

Misure di asimmetrie dipendenti dal tempo

Stefania Vecchi (INFN Ferrara)

V workshop italiano sulla fisica pp a LHC Perugia, 31 Gennaio - 2 Febbraio 2008

sommario

- Asimmetrie dipendenti dal tempo:
 - Origini: mixing nel sistema dei mesoni B neutri
 - Effetti sperimentali che determinano la precisione di misura delle asimmetrie
- La sensibilità delle misure di LHCb (ATLAS&CMS)
 - $-\Delta M_s$
 - $\, \varphi_s$
 - $-\Delta\Gamma_{\rm s}$
 - A_{SL}: violazione di CP nel mixing
 - vite medie
- Conclusioni

Il mixing dei mesoni $B_q^0 - \overline{B}_q^0$.

• I mesoni neutri $B_q^0 - \overline{B}_q^0$ non sono autostati dell'interazione debole: nel tempo possono oscillare $|\Delta F=2|$ diagramma a box

$$B_{q} \xrightarrow{q} W^{-} \xrightarrow{b} u, c, t \xrightarrow{\overline{B}_{q}} and B_{q} \xrightarrow{q} u, c, t \xrightarrow{b} W \overline{B}_{q}$$

$$W \xrightarrow{\overline{\delta}} W^{+} \overline{q} \xrightarrow{\overline{q}} \overline{b} \overline{u}, \overline{c}, \overline{t} \overline{q}$$

- autostati di massa

$$i\frac{d}{dt} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^{*} - \frac{i\Gamma_{12}}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B_{s}^{0} \\ \bar{B}_{s}^{0} \end{pmatrix}$$

 $|B_{\mathrm{L,H}}\rangle = p|B_{a}^{0}\rangle \pm q|\overline{B}_{a}^{0}\rangle,$

– evoluzione temporale:

$$\begin{split} |B_q^0(t)\rangle = &g_+(t) |B_q^0\rangle + \frac{q}{p} g_-(t) |\overline{B}_q^0\rangle \,, \\ |\overline{B}_q^0(t)\rangle = &g_+(t) |\overline{B}_q^0\rangle + \frac{p}{q} g_-(t) |B_q^0\rangle \,, \\ g_\pm(t) \equiv &\frac{1}{2} \left(e^{-im_H t - \frac{1}{2}\Gamma_H t} \pm e^{-im_L t - \frac{1}{2}\Gamma_L t} \right) \end{split}$$

3

I parametri del mixing B⁰-antiB⁰

		ΔM _q ~ 2 M ₁₂ [ps ⁻¹]	ΔΓ _q /Γ _q ~ 2 Γ ₁₂ /Γ _q	A _{SL} = (1- q/p ⁴)/ (1+ q/p ⁴) CPv nel mixing	φ _q ~ arg(M ₁₂ / Γ ₁₂) [rad] CPv nell'interferenza	<1/
B _d	Th (SM)		(3.6±1.0)·10 ⁻³	A _{SL} =(-6.4±1.6) 10 ⁻⁴	0.42±0.02	
u	exp	0.507±0.005	(9±37)·10 ⁻³	A _{SL} =(-5±56) 10 ⁻⁴ q/p = 1.0002 ±0.0028	0.37±0.02	1.530±0.009
B _s	Th (SM)	17.8±4.8 17.5±2.1 (UTfit)	(11±4)·10⁻²	A _{SL} =(2.7±0.6) 10⁻⁵	~ -0.04	
	exp	17.77±0.10 ±0.07	(12.1 ^{+8.3} -9.0)·10 ⁻²	A _{SL} =(-300±1010) 10 ⁻⁵ q/p =1.0015±0.0051	-0.8±0.6	1.437±0.030

