Segnature di nuova fisica a 14 TeV

Riccardo Barbieri V Workshop Italiano sulla Fisica p-p ad LHC Perugia, 30/1 - 2/2, 2008

New physics at the Large Hadron Collider

1. The first thorough exploration of the energy scales well above $G_F^{-1/2}$ $\Lambda_{QCD}, \ G_F^{-1/2}$

2. No comparable prior situation at the SppS or at the TEVATRON

1983: W, Z 1993: top

A road map

- 1. Higgsless: a "conservative" view
- 2. The "naturalness" problem of the Fermi scale
 - a. Supersymmetry
 - b. Goldstone symmetry
 - c. Gauge symmetry in extraD
- 3. Dark Matter

4. The Planck/Fermi hierarchy ⇔ extraD

a. Gravity weak by flux in extraD b. $G_F^{-1/2}/M_{Pl}$ as a red shift effect c. Symmetry breaking by boundary conditions

Subjects touched in the following (in logical order) 1. Higgsless: a "conservative" view 2. The "naturalness" problem of the Fermi scale a. Supersymmetry b. Goldstone symmetry (2)c. Gauge symmetry in extraD 3. Dark Matter 4. The Planck/Fermi hierarchy ⇔ extraD a. Gravity weak by flux in extraD b. $G_F^{-1/2}/M_{Pl}$ as a red shift effect c. Symmetry breaking by boundary conditions

Can one make it without the Higgs boson?

VV amplitudes saturate unitarity at $\sqrt{s} \approx 1.2$ *TeV Electroweak chiral Lagrangian, Technicolour and all that* Not calculable or, when calculable, inconsistent with the EWPT

A potential improvvement: unitarity saved by KK-vectors

(see below)

A two scale picture: f > v

The Higgs boson as pseudo-Goldstone boson (or the fifth component of a vector in 5D)

The hVV-coupling suppressed, relative to the SM one, by a factor $(1-v^2/f^2)^{1/2}$ Still need KK vectors to restore unitarity

Top and gauge loop corrections to m_h^2 cut off by states with same spin and gauge quantum numbers

Comparing simplest models with the EWPT

A problem, unless something missing One deals with strongly interacting theories, so ...

Main phenomenology

V = W, Z		
$\hat{V} = KK$ -W,Z	Higgsless	Composite
A(VV)	$\approx s/v^2$	$\approx s/f^2$
$m_{\hat{V}}$	$g_s v \leq 1 \ TeV$	$g_s v \leq 1 \ TeV(f/v)$
$\hat{V}VV - coupling$	g _s strongish	g _s strongish
$far{f}\hat{V}$	$g (g/g_s)$	$g (g/g_s)$
$t\overline{t} \ \hat{V}$?	strongish
$KK - quarks(T^{2/3}, B^{-1/3}, X^{5/3})$	_	Yes, with ~ TeV mass

KK-vector signals \hat{V}

$$qq \rightarrow qq \hat{V} \qquad qq \rightarrow \hat{V} \qquad \hat{V} \rightarrow VV, t\bar{t}, (hV)$$
(t or b, depending on the charge)
 $\hat{V} \rightarrow f\bar{f}$ probably not useful, because of small BR
 \hat{V} can also be a KK-gluon

$$pp \rightarrow qq\hat{W} \rightarrow qqWZ \rightarrow qqjet jet ll \qquad pp \rightarrow \hat{g} \rightarrow t\bar{t}$$
Resonance mass - Topod
 $pretiminary \qquad 0 \text{ for } f^{-1}$
Resonance peak at - 649 GeV
resolution - 27 GeV
 $prediction = 27 \text{ GeV}$

Azuelos, Delsart, Idarraga

Agashe et al

t ī invariant mass / GeV

KK-quark signals $Q \equiv (T^{2/3}, B^{-1/3}, X^{5/3})$

 $qq \rightarrow Q\bar{Q}$ $Q \rightarrow tV, th$ (t or b, depending on the charge)

If they exist, easier to catch than KK-vectors (like squarks, but without E_T)

Single production also possible

Dark matter: a numerical coincidence

Suppose you have a stable particle that decouples from the hot primordial plasma by →ff with a cross section . Then, for its relic density

$$\Omega h^2 = \frac{688\pi^{5/2}T_{\gamma}^3(n+1)x_f^{n+1}}{99\sqrt{5g_*}(H_0/h)^2 M_{\rm Pl}^3\sigma} \approx 0.2\frac{pb}{\sigma} \qquad \Leftarrow$$

and pb is a typical weak interaction cross section for a particle of mass $m_\chi \approx G_F^{-1/2}$

against the observed $\Omega_{\rm DM}h^2 = 0.113 \pm 0.009$

2 minimal illustrative models (unlike the susy case)

3. $H_2 \rightarrow -H_2$ is exact, and not spontaneously broken

Lightest Inert Particle (LIP) is stable and could be Dark Matter

 $\log_{10}(\Omega_M h^2)$

Direct DM detection versus LHC

$$pp \rightarrow E^{\pm} \mathbf{v}_{2,3} \rightarrow W^{\pm} Z \mathbf{v}_1 \mathbf{v}_1 \rightarrow 3l + \mathbf{E}_T$$

Supersymmetry at the LHC

(if you care of the prediction!)

