QCD — theory part

Livio Fano', Iacopo Vivarelli & Giulia Zanderighi

Quinto Workshop sulla fisica pp ad LHC

Outline

This talk: 20'+5' ⇒ no complete overview of recent theory progress in QCD! **→ see talk by G. Altarelli**

Instead: discuss some selected*topics

- jets (some definitions, concepts & new ideas)
- various level of perturbative (bottleneck, techniques, status & update)
- event shapes and resummation
- not covered: all the rest (apologies)

* Selected

- 1. because of the fair amount of recent progress
- 2. as a reflection of knowledge and taste of the speaker

Jets: true or false?

Jet algorithms

Jet algorithms provide a way of projecting away the multiparticle dynamics of an event so as to leave a simple quasi-partonic picture of the underlying hard scattering. This projection is however fundamentally ambiguous, reflecting the divergent and quantum mechanical nature of QCD. Consequently, jet physics is a rich subject. [Salam, ISMD-proc'07]

Jet algorithms

Jet algorithms provide a way of projecting away the multiparticle dynamics of an event so as to leave a simple quasi-partonic picture of the underlying hard scattering. This projection is however fundamentally ambiguous, reflecting the divergent and quantum mechanical nature of QCD. Consequently, jet physics is a rich subject. [Salam, ISMD-proc'07]

Jet algorithms

Cone type (UA1,JetCLU, Midpoint, SISCone..)

top down approach: cluster particles according to distance in coordinate-space <u>Sequential</u> (kt-type, Jade, Cambridge/ <u>Aachen...</u>)

bottom up approach: cluster particles according to distance in momentum-space

Easier said than done?

Snowmass accord

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Easier said than done?

Snowmass accord

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Other desirable properties:

- flexibility
- transparency
- few parameters
- fast algorithm
- jet flavour \sim flavour of origination hard parton

- ...

Easier said than done?

Snowmass accord

FERMILAB-Conf-90/249-E [E-741/CDF]

Toward a Standardization of Jet Definitions

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Despite this:

- cone algorithms used at Tevatron are IR unsafe
- often additional parameters or patches to fix IR unsafety
- ▶ some theory/exp. comparison carried out with different algorithms
- no systematic study of hadronization effects/U.E.

Other desirable properties:

- flexibility
- transparency
- few parameters
- fast algorithm
- jet flavour $\sim\,$ flavour of origination hard parton

- ...

Infrared unsafety of seeded cone algorithms

* e.g.: observed discrepancy between IR safe/unsafe only O(1%) because in inclusive case the violation appears first at relative O(α_s^2), in other cases it will be a O(1)

Seedless cone algorithm

<u>Seedless algorithm</u>: consider all possible enclosures of the N particles in the event. IR safe, but clustering time growths as $N \cdot 2^N$, i.e. 100 particles: 10^{17} years \Rightarrow prohibitive beyond PT (N~4,5,...). [Blazey at al.'00]

Seedless cone algorithm

<u>Seedless algorithm</u>: consider all possible enclosures of the N particles in the event. IR safe, but clustering time growths as $N \cdot 2^N$, i.e. 100 particles: 10^{17} years \Rightarrow prohibitive beyond PT (N~4,5,...). [Blazey at al.'00]

<u>SISCone</u>: recast the problem as a computational geometry problem, the identification of all distinct circular enclosures for points in 2D and find a solution to that (+ minor fixes) $\Rightarrow N^2 \ln N$ time IR safe algorithm [Salam, Soyez '07]

Jet issues & applications

Jet issues & applications

1. speed: no longer an issue http://www.lpthe.jussieu.fr/~salam/fastjet/

More sophistication

Different effects on the transverse momentum of jets:

	Jet $\langle \delta p_t \rangle$ given by product of dependence on			
	scale	colour factor	R	\sqrt{s}
perturbative radiation	$\sim rac{lpha_s(p_t)}{\pi} p_t$	C_i	$\ln R + \mathcal{O}\left(1\right)$	—
hadronisation	$\Lambda_{ m h}$	C_i	$-1/R + \mathcal{O}\left(R\right)$	_
underlying event	$\Lambda_{ m UE}$	_	$R^2/2 + \mathcal{O}\left(R^4\right)$	s^{ω}

 ⇒ Different *R* dependence:
 a) disentagle different effects
 b) choose an optimal *R* minimizing some (or all) effects

Take advantage of flexibility offered by modern jet tools: make flexible choices of jet-definitions and parameters!