Il settore del Bs può ancora riservare belle sorprese

Decadimenti e asimmetrie

$$\begin{split} \Gamma_{\mathrm{B}\to f}(t) &= \frac{|A_{f}|^{2}}{2} e^{-\Gamma t} \left[I_{+}(t) + I_{-}(t) \right], & I_{+}(t) &= (1 + |\lambda_{f}|^{2}) \cosh(\Delta\Gamma t/2) \\ \Gamma_{\overline{\mathrm{B}}\to f}(t) &= \frac{|A_{f}|^{2}}{2} \left| \frac{p}{q} \right|^{2} e^{-\Gamma t} \left[I_{+}(t) - I_{-}(t) \right], & I_{-}(t) &= (1 - |\lambda_{f}|^{2}) \cosh(\Delta\Gamma t/2), \\ \Gamma_{\overline{\mathrm{B}}\to\overline{f}}(t) &= \frac{|\overline{A}_{\overline{f}}|^{2}}{2} e^{-\Gamma t} \left[\overline{I}_{+}(t) + \overline{I}_{-}(t) \right], & I_{-}(t) &= (1 - |\lambda_{f}|^{2}) \cos(\Delta m t) \\ \Gamma_{\overline{\mathrm{B}}\to\overline{f}}(t) &= \frac{|\overline{A}_{\overline{f}}|^{2}}{2} e^{-\Gamma t} \left[\overline{I}_{+}(t) + \overline{I}_{-}(t) \right], & \lambda_{f} &= \frac{q}{p} \frac{\overline{A}_{f}}{A_{f}} \text{ and } \overline{\lambda}_{f} &= \frac{p}{q} \frac{\overline{A}_{\overline{f}}}{\overline{A}_{\overline{f}}}, \end{split}$$

Lo studio dei decadimenti dipendenti dal tempo permette di ricavare informazioni su ΔM , Γ , $\Delta \Gamma$, e mettere in evidenza effetti di violazione di CP (q/p, λ_f , bar λ_f) diretta / mixing /

Nel caso di un decadimento in un autostato di CP:

$$\begin{aligned} \mathcal{A}_{f}^{\mathrm{CP}}(t) &= \frac{\Gamma_{\overline{\mathrm{B}} \to f}(t) - \Gamma_{\mathrm{B} \to f}(t)}{\Gamma_{\overline{\mathrm{B}} \to f}(t) + \Gamma_{\mathrm{B} \to f}(t)} \\ &= \frac{\mathcal{A}_{f}^{\mathrm{dir}} \cos(\Delta m t) + \mathcal{A}_{f}^{\mathrm{mix}} \sin(\Delta m t)}{\cosh(\Delta \Gamma t/2) - \mathcal{A}_{f}^{\Delta} \sinh(\Delta \Gamma t/2)} \,, \end{aligned}$$

effetti sperimentali

- Statistica: segnale e fondo
 - Luminosità + sezione d'urto + BR / Trigger / Selezione (PID / risoluzioni)
- Flavour tagging B: efficienza ε_{tag} / correttezza ω_{tag}
 - Tagging same/opposite side (PID) --> M.Musy
- Misura del tempo proprio di decadimento del B:
 - precisione / modello di risoluzione $R(t-\tau)$ / sistematici
 - accettanza a(t) (Trigger/ tagli di selezione)

effetti sperimentali: precisione di misura del tempo proprio

$$t_B = M_B \frac{\vec{d} \cdot \vec{p}_B}{\left|\vec{p}_B\right|^2} \qquad \qquad \frac{\sigma_{t_B}}{t_B} \approx \sqrt{\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_{p_B}}{p_B}\right)^2}$$

dominato dalla precisione di misura del vertice secondario

• Per risolvere le rapide oscillazioni nei decadimenti del B_s occorre:

- ottima risoluzione del tempo proprio $(2\pi/\Delta M_s \sim 350 \text{ fs})$ LHCb: ~40fs media

- conoscere il modello di risoluzione $R(t_B - t_{true} | \sigma_{t_B})$ e calibrarlo sui dati sperimentali

effetti sperimentali: precisione di misura del tempo proprio

• LHCb:

- Modello di risoluzione ricavato dai dati Montecarlo

$$\mathcal{R}(t_{rec} - t_{true}, \sigma_{t_{rec}}) = R(t_{rec} - t_{true} \mid \sigma_{t_{rec}}) \times P(\sigma_{t_{rec}}) \ .$$

- Studio di canali di controllo per ottimizzare i parametri del modello sui dati sperimentali.
- Distribuzione temporale dei decadimenti: B⁺->J/ ψ K⁺ e B⁰->J/ ψ K^{*}
 - Trigger di-muone senza tagli in IP (a(t)~cost): sensibilità al modello di risoluzione nei tempi brevi
 - sottoprodotto: misura delle vite medie di B⁺ e B⁰