Pros

 \Rightarrow Neatly solves the naturalness problem of the Fermi scale \Rightarrow Gauge coupling unification \Rightarrow Alternatives in worse shape (EWPT) Contras (none decisive) \checkmark \Rightarrow No Higgs boson \checkmark \Rightarrow No flavour effects (but follow $\mu \rightarrow e + \gamma$ at PSI) \Rightarrow No superpartners

mSUGRA: gluinos, squarks decaying into lighter

a much studied case

 $m^2(\tilde{q}) \approx m_0^2 + 5m_{1/2}^2$ $m(\tilde{g}) \approx 2.7 m_{1/2}$ $m(\tilde{w}) \approx 0.8 m_{1/2}$ $m(\tilde{b}) \approx 0.4 m_{1/2}$

 $pp \rightarrow \tilde{g}\tilde{g} \rightarrow /E_T + jets \; (+\mu^{\pm}/l^+l^-/Z/t)$

mSUGRA discovery potential: Easy (?)

other "useful" Susy searches

 \Rightarrow gluino/stop decays (simple and motivated by naturalness)

 \Rightarrow ew gauge/higgs-ino decays (simple in physical space)

 \Rightarrow light gravitino

mSUGRA or above $\oplus \chi^0 \rightarrow gravitino + \gamma, gravitino + \phi$

1 TeV gluino reachable with 1 fb⁻¹

Where is the supersymmetric Higgs boson?

 \Rightarrow Swallow, e.g. in SUGRA, $\Delta M_Z^2 \approx (2 \div 3) m_{\tilde{t}}^2 \ge 100 M_Z^2$

 \Rightarrow h just around the corner and quasi-standard

Where is the supersymmetric Higgs boson?

1. Even assuming, for good reasons, that supersymmetry is relevant to nature, <u>NO theorem</u> that requires it to be visible at the LHC

2. For supersymmetry to be visible at the LHC, need a <u>maximally natural</u> solution of the hierarchy problem

3. Since the top, and so the stop, are the particles with the strongest coupling to the Higgs boson, insist on <u>a moderate stop mass</u>

⇒ *Motivates search of (reasonably simple) alternatives*

 \Rightarrow h not standard and not even light?

Two examples, based on the NMSSM (others have been considered)

$$\Delta V = \lambda^2 |H_1 H_2|^2$$
 $CP^+: h_1 < h_2 < h_3 \qquad CP^-: A_1 < A_2 \qquad H^{\pm}$

1) $\lambda(G_F^{-1/2}) \approx 2$ (not obviously consistent with unification)

$$m(h_1) = 150 \div 300 \ GeV$$
 and \approx standard
 $h_2 \rightarrow h_1 h_1 \rightarrow 4V \rightarrow l^+ l^- 6j$
 $A_1 \rightarrow h_1 Z \rightarrow VV \ Z \rightarrow l^+ l^- 4j$

(but very much NON-susy-like)

2 $\lambda(G_F^{-1/2}) \approx 0.7$ (consistent with unification) $m(h_2) = 115 \div 125 \ GeV$ $h_2 \rightarrow A_1A_1 \rightarrow 4b$

 $pp \rightarrow Vh \rightarrow lv GG \rightarrow lv 4b$

 $m_h = 120 \; GeV$

 $m_G = 30 \ GeV$

Carena, Han, Huang, Wagner

The road map again

1. Higgsless: a "conservative" view	\odot
2. The "naturalness" problem of the Fermi scale	
a. Supersymmetry	
b. Goldstone symmetry	\odot \odot
c. Gauge symmetry in extraD	\odot \odot
3. Dark Matter	
4. The Planck/Fermi hierarchy ⇔ extraD	
a. Gravity weak by flux in extraD	\odot
b. $G_F^{-1/2}/M_{Pl}$ as a red shift effect	\odot

c. Symmetry breaking by boundary conditions $\odot \odot$

Final Summary of signals
$$final Summary of signals $final Summary of signals<$$$

5. SM-like Higgs boson 6. KK quarks (a 15-20% consistency check between m_h and the EWPT)

$$\int Ldt \ge 30 f b^{-1}$$

7. ew gauge/higgs-ino decays 8. extra-Susy Higgs bosons 9. Minimal Dark Matter

10. KK gluons11. KK W, Z12. Heavy vectors

The central question of particle physics

The LHC should shed some light here

The key to the economy of equations (the merit of space-time and internal symmetries)

Supersymmetry as the most interesting theoretical candidate

not unique, however

The Higgs boson spectrum

 $\left(\frac{\kappa}{\Delta\pi}\right)^2 (M_{GUT}) \le 0.1$

B, Hall, Pappadopulo, Rychkov, Papaioannou

$n_5 = 0$		$n_5 = 3$		
$\alpha_S(M_Z)$	α_G	$\alpha_S(M_Z)$	α_G	
0.117	0.041	0.117	0.103	1-loop
0.130	0.043	0.123	0.154	2-loop

 $\alpha_S(M_Z)|_{exp} = 0.1176(20)$

The NMSSM with extra matter and a light stop

can rather easily be made compatible with the LEP bounds while keeping manifest perturbative unification

Partial Summary of signals

$$\int Ldt = 1 \div 30 f b^{-1}$$

5. SM-like Higgs boson 6. KK quarks (a 15-20% consistency check between m_h and the EWPT)

 $\int Ldt \ge 30 f b^{-1}$

10. KK gluons11. KK W, Z12. Heavy vectors