Heavy flavoured jets

b-jet \equiv any jet containing at least a b-quark

⇒ NLO calculation (MC@NLO) has \sim 40-60% theoretical uncertainty

- ►LO (FC) < NLO (FEX+GSP)
- higher orders enhanced by log(m_b/p_t)
- \blacktriangleright despite $m_b \ll p_t$ need massive calculation

Flavour jet-algorithm

Flavour kt-distance measure:

$$d_{ij}^F = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \times \begin{cases} \max(k_{ti}^2, k_{tj}^2) & \text{softer of } i, j \text{ is b} \\ \min(k_{ti}^2, k_{tj}^2) & \text{softer of } i, j \text{ is } \not b \end{cases}$$

Reflects different (q,g) divergences of QCD \Rightarrow undo splittings occurred in the branching

- 1. jet with b and \overline{b} = gluon jet (not trivial experimentally)
- 2. resum FEX logs in p-PDFs (collinear factorization)
- 1. + 2. \Rightarrow no large logs left take m_b=0 limit
- <u>As a result</u>: th. uncertainty goes down from 40-60% to 10-20% (~ light jets)

- Parton showers (Ariadne, Herwig, Pythia,...)
- LO matrix elements (ALPGEN, Madgraph...)
- LO matrix elements + parton shower (ALPGEN, Madgraph...)
- NLO matrix elements (MCFM, NLOjet,...)
- NLO matrix elements + parton shower (MC@NLO, POWHEG)
- $\stackrel{\scriptstyle >}{\scriptstyle >}$ NNLO matrix elements (e.g. Higgs, DY, ee \rightarrow 3jets)

Performance of LO techniques

- ✓ Helicity amplitudes & LO recursions → BG [Berends, Giele '88]
 ✓ from twistors: onshell-recursion / MHV vertices → BCF / CSW [Britto, Cachazo, Feng '04, Cachazo, Svrcek, Witten '04]
- other methods [HELAS, ALPHA, HELAC...] [Hagiwara et al.'92, Caravaglios & M. Moretti '95; Kanaki & Papadopoulos'00]
- Various automated methods: limiting factor is computer time

Performance of LO techniques

✓ Helicity amplitudes & LO recursions → BG [Berends, Giele '88]
 ✓ from twistors: onshell-recursion / MHV vertices → BCF / CSW [Britto, Cachazo, Feng '04, Cachazo, Svrcek, Witten '04]
 ✓ other methods [HELAS, ALPHA, HELAC...]

[Hagiwara et al.'92, Caravaglios & M. Moretti '95; Kanaki & Papadopoulos'00]

Various automated methods: limiting factor is computer time

Pure gluon amplitudes (theorists favourite playground):

- CO: Color Ordered (partial)
- CD: Color Dressed (full)
- BCF/CSW: compact, but factorial growth
- BG: power-like algorithm
 - → much faster at large n

LO matrix elements + parton shower

Matching: improve ME in soft-collinear regions (using Sudakov) and parton shower at large angles (using ME)

Procedures:

- CKKW: separate ME&PS domain using a clustering variable [Catani et al. '01]
- ► MLM: match parton to jet, no modification to the shower (simple) [Mangano '02]

▶ others (CKKW-L, Pseudo-shower...)

- ⇒ Different showers, ME and matching procedures
- reasonable good agreement
 systematics at Tevatron \sim LHC
- tune codes to Tevatron and give consistent predictions for LHC

ME + parton shower: back to basics

[Lavesson & Lonnblad '07]

Similar study in simplest environment $e^+e^- \rightarrow q\bar{q}$ at Z pole

<u>Aim:</u> check whether various schemes meet their goals NB: correct answer known (reweight hardest emission of the PS)

Outcome: various problems, e.g.