Studio Montecarlo S+B: precisione (~5% sigma) sui parametri del modello con ~0.5fb⁻¹

effetti sperimentali: accettanza

- La selezione del trigger e dell'analisi possono introdurre accettanze dipendenti dal tempo proprio (critico nelle misure di vite medie e $\Delta\Gamma_s$)
- LHCb: valutazione delle accettanze (trigger) sui dati reali:
 - confronto tra dati selezionati da trigger diversi (TOS/TIS)
 - "metodo di swimming" (si determina la risposta del trigger in funzione del tempo proprio con cinematica invariata)

Prestazioni sperimentali

	LHCb	ATLAS	CMS	
eventi triggerati (b-barb)/anno	$\sim \! 10^{10}$	~10 ⁸	~10 ⁸	
Particle ID	$e/\mu/\pi/K$ K/ $\pi/p \ 2 KID \epsilon = 88\% \ cont_{\pi} = 4\%$	e pt>0.5 GeV μ pt> 3GeV/6GeV π/K con dE/dx ~0.8 σ	e/μ π/K con dE/dx ~0.8-1.5σ	
$\epsilon D^2 = \epsilon_{tag} (1 - \omega_{tag})^2$	4-5% Bd 7-9% Bs dipende dal trigger	3.2-4.5	NP	
$\sigma(m_B) [MeV/c^2]$	14-20	40	40	
σ_{tB} [fs] in canali esclusivi	33-40	70 (55%)⊕156 (45%)	70	

La misura di ∆Ms

- Frequenza di oscillazione del Bs/antiBs
 - SM: combinata con $\Delta M_d \rightarrow$ estrazione di V_{ts}
 - test di contributi di NP nel loop ($\Delta B=2$)

 $\Delta M_{Bs} = 17.77 \pm 0.10 \pm 0.07 \, ps^{-1} \quad \text{(CDF)}$ $17 \, ps^{-1} < \Delta M_{Bs} < 21 \, ps^{-1} \quad \text{(D0)}$

In accordo con SM

 misura della frequenza di oscillazione del rate di decadimento in canali "Flavour specific" per lo studio dei decadimenti con/senza mixing

$$\Gamma_{B^{0}(\overline{B}^{0}) \to f}(t) \propto e^{-\Gamma_{S}} \cdot \left(\cosh(\Delta\Gamma_{S} \cdot t/2) \pm \cos(\Delta M_{S} \cdot t)\right) \qquad \pm unmix/mix$$

La misura di ΔM_s

• LHCb: canale di riferimento $B^0_{s} \rightarrow D^-_{s}(K^+K^-\pi^-)\pi^+$

- Statistica: $S = 140 \text{ k evnts /anno} (2 \text{ fb}^{-1})$
- Fondi: B/S = 0.2 (principalmente specifici)
 - La PID(K/ π) è fondamentale per la selezione dello stato finale e la soppressione del fondo specifico $B^{0} \rightarrow D_{\pi^{+}}$ events, projection on t
- $< \sigma_{mB} > = 14 \text{ MeV/c}^2$
- Tagging : $\varepsilon_{tag} (1-2 \cdot \omega_{tag})^2 = (9.48 \pm 0.30)\%$
- Risoluzione del tempo proprio $< \sigma_t > = 40$ fs

- $-\sigma(\Delta M_s) = 0.007 \text{ ps}^{-1} \text{ con } 2\text{fb}^{-1} (0.003 \text{ ps}^{-1} \text{ con } 10\text{fb}^{-1})$
- questo decadimento permette anche la misura di $\Delta\Gamma_s$ (+untagged)
 - $\sigma(\Delta\Gamma_s) = 0.012 \text{ ps}^{-1} \text{ con } 2\text{fb}^{-1} (\text{con } \Delta\Gamma_s / \Gamma_s = 0.1; \Delta\Gamma_s = 0.068 \text{ ps}^{-1})$
- altri canali Flavour specific: B_{s}^{0} -> $D_{s}^{-}\mu^{+}\nu_{\mu}$ / B_{s}^{0} -> $K^{+}\pi^{-}$

