

Misura della Iuminosità di LHC

Michele DE GRUTTOLA (*CMS Napoli*) Mauro VILLA (*ATLAS Bologna*) Stefano DE CAPUA (*LHCB CERN*) Fabrizio FERRO (*TOTEM Genova*)

- 🗆 La luminosità e i metodi di misura
- 🗆 Misure sui fasci
- □ Misure assolute integrate
- □ Misure su canali noti
- □ Luminosità istantanea e tecniche sperimentali
- □ Problemi aperti/Conclusioni

🗆 La luminosità e i metodi di misura

- Luminosità istantanea e integrata
- Motivazioni
- Misure dirette e indirette

🗆 Misure sui fasci

- Il metodo van der Meer per LHC
- Il metodo *beam-gas* (LHCb)
- □ Misure assolute integrate
- 🗆 Misure su canali noti
- Luminosità istantanea e tecniche sperimentali
- □ Problemi aperti/Conclusioni

Stefano DE CAPUA (*LHCB CERN*)

La luminosità

In una macchina acceleratrice, la luminosità è uno dei parametri fondamentali per caratterizzarne le prestazioni

□ La luminosità istantanea di un acceleratore è definita dal numero di particelle collidenti per unità d'area e per unità di tempo.

(caso ideale)

🗆 La luminosità integrata è

definita dall'integrale rispetto al tempo della luminosità istantanea.

$$\mathcal{L} = \int_{t_0}^{t_1} \mathcal{L}(t) \, dt$$

Bunch population	Number of bunches	Bunch spacing	Mode	Experiment (not exclusive)	IP beta	Luminosity [cm ⁻² s ⁻¹]
(a) Collision studies with	h single pilot b	unch, no cross	sing angle			
5×10 ⁹	1	n/a	p-p	ATLAS/CMS	18 m	2.5×10 ²⁶
					1.2 m	3.7×10 ²⁷
				ALICE, LHC-b	10 m	4.4×10 ²⁶
(b) Collision studies wit	h single higher	intensity bun	ch, no cros	sing angle		
2.75×10 ¹⁰	1	n/a	p-p	ATLAS/CMS	1.2 m	1.1×10 ²⁹
1.15×10 ¹¹					0.55 m	4.3×10 ³⁰
				ALICE	10 m	2.4×10 ²⁹
				LHC-b	35 m	6.7×10 ²⁸
(c) Early p-p luminosity run (different scenarios)						
2.75×10 ¹⁰	43	2.025 μs	p-p	ATLAS/CMS	1.2 m	4.8×10 ³⁰
1.15×10 ¹¹						8.4×10 ³¹
4.0×10 ¹⁰	2808	25 ns				6.5×10 ³²
1.15×10 ¹¹	936	75 ns]			1.8×10 ³³
(d) Nominal p-p luminosity run						
1.15×10 ¹¹	2808	25 ns	p-p	ATLAS/CMS	0.55 m	1.0×10 ³⁴
				LHC-B	35 m	1.9×10 ³²
				ALICE ¹	10 m	$\leq 3.0 \times 10^{30}$

Consente di monitorare le prestazioni della macchina e le condizioni di stabilità dei fasci collidenti.

□ La luminosità istantanea fornisce informazioni sul tasso di eventi, mentre quella integrata sul numero totale di eventi.

D Permette di determinare la sezione d'urto di un processo fisico: R=Lo

- → Test di modelli di produzione di quark pesanti (tt, bb, cc).
- Fornisce una normalizzazione globale per le analisi di fisica, necessaria per studi di nuova fisica.
- → Misura delle Funzioni di Distribuzione Partonica (PDF).
- -> Calcolo della sezione d'urto totale pp, confronto con i raggi cosmici.
- → Etc.

Sezione d'urto totale pp.

Errori sistematici dominati dalla luminosità.

□ Misura di luminosità diretta (dalle proprietà del fascio):

- → Metodo di Van der Meer
- \rightarrow Wire Method
- → Luce di sincrotrone

□ Misura di luminosità indiretta:

- Teorema ottico
- Confronto con sezioni d'urto calcolate teoricamente
- Sezione d'urto di riferimento (precedentemente determinata)

Il metodo di van der Meer

Dati 2 fasci di particelle di eguale altezza e larghezza collidenti nel piano orizzontale con angolo α , si puo dimostrare che:

BRAN: LHC collision rate monitor

Troppi parametri per determinare la luminosità dalle osservabili del fascio ⇒ è necessario un monitor dedicato. BRAN misura il tasso di collisioni rivelando il flusso in avanti delle particelle neutre generate dalle interazioni.

Il rivelatore utilizzato deve essere in grado di:

- 1. Sostenere alte dosi di radiazione (1 Ggy)
- 2. Fare misure bunch per bunch (40 MHz)

Si sono adottate due tecnologie diverse, ognuna delle quali performante su uno dei due punti.

- 1. Atlas & CMS : fast ionization chamber formata da 7 piatti paralleli con celle di gas di spessore 1mm e superficie 90x90 mm². Il rivelatore è inserito in un contenitore alla pressione di circa 10 bar (94% Ar e 6% N₂).
- 2. Alice & LHCb : sensori a stato solido (CdTe) rivelatori policristiallini Cadmium-Telluride con dischi di diametro di 16 mm e spessore di 380 μm.