- inconsistent results with SHERPA
- problems with CKKM and virtuality ordered shower
- poor cancellation of mergingscale & fudge factor in pseudoshower
- MLM: no convergence lowering ME cutoff

<u>Conclusion</u>: extra parameters need to be tuned (different for different processes, scales, observables?) \Rightarrow predictability of models reduced

Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- First prediction of normalization of cross-sections is at NLO

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- first prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- first prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- First prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO
 - resolve structure of jets

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- First prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO
 - resolve structure of jets
 - more species of incoming partons enter at NLO

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- first prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO
 - resolve structure of jets
 - more species of incoming partons enter at NLO
 - initial state radiation effects

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- first prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO
 - resolve structure of jets
 - more species of incoming partons enter at NLO
 - initial state radiation effects
- First step for matching with other resummed calculations, e.g. for NLO parton showers

- Solutions only qualitative, due to poor convergence of perturbative expansion ($\alpha_s \sim 0.1$) \Rightarrow NLO can be 30-100% !
- first prediction of normalization of cross-sections is at NLO
- reduce dependence from unphysical scales
- more physics at NLO
 - resolve structure of jets
 - more species of incoming partons enter at NLO
 - initial state radiation effects
- First step for matching with other resummed calculations, e.g. for NLO parton showers

⇒ gain confidence that cross sections are under control for precision measurements

SUSY signature: missing E_T + jets

SUSY signature: missing E_T + jets

SM background from Z+jets

- SUSY signature: missing E_T + jets
- SM background from Z+jets
- Early ATLAS TDR used pythia (parton shower) \Rightarrow overly optimistic

$$M_{\text{eff}} = E_{\text{T,Mis}} + \sum_{j=1}^{4} E_{\text{T,j}}$$

- SUSY signature: missing E_T + jets
- SM background from Z+jets
- Early ATLAS TDR used pythia (parton shower) \Rightarrow overly optimistic
- ALPGEN includes full matrix elements much better than pythia

[Gianotti&Mangano'05]

M_{eff} (GeV)

- SUSY signature: missing E_T + jets
- SM background from Z+jets
- Early ATLAS TDR used pythia (parton shower) \Rightarrow overly optimistic
- ALPGEN includes full matrix elements much better than pythia
- Sut ALPGEN is LO only ⇒ potentially large NLO corrections

$$M_{\rm eff} = E_{\rm T,Mis} + \sum_{j=1}^{4} E_{\rm T,j}$$

- SUSY signature: missing E_T + jets
- SM background from Z+jets
- Early ATLAS TDR used pythia (parton shower) \Rightarrow overly optimistic
- ALPGEN includes full matrix elements much better than pythia
- But ALPGEN is LO only ⇒ potentially large NLO corrections
- What would a disagreement with ALPGEN mean ???

$$M_{\rm eff} = E_{\rm T,Mis} + \sum_{j=1}^{4} E_{\rm T,j}$$

- SUSY signature: missing E_T + jets
- SM background from Z+jets
- ✓ Early ATLAS TDR used pythia (parton shower) ⇒ overly optimistic
- ALPGEN includes full matrix elements much better than pythia
- But ALPGEN is LO only ⇒ potentially large NLO corrections
- What would a disagreement with ALPGEN mean ???

 \Rightarrow need Z+4 jets at NLO

$$M_{\rm eff} = E_{\rm T,Mis} + \sum_{j=1}^{4} E_{\rm T,j}$$

An N-particle NLO calculation requires:

tree graph rates with N+1 partons
 soft/collinear divergences

- tree graph rates with N+1 partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration

- tree graph rates with N+1 partons
 soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

- ✓ tree graph rates with N+1 partons
 → soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

An N-particle NLO calculation requires:

- ✓ tree graph rates with N+1 partons
 → soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

<u>Status:</u>

- \mathbf{V} 2 \Rightarrow 2: well established in SM and MSSM
- \mathbf{V} 2 \Rightarrow 3: some SM processes known, some missing
- $\square 2 \Rightarrow 4: NO NLO CALCULATION FOR THE LHC EXISTS$