La misura di ΔM_s

- ATLAS: $B_s^0 \rightarrow D_s^-(\phi \pi^-) \pi^+ + B_s^0 \rightarrow D_s^-(\phi \pi^-) a_1^+(\rho^0 \pi^+)$
 - *** NO PID on Kaons.pions
 - Statistica: $S = 2.7 \text{ k} + 1.3 \text{ k} / \text{ anno} (10 \text{ fb}^{-1})$
 - Fondi: B/S < 1 (fondi specifici + bbar ?)
 - Tagging (OS+SS): $\omega_{tag}=0.22$
 - $< \sigma_{mB} > = 42.5 \text{ MeV/c}^2$
 - $< \sigma_t > = 70.3 \text{ core } (0.56) \oplus 156 \text{ fs}$
 - Misura a 5 σ possibile in 10-20fb⁻¹ $\sigma(\Delta M_s) = 0.07 \text{ ps}^{-1} \text{ con } 10 \text{ fb}^{-1}$
- CMS: $B_{s}^{0} \rightarrow D_{s}^{-} (\rightarrow \phi \pi^{-+} K^{*0} K^{-}) \pi^{+} (+ B_{s}^{0} \rightarrow D_{s}^{-} a_{1}^{+})$:
 - *** NO PID on Kaons.pions
 - Statistica: $S = 4.5 \text{ k} / \text{anno} (10 \text{ fb}^{-1})$
 - Fondi: $B/S \sim 1$
 - $< \sigma_{\rm mB} > = 40 \ {\rm MeV/c^2}$
 - $< \sigma_{\rm t} > = 70 \, {\rm fs}$
 - Xs<48 esclusa 95% CL con 10 fb⁻¹

La misura di ϕ_s

• ϕ_s misura la violazione di CP nell'interferenza fra mixing e decadimento, si ricava dalla misura di asimmetria in stati finali autostati di CP

$$A_{CP}^{mix-ind}(t) = \frac{\eta_f \sin \phi_s \sin(\Delta M_s t)}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_s t/2)} \qquad \eta_f = \pm 1 \quad (CP)$$

• $\phi_s = \phi_s^{NP} + \phi_s^{SM} = ? + -0.04$

– I limiti sperimentali attuali su CKM ammettono NP in ϕ_s

- Canali: processi $b \rightarrow c\overline{c}s$ dominati da una singola fase debole.
 - $B_s \rightarrow V+PS$ (L=1): $\eta_f=+1 \varphi_s$ si ricava studiando la dipendenza temporale

-
$$B_s \rightarrow V + V (L=0,1,2): \eta_f = \pm 1$$

- Necessaria un'analisi angolare per separare gli stati CP pari (η_f =+1, A_0 , A_{\parallel}) da quelli dispari (η_f =-1, A_0 , A_{\perp})
- in realtà è una risorsa : migliora la sensibilità
- tipi di analisi (taggati/non taggati ad 1 o 3 angoli)

La misura di ϕ_s nel canale B_s ->J/ $\psi \phi_{Base di trasversità}$

$$\frac{d^{3}\Gamma(t)}{d\cos\theta_{tr}d\cos\theta_{\phi}d\phi_{tr}} = \sum_{k}^{6} h^{(k)}(t)\Theta^{(k)}(\theta_{tr},\theta_{\phi},\phi_{tr}) \quad 3 \text{ angoli}$$

$$\frac{d\Gamma(t)}{d\cos\theta_{tr}} \propto (|A_{\parallel}(t)|^{2} + |A_{0}(t)|^{2})(1 + \cos^{2}\theta_{tr}) + \frac{1}{2}(|A_{\perp}(t)|^{2})\sin^{2}\theta_{tr} \quad 1 \text{ angolo}$$

$$\frac{d\Gamma(t)}{d\cos\theta_{tr}} \propto (|A_{\parallel}(t)|^{2} + |A_{0}(t)|^{2})(1 + \cos^{2}\theta_{tr}) + \frac{1}{2}(|A_{\perp}(t)|^{2})\sin^{2}\theta_{tr} \quad 1 \text{ angolo}$$

$$\frac{d\Gamma(t)}{d\cos\theta_{tr}} \propto (|A_{\parallel}(t)|^{2} + |A_{0}(t)|^{2})(1 + \cos^{2}\theta_{tr}) + \frac{1}{2}(|A_{\perp}(t)|^{2})\sin^{2}\theta_{tr} \quad 1 \text{ angolo}$$

$$\frac{d\Gamma(t)}{d\cos\theta_{tr}} \propto (|A_{\parallel}(t)|^{2} + |A_{0}(t)|^{2})(1 + \cos^{2}\theta_{tr}) + \frac{1}{2}(|A_{\perp}(t)|^{2})\sin^{2}\theta_{tr} \quad 1 \text{ angolo}$$