LHCb: il metodo beam-gas

 $L = f \underline{N_1 N_2} \cos^2(\underline{\phi/2}) \int \underline{\rho_1}(\vec{x}, t) \underline{\rho_2}(\vec{x}, t) d^3 x dt$

 \boxdot measured by AB group

 \square measured by LHCb

<u>Il metodo</u>:

□ Iniettare una piccola quantità di gas (per es. Xenon) nella regione del rivelatore di vertice.

□ Ricostruire i vertici della interazione tra il bunch e il gas .

- → determinare gli angoli dei fasci, i profili e le posizioni relative.
- → calcolare l'integrale di sovrapposizione.

□ Necessità di Run dedicati:
 → passo iniziale: usare il gas residuo.

LHCb: il metodo beam-gas (II)

□ Simultaneamente si possono ricostruire i vertici bunch-bunch e calibrare una sezione d'urto di riferimento (es. $Z \rightarrow \mu^+\mu^-$).

□ Il canale di riferimento potrà quindi essere utilizzato per monitorare la luminosità in maniera continua durante i Run di fisica.

La luminosità e i metodi di misura Misure sui fasci

□ Misure assolute integrate

- TOTEM e ATLAS Roman Pots
- Sezione d'urto totale
- Scattering elastico e ottiche dedicate
- Estrapolazioni
- □ Misure su canali noti
- □ Luminosità istantanea e tecniche sperimentali
- □ Problemi aperti/Conclusioni

Fabrizio FERRO (*TOTEM Genova*)

Forward Detectors @ CMS/Totem

FP420?

Roman Pots con Si det.

RP1 (147 m) *RP2 (180 m)* **RP3 (220 m)**

TOTEM: Roman Pots e rivelatori al Si

10 planes of edgeless detectors

- Proton detection a una distanza minima di $10\sigma_{fascio}$ + d (bordo fisico del rivelatore)
- Necessari rivelatori edgeless per minimizzare d: Silicon strip edgeless detectors (bordo di ~50µm)
- * σ_{fascio} ~0.1 0.5 mm (a seconda dell'ottica)
- Risoluzione ~20μm

and horizontal dets.

TOTEM RPs pronte, in fase di installazione

ATLAS: ALFA detector

The Roman Pot Unit

 Front-End Elec.

 24 MAPMTs

 Shielding

 Vacuum Flange

 Fiber Connectors

 Qox 64 Fibers

 Tracker)

 Overlap Fiber

 Detector

Regione di interferenza Coulomb-Nucleare $|t| \sim 0.00065 \text{ GeV}^2 \text{ o} \theta \sim 3.5 \mu \text{rad}$

Tracciatore a fibre Concept 2 × 10 U planes 2 × 10 V planes cheart planes are horizontally staggered by scintillating fibrés multiples of 70.7 micrometer 0.5 mm² square

Rivelatore vicino alla beam pipe (1.5 mm) Elevata risoluzione spaziale (< 100 µm, goal 30 µm). Assenza di area inattiva

Misura della luminosità e σ_{tot} (1)

1. Usando il teorema ottico

2. Misura dello scattering elastico nella regione di interferenza Coulomb-Nucleare

$$\frac{dN}{dt}\Big|_{t=CNI} = \mathcal{L}\pi \Big|f_C + f_N\Big|^2 \approx \mathcal{L}\pi \left|-\frac{2\alpha_{\rm EM}}{|\mathsf{t}|} + \frac{\sigma_{\rm tot}}{4\pi}(i+\rho)e^{-\frac{b|t|}{2}}\right|^2$$

Necessarie ottiche speciali con buona accettanza a basso $|t| \sim p^2 \theta^2$ Elevate sezioni d'urto $O(mb) \rightarrow$ elevata statistica in tempi brevi Errori di misura prevalentemente sistematici

Misura della luminosità e σ_{tot} (2)

TOTEM	$\begin{array}{l} \text{-t}_{\min} \sim 10^{\text{-3}} \text{GeV}^2 \\ \text{\mathcal{L}} \sim 10^{28} \text{cm}^{\text{-2}} \text{s}^{\text{-1}} \end{array}$	$\begin{array}{c} \text{-t}_{min} \sim 3 \cdot 10^{-3} GeV^2 \\ \text{ \mathcal{L} \sim $10^{30} cm^{-2} s^{-1}$} \end{array}$
Run tipicamente di 1 giorno (per avere statistica sufficiente):	<u>β*=1540m</u>	<u>90m</u>
 misura del rate inelastico N_{inel} (dominato dal background e dalle sistematiche sul trigger); 	0.8 %	0.8 %
• misura del rate elastico N_{el} ed estrapolazione di dN_{el}/dt a t = 0 (punto ottico) (dominato da sistematiche model-dependent).	< 1 %	< 10 %
• parametro ρ non noto, dall'estrapolazione di COMPETE: $\rho = 0.1361 \pm 0.0015 + 0.005 - 0.002$	58 25	
errore relativo[1 / (1 + ρ	²)]: 0.16 %	