An N-particle NLO calculation requires:

- ✓ tree graph rates with N+1 partons
 → soft/collinear divergences
- virtual correction to N-leg process
 divergence from loop integration
- set of subtraction terms

Status:

- \mathbf{V} 2 \Rightarrow 2: well established in SM and MSSM
- \mathbf{V} 2 \Rightarrow 3: some SM processes known, some missing
- $\square 2 \Rightarrow 4: NO NLO CALCULATION FOR THE LHC EXISTS$

Problem as most new-physics signatures involve high multiplicity final states \Rightarrow huge effort devoted to NLO multi-leg calculations

<u>Traditionally:</u> Feynman diagrams, agonizing pain for each calculation. NLO programs available at: http://www.cedar.ac.uk./hepcode

<u>Traditionally:</u> Feynman diagrams, agonizing pain for each calculation. NLO programs available at: http://www.cedar.ac.uk./hepcode

Analytic approaches : get result without doing integrations

helicity amplitudes, twistors, supersymmetric decompositions, on-shell methods, unitarity, cut-constructability, triple and quadrupole cuts, recursion relations, MHV-vertices, onshell recursive bootstrap....

<u>Traditionally:</u> Feynman diagrams, agonizing pain for each calculation. NLO programs available at: http://www.cedar.ac.uk./hepcode

Analytic approaches : get result without doing integrations

helicity amplitudes, twistors, supersymmetric decompositions, on-shell methods, unitarity, cut-constructability, triple and quadrupole cuts, recursion relations, MHV-vertices, onshell recursive bootstrap....

Numerical approaches: let the computer do the work for you

helicity amplitudes, tensor decomposition, recursion relations, reduction to master integrals, sector decomposition, integration by parts ...

<u>Traditionally:</u> Feynman diagrams, agonizing pain for each calculation. NLO programs available at: http://www.cedar.ac.uk./hepcode

Analytic approaches : get result without doing integrations

helicity amplitudes, twistors, supersymmetric decompositions, on-shell methods, unitarity, cut-constructability, triple and quadrupole cuts, recursion relations, MHV-vertices, onshell recursive bootstrap....

Numerical approaches: let the computer do the work for you helicity amplitudes, tensor decomposition, recursion relations, reduction to master integrals, sector decomposition, integration by parts ...

<u>Recently:</u> merge & get the best out of the two, examples: 'Numerical unitarity formalism for evaluating one-loop amplitudes' 'Full one-loop amplitudes from tree amplitudes'

[Ellis, Giele, Kunszt '07; Giele, Kunszt, Melnikov '08]

<u>Traditionally:</u> Feynman diagrams, agonizing pain for each calculation. NLO programs available at: http://www.cedar.ac.uk./hepcode

Analytic approaches : get result without doing integrations

helicity amplitudes, twistors, supersymmetric decompositions, on-shell methods, unitarity, cut-constructability, triple and quadrupole cuts, recursion relations, MHV-vertices, onshell recursive bootstrap....

Numerical approaches: let the computer do the work for you helicity amplitudes, tensor decomposition, recursion relations, reduction to master integrals, sector decomposition, integration by parts ...

<u>Recently:</u> merge & get the best out of the two, examples: 'Numerical unitarity formalism for evaluating one-loop amplitudes' 'Full one-loop amplitudes from tree amplitudes'

[Ellis, Giele, Kunszt '07; Giele, Kunszt, Melnikov '08]

<u>Final aim:</u> \sim ALPGEN at NLO (power-like algorithm). In 3-5 years?