$$\frac{d\Gamma(t)}{dipendenza da \phi_{s}} \qquad 1 \text{ angolo} (\theta_{tr}) \quad 3 \text{ angoli} (\theta_{tr}, \phi_{tr}, \theta_{\phi})$$

$$\frac{d\Gamma(t)}{dip. di \Gamma(t)} \quad \cos\phi_{s} \sinh(\Delta\Gamma_{s}t/2) \quad (\cos\phi_{s}, \Gamma_{s}, \Lambda_{M_{s}}, \omega_{tag}), R_{\perp} \quad (\phi_{s}), \Delta\Gamma_{s}, \Gamma_{s}, \Lambda_{M_{s}}, \omega_{tag}), R_{\perp}, R_{0}, \delta_{1}, \delta_{2}$$

$$\frac{d\Gamma(t)}{dip. di \Gamma(t)} \quad \cos\phi_{s} \sinh(\Delta\Gamma_{s}t/2) \quad (\cos\phi_{s}, \sinh(\Delta\Gamma_{s}t/2)) \quad (\cos\phi_{s}, \sinh(\Delta\Gamma_{s}t/2)) \quad (\cos\phi_{s}, \sinh(\Delta\Gamma_{s}t/2)) \quad (\cos\phi_{s}, \sinh(\Delta\Gamma_{s}t/2)) \quad (\phi_{s}) = \phi_{s} \sinh(\Delta\Gamma_{s}t/2) \quad (\phi_$$

La misura di φ_{s} a LHCb

	$\eta_{\rm f}$	S/2fb ⁻¹	B/S	tag εD ² (%)	< σ_t > [fs]	$<\sigma_{mass}>$ [MeV]	σ(φ _s) in 2fb ⁻¹ [rad]
$B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	±1	131k	0.12	6.58	30	14	0.028 (1 angolo) 0.023 (3 angoli)
$B_s \rightarrow \eta_c(h^+ h^+ h^- h^-)\phi(K^+ K^-)$	+1	3k	0.6	9.53	30	12	0.108
B_s →J/ψ(μ ⁺ μ ⁻)η(π ⁺ π ⁻ π ⁰ (γγ))	+1	3k	3.0	9.92	34	20	0.142
B_s →J/ψ(μ ⁺ μ ⁻)η(γγ)	+1	8.5k	2.0	5.67	37	34	0.109
$B_{s} \rightarrow D_{s}^{-}(K^{+}K^{-}\pi^{-}) D_{s}^{+}(K^{+}K^{-}\pi^{+})$	+1	4.0k	0.3	5.84	56	6	0.133
B_s →J/ψ(μ ⁺ μ ⁻)η'(ρ ⁰ γ)	+1	3.6–4.8k	<0.5	9.24	29	14	0.07-0.09

Fondamentale: calibrazione risoluzione tempo proprio / tagging / accettanza temporale e angolare (canali di controllo per la determinazione sui dati sperimentali: $B^+ > /\psi K^+$ e $B^0 - >J/\psi K^* / \sin 2\beta$ in $B^0 - >J/\psi K_s$)

L'analisi con 3 angoli migliora la sensibilità ~ 20% e permette la determinazione diretta di ω_{tag} Guadagno di 20% in statistica includendo I canali J/ $\psi \rightarrow e^+e^-$ combinata $\sigma(\phi_s)=0.021$ rad

La misura di ϕ_{s} con ATLAS&CMS

	S/10fb ⁻¹	B/S	tag (%) εD ²	< σ_t > [fs]	$<\sigma_{mass}>$ [MeV]	σ(φ _s) [rad]
ATLAS: $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	90k	0.15	3.2-3.7	83	16.6	0.08 (10 fb ⁻¹) 0.046 (30 fb ⁻¹) (3 angoli tagged)
CMS: $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	110k	0.2	Non usato	77	14	0.07 (10 fb ⁻¹) 0.04 (30 fb ⁻¹) (3 angoli Untagged)

Grosso contributo di fondo specifico $B_d \rightarrow J/\psi K^*$ che deve essere parametrizzato nel fit Errori sistematici dominati dalle incertezze sulle accettanze ->Canali di controllo

La misura di $\Delta\Gamma$ s

• $\Delta\Gamma_s$ si può ricavare studiando la distribuzione temporale dei decadimenti Tagged e/o UnTagged del Bs in canali:

– inclusivi o semileptonici: mix di CP= ± 1 (Γ s, ($\Delta\Gamma$ s/ Γ s)²)

− in canali con puro autostato di CP ($B_s \rightarrow K^+K^-; B_s \rightarrow D^{(*)+}D^{(*)-}$)

− nell'analisi angolare di Bs→J/ψ ϕ (entrambi gli stati CP=±1) (Γs, ΔΓs)

		$\sigma(\Delta\Gamma_{\rm s}) = 0.014$	1 angolo tagged
LHCb (2fb ⁻¹)	input $\Delta \Gamma_{\rm s} / \Gamma_{\rm s}$ =0.1	$\sigma(\Delta\Gamma_{\rm s}) = 0.0079$	3 angoli tagged
		$\sigma(\Delta\Gamma_{\rm s}/\Gamma_{\rm s})=0.0097$	
ATI AS (20 fb-1)	input $\Delta \Gamma / \Gamma = 0.1$	$\sigma(\Delta\Gamma_{\rm s}/\Gamma_{\rm s})=0.013$	(2 angoli taggad)
$A1LAS(5010^{-5})$	$\operatorname{Input} \Delta I_{s} / I_{s} = 0.1$	$\sigma(\Gamma_{\rm s})/\Gamma_{\rm s}=0.01$	(5 aligoli tagged)
$CMS(10 \text{ fb}^{-1})$	input $\Delta \Gamma / \Gamma = 0.2$	$\sigma(\Lambda\Gamma/\Gamma) = 0.015$	(3 angoli
	$\operatorname{Input} \Delta I_{s} / I_{s} = 0.2$	$O(\Delta I_{s'} I_{s}) = 0.015$	Untagged)

Th (SM): $\sigma(\Delta\Gamma_s/\Gamma_s) = 0.04$

CPV nel mixing del B_s: A_{SL}

• Misura dell'asimmetria dipendente dal tempo di decadimenti untagged in canali Flavour specific

$$A_{fs}(t) = \frac{\left(\Gamma(\mathbf{B}^0 \to f) + \Gamma(\overline{\mathbf{B}}^0 \to f)\right) - \left(\Gamma(\overline{\mathbf{B}}^0 \to \bar{f}) + \Gamma(\mathbf{B}^0 \to \bar{f})\right)}{\left(\Gamma(\mathbf{B}^0 \to f) + \Gamma(\overline{\mathbf{B}}^0 \to f)\right) + \left(\Gamma(\overline{\mathbf{B}}^0 \to \bar{f}) + \Gamma(\mathbf{B}^0 \to \bar{f})\right)}$$

$$=\frac{a_{fs}}{2} - e^{-\frac{1}{2}\sigma^2\left((\Delta m)^2 + \left(\frac{1}{2}\Delta\Gamma\right)^2\right)} \left[\frac{a_{fs}}{2}\right] \frac{\cos\left(\Delta m \left(t - \sigma^2\Gamma\right)\right)}{\cosh\left(\frac{1}{2}\Delta\Gamma\left(t - \sigma^2\Gamma\right)\right)}$$

• **LHCb:** Th SM
$$\sigma(A_{FB}) \sim 0.6 \cdot 10^{-5}$$

- $\mathbf{B}^{0}_{s} \rightarrow \mathbf{D}_{s} \mu^{+} \nu_{\mu}$: 1 M evts/annno ; $\sigma_{tB} = 120 + 270$ fs $\sigma(A_{FB}) \sim 0.2\%$
- $\mathbf{B}^{0}_{s} \rightarrow \mathbf{D}_{s} \pi^{+}$: 140k evts/anno; $\sigma_{tB} = 36$ fs $\sigma(A_{FB}) \sim 0.5\%$
- punti critici: valutazione dei sistematici
 - asimmetrie di efficienze detector/ trigger / selezione;
 - asimmetria di produzione B / barB