ATLAS - ALFA

Misura del rate elastico nella zona di interazione Coulumb-Nucleare e fit dei parametri L, σ_{tot} , r e b $\beta^{*}\sim 2600m$ $-t_{min}\sim 6\cdot 10^{-4} \, GeV^{2}$ L $\sim 10^{27} cm^{-2} s^{-1}$

	input	fit	Stat. error
L	8.10 10 ²⁶	8.151 10 ²⁶	1.77 %
σ_{tot}	101.5 mb	101.14 mb	0.9%
b	18 Gev ⁻²	17.93 Gev ⁻²	0.3%
ρ	0.15	0.143	4.3%

TOTEM: misura del rate totale N_{el} + N_{inel}

Perdite del trigger

Tipologia di trigger Tipologia d'evento	σ [mb]	T1/T2 double arm trigger [mb]	T1/T2 single arm trigger [mb]	Errore sistematico dopo estrapolazione [mb]
Minimum bias	58	0.3	0.06	0.06
Singolo diffrattivi	14	I	3	0.6
Doppio diffrattivi	7	2.8	0.3	0.1
Doppio Pomerone	1	0.2 0.02		0.02
Elastic Scattering	30	_	-	0.2 (2)

@ $\beta^* = 1540$ (90) m

Totale: 0.8 mb \approx 0.8 % @ $\beta^* = 1540$ m 2 - 5 mb \approx 2 - 5 % @ $\beta^* = 90$ m

Scattering elastico

Scattering elastico a basso |t|

Scattering elastico: accettanza in t

Estrapolazione di σ_{tot} a \sqrt{s} = 14 TeV per β^* = 11 m **E**

 β^* = 11 m: Accettanza a basso |t| non buona per lo scattering elastico \Rightarrow impossibile una misura diretta di σ_{tot}

Possibile una determinazione approssimata della luminosita' usando un'estrapolazione di σ_{tot} :

Estrapolazione di σ_{tot} a \sqrt{s} = 14 TeV per β^* = 11 m \Re

Usare la σ_{tot} prevista nonostante le grosse incertezze e misurare il rate:

- Problema: rate elastico difficile da misurare con precisione a causa della non buona accettanza
 - \rightarrow misura solo di N_{inel} (usando triggers senza protoni \rightarrow errore ~ 5 %)

 $e \sigma_{inel} / \sigma_{tot} \approx 0.70 \div 0.76$ (errore ~ 4 %) dall'estrapolazione dei dati ad energie inferiori:

Incertezza elevata: ~ 15 ÷ 20 %

- Stesso problema con ottiche a basso β^* (2 m, 1 m, 0.55 m, ...)
- Soluzione: effettuare prima una misura assoluta di σ_{tot} a 14 TeV con un'ottica appropriata,

TOTEM $\beta^* = 1540$ m (TOTEM runs) $\beta^* = 90$ m (intermedia) ATLAS $\beta^* = 2600$ m

TOTEM

Misura di $\mathcal{L} e \sigma_{tot}$ attraverso il Teorema Ottico $\beta^{*=1540m}$ (luminosità tipica $\mathcal{L} \sim 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$) Accettanza in |t| sino a 0.001 GeV² ottimale per l'estrapolazione di do/dt a t=0 Errore sull'estrapolazione ben al di sotto dell'1% \rightarrow errore finale ~1%

 $\beta^{*}=90m$ (luminosità tipica $\mathcal{L} \sim 10^{29} - 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$)

Accettanza in |t| sino a 0.03 GeV² copre abbastanza bene la regione esponenziale di $d\sigma/dt$ Maggiore dimensione del fascio rende l'errore sistematico sulla posizione meno critico ($\delta t/t \propto \delta y/\sigma_b$) Errore sull'estrapolazione dell'ordine del **5-10%**

 $\beta^{*=90m}$ più facile da ottenere partendo dall'ottica a 11m \rightarrow ideale per i primi runs

ATLAS

Misura nella regione di interferenza $\beta^*\sim 2600m$ (luminosita' tipica $\mathcal{L} \sim 10^{27} \text{ cm}^{-2} \text{ s}^{-1}$) Accettanza in |t| sino a 0.0006 GeV², nella regione di interferenza Fit di \mathcal{L} , σ_{tot} , b, e p Errore finale ~3% (dal 2009)

Per condizioni di running in cui la misura con il Teorema Ottico risulta impossibile: misura relativa dopo una calibrazione con la misurazione a $\beta^* = 90$ m o 1540 m. Per esempio:

- rates inelastici parziali, es. (T2 sx) x (T2 dx): robusto rispetto al background da beam-gas
- in caso di pileup: usando una condizione di veto, es. NOT((T2 left) x (T2 right)):

$$\mathcal{L} = -\frac{1}{\sigma_{tot} A_{T2lxT2r} \Delta t} \ln P(n=0) \quad \text{es. P(n=0)} = 15 \% @ \mathcal{L} = 10^{33} \text{ cm}^{-2} \text{s}^{-1}, 2808 \text{ bunches}$$
Frazione di eventi doppio arm Intervallo tra bx

Utilizzabile anche per un monitoraggio continuo della luminosita'?