NLO progress in '06-'07

 $\checkmark qq \rightarrow qqVV$ (VBF, no decays) [Bozzi, Jaeger, Oleari, Zeppenfeld '06] $\bigcup H \to 4f$ [Bredenstein, Denner, Dittmaier, Uwer '06] $\mathbf{V} gg \to HH(H)$ [Binoth, Karg, Kauer, Rueckl '06] $\boxed{\swarrow} gg \to WW$ [Binoth, Ciccolini, Kauer, Kramer '06] $\swarrow pp \rightarrow H + 2j$ via gg-fusion (no decay) [Ellis, Campbell, Zanderighi '06] $\mathbf{V} pp \rightarrow t\bar{t}j$ (no decays) [Dittmaier, Uwer, Weinzierl '06] $\swarrow pp \rightarrow ZZZ$ (no decays) [Lazopoulos, Petriello, Melnichov '07] $\bigvee pp \rightarrow H + 2j(VBF) \times pp \rightarrow H + 2j(ggf)$ [Andersen, Binoth, Heinrich, Smillie '07] $\bigvee pp \rightarrow t\bar{t}Z$ (gluon induced part, no decay) [Lazopoulos et al. '07] $\bigvee pp \to WWj$ [Dittmaier, Kallweit, Uwer; Campbell, Ellis, Zanderighi '07] \swarrow $gg \rightarrow gggg$ (amplitude only) [N:Campbell et al. '06; A: finished by Xiao et al.'06] $\checkmark \gamma \gamma \rightarrow \gamma \gamma \gamma \gamma$ (amplitude only) [Nagy et al. '07, Binoth et al. '07, Ossola et al. '07] 🗹 various other multi-parton helicity amplitudes, 1 to 2, 2 to 2 in BSM [....]

Beyond NLO: NLO+PS

Combine best features:

Get correct rates (NLO) and hadron-level description of events (PS) Difficult because need exact NLO subtraction and remove it from PS

Working (LHC) examples:

MC@NLO: do NLO, add PS without MC NLO, negative weights, Herwig only (DY, Higgs, QQ, VV, H+V, single top)

[Frixione&Webber '02 and later refs.]

POWHEG: generate the hardest emission first at NLO, add then any parton shower, positive weights but truncated shower (ZZ, QQ)
[Nason '04 and later refs.]

Other recent progress:

Shower with quantum inteference [Nagy, Soper], SCET [Bauer, Schwartz], Vincia (antenna factorization) [Giele et al.], Dipole factorization [Schumann]

Beyond NLO: NNLO

Collider processes known at NNLO today:

- (a) Higgs → see talk by G. Bozzi
- (b) Drell-Yan (Z,W) → see talk by C. Carloni Calame
- (c) 3-jets in e+e-

<u>Motivation</u>: error on α_s from jet-observables

 $\alpha_s(M_Z) = 0.121 \pm 0.001(\exp.) \pm 0.005(\text{th.})$ [Bethke '06]

dominated by theoretical uncertainty

After several years, NNLO 3-jet calculation in e⁺e⁻ completed in 2007 [Gehrmann, Gehrmann-DeRidder, Glover, Heinrich '07]

Method: developed antenna subtraction at NNLO

<u>First application:</u> NNLO fit of α_s from event-shapes

Event shapes

Event-shapes and jet-rates: infrared safe observables describing the energy and momentum flow of the final state.

Candle example in e^+e^- : The thrust T =

$$= \max_{\vec{n}} \frac{\sum_{i} \vec{p_i} \cdot \vec{n}}{\sum_{i} |\vec{p_i}|}$$

Pencil-like event: $1 - T \ll 1$

Planar event: $1 - T \sim 1$

scale variation reduced by a factor 2 at NNLO

[Dissertori et al. 0712.0327]

Quinto workshop sulla fisica pp a LHC - QCD: theory part 24/27

• scatter between α_s from different event-shape reduced

0712.0327]

• scatter between α_s from different event-shape reduced

Event shapes at hadron colliders

So far event shapes largely neglected at hadron colliders because of difficulties associated to U.E. Only (published) exceptions: measurement of the broadening by CDF in '91 and of a thrust by D0 in '02

 \swarrow U.E. and hadronization effects in shapes of distributions \Rightarrow Monte-Carlo tuning

 \checkmark event shapes distributions robust against jet-energy scale \Rightarrow optimal for initial data analysis

X theoretically challenging but automated NLL resummation available for global event shapes (CAESAR)

X model independent New Physics searches: heavy states change shapes of distributions