Misure di vite medie

- Analisi temporali dei decadimenti di B⁺ /B⁰ /B_s / B_c / Λ_b permettono la misura delle vite medie / rapporti di vite medie
 - grandi statistiche di B -> misure precise
 - utile confronto con le misure e con le previsioni teoriche
 - LHCb (2fb⁻¹):
 - $B^+ \rightarrow J/\psi \ (\mu^+\mu^-)K^+$: S=1.22Mevts B/S= 0.23 | ΔM |<30MeV $\sigma(\tau B^+) \sim 1.7$ fs (PDG 11fs)
 - $B^0 \rightarrow J/\psi \ (\mu^+\mu^-)K^* \ (K^+\pi^-)$: S=0.69 Mevts B/S= 0.41 | ΔM |<30MeV $\sigma(\tau B^0) \sim 1.9$ fs (PDG 9fs)
 - $B_s^0 \rightarrow J/\psi \ (\mu^+\mu^-)\phi \ (K^+K^-)$: S=131 kevts B/S= 0.12 $|\Delta M| < 30 \text{MeV}$ $\sigma(\tau B_s^0) \sim 3.9 \text{ fs correlato a } \Delta \Gamma_s / \Gamma_s \ (PDG 9 \text{ fs})$
 - $B_s^0 \rightarrow K^+K^-$: S=35.9 kevts B/S=0.06 (bbar) $|\Delta M| < 50 \text{MeV}$ $\sigma(\tau B_s^0) \sim 9 \text{ fs}$ (PDG 9fs)
 - $B^+_c \rightarrow J/\psi \ (\mu^+\mu^-) \ \pi^+$: S=600 evts B/S= [2.2-4.6] $|\Delta M| < 300 \text{MeV}$ $\sigma(\tau B^+_c) \sim 25 \text{ fs} (CDF^{+73}_{-65} \text{ stat} + 36 \text{sys fs})$
 - $\Lambda_b \rightarrow J/\psi \ (\mu^+\mu^-) \ \Lambda(p \ \pi^-)$: S=3-50 kevts B/S <0.3

$$\sigma(\tau \Lambda_{\rm b}) \sim 27 \text{ fs (PDG 55 fs)}$$
$$\sigma\left(\frac{\tau_{B^+}}{\tau_{B^0}}\right) = 0.0018 \quad \text{PDG } 0.008$$

Conclusioni

- LHCb : alte statistiche, trigger, selezioni, PID, risoluzioni, tagging e ottime risoluzione del tempo proprio permetteranno un notevole miglioramento delle misure dei parametri di oscillazione del B_s e in generale delle asimmetrie nei decadimenti dei B neutri.
 - Già dopo un anno di presa dati misure nel settore del Bs:
 - ΔM_s : precisione di misura ~0.007 ps⁻¹
 - ϕ_s : precisione di misura ~0.02 rad -> NP nella fase del mixing
 - $\Delta\Gamma_s/\Gamma_s$ precisione di misura ~ 0.0092
 - A_{SL} : precisione di misura ~0.2%
 - vite medie dei mesoni B⁺ /B⁰ /B_s / B_c /A_b con precisione statistica O(τ/\sqrt{S})
 - Gli effetti sistematici diventeranno presto la fonte principale di errore
 - canali di controllo per calibrare le accettanze&risoluzioni sperimentali (tempo proprio), tagging
 - Eventuali effetti di nuova fisica nel loop possono essere messi in evidenza

spares

Prestazioni sperimentali: statistica

- sezione d'urto:
 - interazione pp @14TeV $\sigma_{b\bar{b}} \approx 500 \mu b \approx 0.6\% \cdot \sigma_{inelastica}$
 - $B^+(\sim 40\%), B^0_d(\sim 40\%), B^0_s(\sim 10\%), B_c, \Lambda_b(\sim 10\%)...$

• Luminosità : $2 \cdot 10^{32}$ [cm⁻²s⁻¹] (LHCb)/ $2 \cdot 10^{33}$ per I primi 2-3 anni(ATLAS&CMS)

	LHCb	ATLAS	CMS
$b\overline{b}$ ev/anno in accettanza	$\sim 5 \cdot 10^{11}$	~10 ¹²	~10 ¹²
$b\overline{b}$ triggerati/anno	$\sim 10^{10}$	$\sim 10^{8}$	$\sim 10^{8}$

Identificazione delle particelle pi/K

Dettagli sullo studio delle risoluzioni

Modello di risoluzione ottimizzato sui dati Montecarlo dal plot t_{rec} - t_{true} in bin di $\sigma(t_{trec})$

accettanza al tempo proprio

Likelihood for N events

 $\log(\mathcal{L}_N) = \sum_{N} \log(P(t|t \in [t_{min}, t_{max}]))$

27