🗆 La luminosità e i metodi di misura

🗆 Misure sui fasci

□ Misure assolute integrate

🗆 Misure su canali noti

- Misure su canali elettromagnetici
- Misura su canali elettrodeboli
- Incertezze sistematiche

Luminosità istantanea e tecniche sperimentali
 Problemi aperti/Conclusioni

Michele DE GRUTTOLA (*CMS Napoli*)

Metodo→misura della luminosità a partire da una

sezione d'urto nota

$$\sigma(L) = \frac{N_{sig}^{mis} - N_{back}^{mis}}{\varepsilon \times L}$$

 $\texttt{con efficienza} = \epsilon_{\texttt{geom}} \times \epsilon_{\texttt{trigger}} \times \epsilon_{\texttt{sel}} \times \epsilon_{\texttt{reco}}$

- Interazioni elettromagnetiche \rightarrow offline
 - $pp \rightarrow (p+\gamma^{\star})+(p+\gamma^{\star})\rightarrow p+(l^{-}l^{+})+p$
- Interazioni elettrodeboli \rightarrow offline
 - Z, W

 \rightarrow Il goal è $\Delta L/L \sim 3\%$ (stat+ sist)

- Interazioni forti -> luminosita' istantanea
 - QCD, Inelastici,
 - \rightarrow Il goal è $\Delta L/L \sim 1\%$ (sist)

Leptoni da double γ exchange(ATLAS+CMS)

Perugia, 1 Febbraio 2008

Leptoni da double γ exchange(LHCb)

Misure su canali elettrodeboli

Vantaggi:

- → Canali molto puliti, basso bkg
- \rightarrow Fisica nota
- → LHC è una Z-factory, Wfactory
- \rightarrow Applicabilità già a 10 pb⁻¹

Svantaggi:

- \rightarrow incertezze pdf
- → Efficienze di ricostruzione non note all'inizio

	L= 10 ³⁴ cm ⁻² s ⁻¹
Z → µµ	20Hz
$W \rightarrow \mu \nu$	200Hz

Misura del rate di Z

Misura del rate di Z (CMS)

• Metodo di misura \rightarrow 3 campioni indipendenti di ricostruzione della

 $Z \rightarrow \mu^{+}\mu^{-}$ ($\varepsilon_{\mu} = \varepsilon_{trk} \times \varepsilon_{sta}$), così da stimare insieme anche le efficienze di ricostruzione e ridurre l'errore

Rate di Z- ATLAS

Segnale :

|η| <2.5

2 μ isolati con pt>20 GeV, con $~m^{\mu+\mu-}$ >60 GeV,

→ Segnale chiaro con fondo ~ 1 % (preliminary)

 $BR \times \sigma(p_T > p_T^{min})$ (pb)

Rate di Z: Segnale + fondi LHCb

Strategia analoga, ma con un pò più di fondo, dovuto all'accettanza diversa, comunque $\Delta\sigma/\sigma \sim 2\%$

Process	Events per fb^{-1}	
$Z \rightarrow \mu^+ \mu^-$ (signal)	212100±509	
$\overline{Z ightarrow au^+ au^- ightarrow \mu^+ u_\mu ar{ u_ au} + \mu^- ar{ u_\mu} u_ au}$	63.5 ± 5.6	
$Z ightarrow b ar{b} ightarrow \mu^+ + \mu^- + X$	0 + 0.5	
W^+W^- inclusive	24 ± 3.5	
$jet + W^{\pm} ightarrow \mu^{\pm} + X$	35 ± 13.2	
$bar{b} ightarrow \mu^+ + \mu^- + X$	0 + 100	
$car{c} ightarrow \mu^+ + \mu^- + X$	0 + 100	
$J/\psi o \mu^+\mu^-$	0 + 100	
Single top inclusive	0.5 ± 0.5	
tī inclusive	37 ± 4.3	
Pion/Kaon mis – identification	5000 ± 5000	
Total Background	5160±5003	
Rate di W-CMS

$$m_{\rm T}^W = \sqrt{2p_{\rm T}^l p_{\rm T}^{\rm v} (1 - \cos\Delta\phi)}$$

Efficiency type	Differential (MC %)	Differential (Data %)
ϵ_{acc}	56.2	-
ϵ_{rec}	98.3	98.3
ϵ_{iso}	96.8	96.3
ϵ_{trig}	90.4	90.7
ϵ_{MET}	93.1	92.5
ϵ_{rej}	97.5	-

- 1 μ isolato con p_t > 25 GeV. Eventi con 2 μ con p_t > 20 GeV sono rigettati.
- $E_T^{miss} > 50 \text{ GeV}.$
- $\sigma(pp \rightarrow W + X \rightarrow \mu + X) \sim 20 \text{ pb}^{-1}$
- l'efficienza della ricostruzione e dei tagli si calibrano con $Z \rightarrow \mu\mu$

Rate di W-ATLAS

- Un leptone carico isolato (e o μ) con p_T > 25 GeV nella regione dedicata alle misure di precisione $|\eta| < 2.4$.
- Missing transverse energy E_T^{miss} > 25 GeV.
- Reiezione dei W con alto $p_{T_{\rm c}}$ perchè deteriora la risoluzione in momento e aumenta il fondo di QCD

$$m_{\rm T}^W = \sqrt{2p_{\rm T}^l p_{\rm T}^{\rm v} (1 - \cos\Delta\phi)}$$

$$\Delta \phi \equiv angolo (l, v) nel piano trasverso$$

Incertezze nelle efficienze $\rightarrow O(1\%)$

(da calibrare all'inizio della presa dati)

- $\Delta \epsilon_{\text{Tracking}} \approx 0.2-0.5\%$
- $\Delta \epsilon_{\text{Trigger}} \approx 0.2\%$
- Pochi per mille dalla scala in momento
- Δ Missing E_T ≈ 1% (per la W)
- migliorabili dopo i primi anni di presa dati

- Determinazione delle efficienze dai dati:
- 1) metodo: Tag and Probe
- 2) fit similtaneo a più categorie di Z/W (implementato per la Z finora!!!)
- Limitazioni: correlazioni 'tag' and 'probe' , processi di background, inefficienze simmetriche in ø
 - Deteminazione delle risoluzioni del detector:
 - Adattare la risoluzione gaussiana che si aspetta dal MC con funzioni di smearing per riprodurre la risonanza della Z.