Definition of event shapes at hadron colliders

Definition analogous to e+e-case, but use only transverse momenta, e.g. transverse thrust:

$$\mathbf{T}_{\perp,R} \equiv \max_{\vec{n}} \frac{\sum_{i \in \mathcal{R}} \vec{p}_{\perp,i} \cdot \vec{n}}{\sum_{i \in \mathcal{R}} |\vec{p}_{\perp,i}|} \qquad \underbrace{\mathbf{T}_{\perp,R} \equiv \max_{\vec{n}} \frac{\sum_{i \in \mathcal{R}} \vec{p}_{\perp,i} \cdot \vec{n}}{\sum_{i \in \mathcal{R}} |\vec{p}_{\perp,i}|}}_{\mathcal{C}}$$

<u>Global:</u> measure all particles, can be resummed automatically, but forward region experimentally inaccessible

<u>Non-global:</u> $\mathcal{R} = \mathcal{C}$ sensitive only to subset (central) of the particles, but theoretically not so well understood

 \Rightarrow use tricks to make event-shapes global, e.g. exploit recoil effects, or add term exponentially suppressed at large rapidities

[Banfi et al. '04]

Ongoing activity

<u>Tevatron (CDF):</u> first measurements
MC shifted wrt data?

Ongoing activity

<u>Tevatron (CDF):</u> first measurements MC shifted wrt data?

LHC (CMS) MC based preliminary studies:

- ev. shapes robust under jet-energy scaling and jet energy resolution on generator level
- complementary properties of different ev. shapes
- ▶ ev. shapes stable against change of MC

Ongoing activity

<u>Tevatron (CDF):</u> first measurements MC shifted wrt data?

LHC (CMS) MC based preliminary studies:

- ev. shapes robust under jet-energy scaling and jet energy resolution on generator level
- complementary properties of different ev. shapes
- ev. shapes stable against change of MC
- Theory: NLL resummation with NLO matching for several event-shapes in progress

Backup slides

Quinto workshop sulla fisica pp a LHC - QCD: theory part 28/27

Iterative cone algorithms (Snowmass implementation)

1. A particle i at rapidity and azimuthal $angle(y_i, \phi_i) \subset cone C$ iff

$$\sqrt{(y_i - y_C)^2 + (\phi_i - \phi_C)^2} \le R_{\text{cone}}$$

$$\bar{y}_C \equiv \frac{\sum_{i \in C} y_i \cdot p_{T,i}}{\sum_{i \in C} p_{T,i}} \qquad \bar{\phi}_C \equiv \frac{\sum_{i \in C} \phi_i \cdot p_{T,i}}{\sum_{i \in C} p_{T,i}}$$

- 3. If weighted and geometrical averages coincide $(y_C, \phi_C) = (\bar{y}_C, \bar{\phi}_C)$ a stable cone (\Rightarrow jet) is found, otherwise set $(y_C, \phi_C) = (\bar{y}_C, \bar{\phi}_C)$ & iterate
- 4. Split-merge on overlapping jets (2nd par: overlap parameter f)

<u>Ideally:</u> place trial cones everywhere and find all stable cones <u>Practically (JetClu, MidPoint, PxCone..):</u> introduce trial directions (seeds)

Seeds make cone algorithms infrared unsafe

Longitudinally invariant inclusive kt algorithm

[Catani et. al '92-'93, Ellis&Soper '93]

1. For any pair of final state particles i,j define the distance

$$d_{ij} = \frac{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}{R^2} \min\{k_{ti}^2, k_{tj}^2\}$$

2. For each particle i define a distance with respect to the beam

$$d_{iB} = k_{ti}^2$$

3. Find the smallest distance. If it is a d_{ij} recombine i and j into a new particle (\Rightarrow recombination scheme); if it is d_{iB} declare i to be a jet and remove it from the list of particles

4. repeat the procedure until no particles are left

Exclusive version: stop when all d_{ij} , $d_{iB} > d_{cut}$ or when reaching n-jets Aachen/Cambridge: same with $d_{ij} = (\Delta_{ij}^2 + \Delta \phi_{ij}^2)/R^2$ and $d_{iB} = 1$

[Dotshitzer et. al '97, Wobisch & Wengler '99]