau \rightarrow +\tau - jet$ with overall L1*HLT efficiency ~20-25%

 W→τν with hadronic τ decays: τ trigger optimization (Z→ττ unbiased sample) and offline selection tuning (e,µ vetoes, rejection of QCD jets)

Z→ττ : lower rate but more robust selection and background control (SS and OS)

- •QCD background rejection: 5^{40} e.g. looking at isolation outside 35^{30} τ -id cone and re-calculating multiplicity 25^{30}
- fraction of τ events for cross section measurement by likelihood fit (red points)

AT LAS

- NLO QCD and EW tools available
- Detector calibration & understanding
 - "<u>Standard candles</u>" are fundamental tools with many different approaches (tag and probe, independent signatures, mass constraints, energy scales)
 - tau identification, hadronic scales
- Estimation of important analysis parameters from data minimizing dependence from Monte Carlo simulations
 - <u>Trigger</u>/Offline selections with detailed analysis of systematic effects
 - QCD shape and normalization for background estimation
- Precise PDFs determination as input for the LHC experiments
 - improvements in the PDF fits: higher order effects, heavy quarks treatment
 - inclusion of low x effects
 - rigorous approach for uncertainties determination.
- Z and W productions are good candidates to constrain PDFs at the LHC
 - LHC data can be sensitive to gluon and quark distributions at low x
 - control of the experimental systematic errors needed

Backup slides

W, Z physics

- Measurements of Electroweak observables
 - W mass and width, $sin^2 \Theta_{eff}$, A_{FB}
 - W, Z cross sections and their ratio R_{W/Z}
 - W charge asymmetry A(η_I) and differential cross sections
 - Di-Boson productions
- Single W/Z boson production is a clean processes with large cross section useful also for :
 - monitor collider luminosity and constrain PDFs looking at σ_{TOT} , W rapidity, ...
 - to search for new physics looking at invariant mass high tail,
 - <u>"Standard candles" for detector</u> <u>calibration/understanding</u>

- The best theoretical description from NLO QCD and EW generators, as:
 - MC@NLO S. Frixione, P. Nason and B.R. Webber [<u>hep-ph/0204244</u>] [<u>hep-ph/0305252]</u>
 - HORACE C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini [JHEP 0612:016,2006] [JHEP 0710:109,2007]

- EW corrections with lepton |η|<2.5 p_T>25 GeV @ 5-10 %
- EW corrections for high invariant mass regions (>1 TeV) @ 20-30%

Figure 3: L1+HLT efficiency versus supercluster E_T .

Figure 4: L1+HLT efficiency versus supercluster η .

Electromagnetic calorimeter reconstruction efficiency as a function of probe track p^{T}

- symmetry exploited for initial ECAL intercalibration with inclusive jets
- use $Z \rightarrow ee$ for intercalibration between rings
 - 0.6 % precision with 2 fb⁻¹

6

5

4

3

2

Precision with 11 million events

· Limit on precision

Intercalibration Precision (%)