Perugia, 1 Febbraio 2008

- Incertezze teoriche •
 - Scelta delle PDF : ≈0.9%
 - Initial state radiation: ≈ 0.2%
 - p_T effects (LO to NLO): $\approx 1.8\%$

- Altre sorgenti di incertezze sistematiche
 - misallineamento
 - Conoscenza del campo magnetico
 - Incertezza sul vertice di collisione
 - pile-up (effetti di)
 - underlying events
 - →In totale queste sorgenti di errori danno meno di 0.35% per entrambi i detectors

Rate di Z/W (ATLAS+CMS) : sistematiche(2)

 $u\overline{d} \rightarrow W^+ \rightarrow e^+ V$

Misura della luminosità a partire da sezione d'urto note

• $pp \rightarrow (p+\gamma^*)+(p+\gamma^*)\rightarrow p+(|-|+)+p$

 \rightarrow Δ L/L ~ 2% (syst+ stat) ma solo per L ~ fb⁻¹

→ si può usare anche con interazioni ioni (CASTOR?, ALICE?)

- Canali elettrodeboli ($Z \rightarrow I^+I^-$, $W \rightarrow I_V$)
 - \rightarrow si può usare già con 10pb⁻¹

→ Maggiori sorgenti di incertezze:
 incertezze nella ricostruzione (0(1%))
 incertezze teoriche (pdf, p_T) (0(2%))

 $\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu) = 0.005 \quad (stat) \pm 0.011 \quad (ex.sys) \pm 0.02 \quad (th.sys)$

Sommario 4^a parte

- □ La luminosità e i metodi di misura
- □ Misure sui fasci
- □ Misure assolute integrate
- Misure su canali noti
- 🗆 Luminosità istantanea e tecniche sperimentali
 - Luminosità istantanea
 - Rivelatori: LUCID, HF, Pixels
 - Tecniche di misura: conteggio diretto, indiretto (zero counting), misure proporzionali

□ Problemi aperti/Conclusioni

Mauro VILLA (ATLAS Bologna)

- Il controllo della stabilita' del fascio è un aspetto fondamentale. Idealmente vorremmo avere un fascio stabile per tutta una presa dati (decine di ore).
- Diversi effetti di macchina non lo consentono:
 - Il fascio ha una struttura a bunch non banale
 - L'omogeneità di riempimento dei bunch non è garantita
 - Il fascio si deteriora con il tempo
- Conseguenze
 - Il numero medio di interazioni (tracce/hits) varia con il tempo e con il BX number
 - Le efficienze di ricostruzione (patter recognition) possono diventare funzione della luminosità istantanea.
 - Vi sono contributi sistematici a tutte le misure di BR, Yield, sezioni d'urto dovuti a come varia la luminosita' istantanea.
- ATLAS e CMS fanno *diverse misure indipendenti* di luminosità istantanea.

Struttura del fascio di LHC

3564 bunch: 2808 riempiti, 756 vuoti L'omogeneità di riempimento dei bunch non è garantita

Riempimento non uniforme

Deterioramento del fascio

 La luminosità istantanea della macchina decresce esponenzialmente come:

$$L = L_0 e^{-t/\tau} \quad \tau \approx 14 \text{ h}$$

- Dovuto a:
 - Scattering tra i bunch
 - Interazioni tra i fasci
 - Interazioni con il gas residuo
 - Radiazione di sincrotrone

Deterioramento atteso ~ 1% in 10 min \Rightarrow Taratura dei pre-scaler

CERN-0000020013]

46

Forward Detectors @ ATLAS

Rivelatore LUCID

Copertura |η|: [5.6, 6.0]

pressione del gas C_4F_{10} mantenuta a 1.25/1.5 bar (Leak <10 mbar/day).

Principio di funzionamento del LUCID

- Soppressione dei fondi:
 - Soglia Cherenkov nel gas (10 MeV per e 2.8 GeV per p)
 - I tubi hanno una geometria che punta alla regione di interazione *pp*.
- La risposta veloce (pochi ns) permette di rivelare le interazioni ad ogni bunch crossing (BX).
- L'ampiezza del segnale e' proporzionale al numero di tracce passate

Forward Hadron calorimeter (HF, CMS)

Rivelatore: fibre di quarzo (radiation hard : >1 Grad/10 years) Rivelatori a luce Cherenkov . Segmentazione $\Delta\eta \times \Delta\phi = 0.175 \times 0.175$ Copertura 3 < $|\eta|$ < 5 1728 torri, i.e. 2 x 432 torri per EM e HAD

Evento tipico alla luminosità di progetto (25 *pp* interactions/BX)

Anche alle più alte luminosità, il rivelatore HF è principalmente vuoto.

Beam Condition Monitors

- \rightarrow Forward Diamond pixel sensors
- \rightarrow Misure Bunch-per-bunch
- → Misura relativa di luminosità
- \rightarrow Incertezze dell' ~1% sulla luminosità 10²⁸ 10³⁴ cm⁻²s⁻¹

Strategia generale di misura

- Si usano rivelatori *veloci* in grado di fornire segnali ad ogni bunch crossing (BX, ogni 25 ns). I dati *devono uscire* dal rivelatore.
- Una *elettronica dedicata* fornisce una misura di L(BX) medio in un certo intervallo (Luminosity Block →) Misura relativa Online (Bandwidth in ingresso O(Gbyte/s))
- Offline si effettua una calibrazione fine della luminosità istantanea e integrata con altri metodi.

$$L_{LB} = \sum_{BX} \alpha L(BX)(1 + \delta_{BX})$$

Luminosity Block

- LB: Intervallo temporale per cui è possibile definire un valore di luminosità istantanea *costante* (~ min, ~ 10⁶ cicli LHC)
- Per poter definire tali intervalli temporali è necessario avere un buon controllo della luminosità del fascio istante per istante (L)
- I dati di fisica acquisiti in ogni LB faranno riferimento al relativo valore di luminosità integrata
 RUN

Misure di luminosità da minimum bias 🛣 🌌 🌿 🦉

Numero medio di interazioni: $\mu = \frac{\langle N \rangle}{BX} = \frac{\sigma_{mb}L}{f}$ $\sigma_{mb} = 110 + 10 \text{ mb} \text{ QCD}$ f = 40 MHz

- Conteggio diretto
 (per μ<<1)
- Conteggio indiretto, Zero-counting - (per 0.01 < μ < 5) $p(0;\mu) = e^{-\mu}$

• Misura del segnale

Metodo del conteggio diretto

Numero medio **Obiettivo:** di interazioni:

$$\mu = \frac{\langle N \rangle}{BX} = \frac{\sigma_{mb}L}{f} \longrightarrow 22$$

- Assunzione: distribuzione poissoniana delle interazioni in un certo BX:
- $p(N;\mu) = \frac{\mu^{N}}{N!} e^{-\mu}$ Per μ<<1: devo distinguere gli eventi vuoti (N=0) da quelli pieni (N=1). N>=2 ha una frequenza trascurabile.

$$p(N > 0; \mu) = 1 - e^{-\mu} \xrightarrow{\mu < <1} \mu$$

- Ogni definizione semplice di evento pieno può andare bene: •
 - HF: almeno una torre calorimetrica con $E_T > E_{TO}$
 - LUCID: segnale negli scintillatori/tubi Cerenkov
- Problemi:
 - Occorre considerare una efficienza: $\langle N \rangle = \langle M \rangle / \varepsilon$ con ε grande.
 - Sensibilità al fondo; metodo valido solo per µ piccolo (no eventi sovrapposti).

- Condizione: *si contano gli eventi vuoti*
 - Probabilità BX privi di interazione:

$$p(0;\mu) = e^{-\mu}$$

- HF: tutte le torri con $E_T < E_{TO}$
- LUCID: nessun segnale negli scintillatori/tubi
 Cherenkov
- Vantaggi:
 - Minore sensibilità al fondo;
 - Estensione del range 0.01 < μ <5
 - Per μ >5 si può segmentare i rivelatori
 - Ogni torre HF ed ogni tubo Cherenkov è un misuratore indipendente di luminosità
 - Riduzione dell'efficienza sul singolo rivelatore;
 - Obbiettivo: 0.01 < μ<5 per il singolo rivelatore

Per μ > 4.6 *p*(0;μ) <1%

Conteggio del segnale

- Utilizzo segnali proporzionali a L:
 - HF, ATLAS, CMS: ΣE_T
 - Lucid: Numero di scintillatori/tubi colpiti
 - TileCal e LAr: monitoraggio della corrente anodica
 -> non sul singolo BX
 - N(Z°), N(W) -> misura integrata
- Problemi
 - Eventuali problemi di non linearità dovuta alla sovrapposizione degli eventi

Usi della luminosità istantanea

BX

Conclusioni / Problemi aperti

- Il controllo della luminosità è un aspetto fondamentale della presa dati
- La luminosità è misurata indipendentemente da diversi sottorivelatori in ogni esperimento e monitorata in modo real-time da tutti gli esperimenti.
- Vi sarà una evoluzione nella precisione delle misure di L: da 10% (iniziale) → 3-5%
- La precisione finale dipenderà da diversi fattori: dal controllo della macchina fino alla precisione sulle pdf, passando per una conoscenza accurata dei rivelatori

Bibliografia (1)

[1] W. Hrr and B. Muratori, Concept of Luminosity, *Zeuthen 2003, Intermediate accelerator*

physics, 361.

[2] E. Bravin, proceedings from LHC Project Workshop – 'Chamonix XV'

[3] J. Bosser et al., Nucl. Instr. and Meth. A 235 (1985) 475.

[4] ATLAS TDR.

[5] S. van der Meer, Calibration of the effective beam height in the ISR, CERN-ISR-PO/68-31, 1968.

[6] W.C. Turner et al., Development of a detector for bunch by bunch measurement and

optimisation of Luminosity in the LHC, *Nucl. Instr. and Meth.* **A 461** (2001) 107. [7] E. Rossa et al., CERN-SL-2002-001-BI, Jan 2002.

[8] M. Ferro-Luzzi, Proposal for an absolute luminosity determination in colliding beam

experiments using vertex detection of beam-gas interactions , Nucl. Instr. and Meth. ${\bf A}$

553 (2005) 388.

[9] Velo TDR

Bibliografia (2)

- [10] R. Cahn, Zeit. Phys. C15 (1982) 253
- [11] V. Kundrat and M. Lokajicek, Z. Phys. C63 (1994) 619–630
- [12] M. M. Islam, R. J. Luddy and A. V. Prokudin, *Int. J. Mod. Phys.* **A21** (2006) 1–42
- [13] V. A. Petrov, E. Predazzi and A. Prokudin, Eur. Phys. J. C28 (2003) 525-533
- [14] Claude Bourrely, Jacques Soffer, and Tai TsunWu, *Eur. Phys. J.* C28 (2003) 97-105
- [15] M. M. Block, E. M. Gregores, F. Halzen and G. Pancheri, *Phys. Rev.* D60 (1999) 054024
- [16] TOTEM collaboration, Technical design report, CERN/LHCC 2004-02 and addendum CERN/LHCC 2004-020
- [17] CMS/TOTEM diffractive and forward physics working group, Prospects for Diffractive and Forward Physics at the LHC, CERN/LHCC 2006-039/G-124
- [18] ATLAS forward detectors for luminosity measurement and monitor, Letter of intent, CERN/LHCC 2004-010
- [19] S. Ask, ATL-LUM-PUB-2006-001

Bibliografia (3)

- [20] CMS/EWK collaboration, Towards a measurement of the inclusive W→ μν and Z→ μμ cross sections in pp collisions at s = 14 TeV, CMS Note AN2007_031
- [21] N.Adam et al., Measurement of the Inelastic Cross Section using the Luminosity system, CMS note IN2007_046
- [22] CMS Luminosity twiki page: https://twiki.cern.ch/twiki/bin/view/CMS/LumiWikiHome
- [23] CMS PTDR: cap. 8 Volume 1
- [24] ATLAS PDR: cap. 13 Volume 1
- [25] ATLAS PDR: cap.15-16 Volume 2
- [26] A.Tricoli, STRUCTURE FUNCTION MEASUREMENTS AT LHC, ATLAS PACS numbers 13.85
- [26] .Anderson et al., Measuring of Z ⋅Br(Z→µ+µ−) at LHCb, LHCb note: 2007_114
- [27] J.Anderson et al., Luminosity measurements at LHCb using dimuon pairs produced via elastic two photon fusion, LHCb note : 2008_001

-e' possibile che anche gli altri esperimenti lhc usino il metodo beam-gas?

-Problema metodo beam-gas e' tutto nella normalizzazione della carica dei fasci.

- si puo' trovare un canale "interesperimento" per confronti diretti di luminosita'?

Spunti di discussione (fabrizio)

- Monte Carlo (generatori dedicati, generatori di processi esclusivi, merge della parte soft con quella hard)
- Incertezze sulle estrapolazioni
- Ottiche dedicate
 - quali? quando?
- Allineamento Roman Pots
- Fondi della macchina
- Modelli teorici (scattering elastico e diffrativo):
 - diversi approcci
 - Pomerone e QCD

Spunti di discussione (michele)

Misura della luminosità a partire da sezione d'urto note

• pp \rightarrow (p+ γ^*)+(p+ γ^*) \rightarrow p+(l-l+)+p

 \rightarrow Δ L/L ~ 2% (syst+ stat) ma solo per L ~ fb⁻¹

→ si può usare anche con interazioni ioni (TOTEM, ALICE????)

Canali elettrodeboli (Z→ l+l- , W→ lv)
 → si può usare già con 10pb⁻¹

 $\frac{\Delta\sigma}{\sigma} \wp p \to Z / \gamma^* + X \to \mu \mu \ge 0.005 \quad \text{(stat)} \pm 0.011 \quad \text{(ex.sys)} \pm 0.02 \quad \text{(th.sys)}$

Back up slides

Monitor di luminosità (in fase di studio)

Idea: monitorare le variazioni di luminosita' durante i run usando semplici combinazioni di trigger (utilizzando per es. degli scaler)

Tutti i rivelatori di TOTEM hanno anche funzionalita' di trigger.

Esempio: monitoraggio del rate delle coincidenze a 2-arm delle Roman-Pot @ $\beta^* = 2 \text{ m}$: (indipendente dalla configurazione dei rivelatori T1, T2 e CMS)

I contributi provengono da eventi a doppio Pomerone e da pileup di Singolo Diffrattivi

Rate di coincidence dato da $R = \mathcal{L} \sigma_{\text{DPE}} + \mathcal{L}^2 \sigma_{\text{SD}}^2 \Delta t_{\text{bunch}} + \text{background}$ $\beta^* = 2 \text{ m:}$ (nell'accettanza) $\sigma_{\text{DPE}} \sim 35 \text{ µb}$, $\sigma_{\text{SD}} \sim 1.6 \text{ mb}$ $\mathcal{L} = 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$: R = 35 kHz (DPE) + 65 kHz (SD) = 100 kHz

Calibrazine di $\sigma_{DPE} e \sigma_{SD} @ \beta^* = 90 m$: termini lineari e quadratici possono essere separati

• eventi in 1 s : 10⁵ events

Background necessita ancora di essere separato

Sistema d'iniezione del gas

Perugia, 1 Febbraio 2008

Rate di Z: Segnale + fondi

* Metodo di misura \rightarrow 3 casi indipendenti di ricostruzione della Z $\rightarrow \mu^{+}\mu^{-}$

CMS AN Note-2007/031

Rate di Z sistematiche(2)

- L'incertezza sulla sez. d'urto di produzione della Z è dominata dall'incertezza sulla PDF
- * $g \ g \rightarrow b \ b \rightarrow Z \ ~~ 5 \ \%$ intera produzione di Z a LHC

Necessità della misura della PDF del b

Possibili metodi: studio di Z+ b jet

Sensibilità di $\sigma(W)$ da x_{min} e assunzioni su $g(x,Q^2)$ a basso x

Rate di W: sistematiche (2)

Rapidità dei leptoni con tagli realistici, l'inceretzza si riduce utilizzando I dati dei jet

Rate di W: sistematiche(3)

LHC

Incertezze sulla rapidità dei leptoni dai W, Prima e dopo i tagli del rivelatore (ATLAS)

Le incertezze sono dovute ai gluoni di basso x

Can LHC measure PDFs ?

 $N_{events}(pp \to X) = L_{p-p} \times pdf(x_1, x_2, Q^2) \times \sigma_{theory}(q, \overline{q}, g \to X)$

Uncertainties in **p-p luminosity** (\pm 5%) and **p.d.f.'s** (\pm 5%) will limit measurement uncertainties to \pm 5% (at best).

• For high Q² processes LHC should be considered as a parton-parton collider instead of a p-p collider.

• Using only relative cross section measurements, might lead eventually to accuracies of ±1%.

qq̄ (u,d) (high-mass DY lepton pairs and other processes dominated	W [±] and Z leptonic decays	 precise measurements of mass and couplings; huge cross-sections (~nb); small background. x-range: 0.0003 – 0.1 ± 1%
by qq) g (high-Q ² reactions involving gluons)	γ -jet , Z-jet, W±-jet	 γ-jet studies: γ p_T > 40 GeV x-range: 0.0005 – 0.2 γ-jet events: γ p_T ~ 10-20 GeV low-x: ~ 0.0001 ±1%
s, c, b	γc, γb, sg→Wc	 quark flavour tagged γ-jet final states; use inclusive high-p_T μ and b-jet identification (lifetime tagging) for c and b; use μ to tag c-jets; 5-10% uncertainty for x-range: 0.0005 – 0.2

Luminosità istantanea (3)

Parte attiva in fibra al quarzo per tollerare gli alti livelli di radiazione (>1 Grad accumulati in 10 anni)

Sensibile alla Luce Cherenkov (45°)

Segmentazione: $\Delta \eta \times \Delta \phi =$ 0.175 x 0.175. 1728 torri, 864 torri per EM

HF: Zero counting

Il numero di interazioni per BX:

, per L = 10^{34} cm⁻²s⁻¹

$$\mu = \frac{\sigma L}{f_{BX}} \approx 25$$

- Il numero di intarazione per in BX:
- A bassa luminosità (μ<<1) il pumero diⁿinterazioni si determina da:

$$\mu = -\ln \rho Q$$

Richiedendo almeno una torre calorimetrica con $E_{T} > E_{T0}$

Ad alta luminosità si fa lo stesso usando ogni singola torre

→ 864 metodi indipendenti di misura della luminosità!!!!!!

Luminosità istantanea (2)

	LHCb	ATLAS/CMS
Detector configuration	Single-arm forward	Central detector
Running luminosity [cm ⁻² s ⁻¹]	2×10^{32}	3×10^{34}
pseudo-rapidity range (η)	$1.9 \div 4.9$	$-2.5 \div 2.5$
< interactions/crossing >	$\sim 0.4 \ (\sim 30\% \text{ single int.})$	~ 23
$b\overline{b}$ pairs/years(integrated in the η range)	10^{12}	5×10^{13}

La misura è basata sul forward hadronic calorimeter (HF)

Pixel Luminosity Telescope (PLT, CMS)

Three planes of 8 diamond sensors (8×8mm²) bump-bonded to read-out pixels (radiation hard)

Length: 20 cm, z: ±175 cm, r: 4.5 cm

Small angle pointing telescope (1°)

Signals are 3-fold coincidences, on a bunch by bunch basis

Fast read-out	Full read-out	
0, 1, 2, 3, >4 counting	Pulse height	
Pixel threshold adjustable	Determination of track origin	
Pixel maskable	Determination of IP	

The PLT is a beam condition monitor

(not yet approved ??).

Pixel Luminosity Telescope (PLT, CMS)

→ Relative luminosity measurement (as with HF) → ~1% error for luminosity for $10^{28} - 10^{34}$ cm⁻²s⁻¹

Beam Condition Monitor (BCM, ATLAS)

