

Study of $B \rightarrow \tau \nu$

Mario Merola, Elisa Manoni, Claudia Cecchi, Guglielmo De Nardo

Belle II Italia

Pisa, 20/11/17

new w.r.t. last meeting

- Theory introduction and recent results overview
- Analysis status (as of B2TiP report)
- Impact of new extra clusters selection
- Physics validation performances comparison MC8 / MC9
- Conclusions and future plans

B leptonic decays $(B \rightarrow lv)$

- The SM predicts a branching ratio of $\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = 0.817^{+0.054}_{-0.031} \times 10^{-4}$

http://ckmfitter.in2p3.fr/

Higgs doublet models predict interference with SM decay with a modification of the branching ratio [PhysRevD.86.054014]

$$Belle II$$

$$H^+,W^+$$

$$V_{ub}$$

$$W_{ub}$$

$$V$$

$$T$$

$$B = B_{SM} \times \left(1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}\right)^{40}$$

$$Belle$$

$$Belle$$

$$Belle II$$

Recent results on $B \rightarrow \tau v$

- First evidence at Belle (2006) and Babar (2012)
- Most recent measurement (Belle 2015, using semileptonic tag):
 - use of multivariate techniques (neural network) to reconstruct the tag side
 - the signal side is reconstructed in four modes: $\tau \rightarrow \mu \nu \nu$, $e\nu\nu$, $\pi\nu$, $\rho\nu$

- the signal is extracted through a two-dimensional maximum likelihood fit to the E_{ECL} and p^*_{sig} distributions

• E_{ECL} (later on called E_{extra}) is the sum of the energies of clusters in the ECL not associated to reconstructed B mesons

• p^{*}_{sig} is the momentum of the signal side particle in the CM

 $\mathcal{B} = [0.91 \pm 0.19 (\text{stat.}) \pm 0.11 (\text{syst.})] \times 10^{-4}$ (evidence at ~4.6 σ level)

http://arxiv.org/abs/1503.05613v2

Tag side reconstruction: Full Event Interpretation (FEI)

• Developed by Thomas Keck*, it's an extension of the Full Reconstruction used in Belle, and uses a multivariate technique to reconstruct the B-tag side through lots of decay modes in a Y(4S) decay.

• Hierarchical approach: first train multivariate classifiers (MVC) on FSP, then reconstruct intermediate particles and build new dedicated MVC. For each candidate a signal probability is defined, which represents the "goodness" of its reconstruction.

• Training performed on $B^+B^-/B^0\bar{B}^0$ events with beam background at KEKCC

*<u>https://ekp-invenio.physik.uni-karlsruhe.de/record/48602/files/EKP-2015-00001.pdf</u>

Analysis status (B2TiP)

https://docs.belle2.org/record/389/files/BELLE2-PUB-DRAFT-2016-008.pdf

Selection (1)

B tag side

Hadronic tag using FEI

- 1) Pre-selection on B-tag kinematics*
- 2) Cut on FEI output discriminant
- 3) Pick the highest sigprob B candidate

* Beam-constrained mass:
$$M_{bc} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$

* Energy difference: $\Delta E = E_B^* - E_{beam}^*$

B sig side

$B \to \tau \nu$

- 4 tau modes: $\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\pi \pi^0 \nu$
- PID, ECL cluster cleaning (see next slide)
- $110 < M(\pi^0) < 160 \text{ MeV}$
- $625 < M(\rho) < 925 MeV$

Require full reconstruction of tag side and only one additional track in the event

Run on MC5 production:

- 100*10⁶ events of $B \rightarrow \tau \nu \rightarrow generic$ with beam background
- 1 ab^{-1} of $B^+B^-/B^0\overline{B}^0$ and continuum with beam background

https://confluence.desy.de/display/BI/Computing+MC5Release4Physics

PID selection

- Likelihood function based on E/p and dE/dx
- Cut on the LR = L(particle) / (L(e) + L(mu) + L(pi))

Photon and π^0 selection

Cluster cleaning (to reject photons from beam background) with cuts on photon energy, cluster timing and E9/E25 (separately in forward, barrel and backward detector regions). Details at the confluence page:

https://confluence.desy.de/display/BI/Physics+PiO+and+extra +clusters+cleaning In the post-B2TiP analysis:

Follow PID recommendations:

https://confluence.desy.de/display/BI /Physics+StandardParticles

New extra energy and pi0 selection (see my talk in the tools session this morning)

Continuum rejection

 MVA with boosted decision trees to separate back-to-back topology from events with spherical symmetry (BB). See backup for details

Background rejection

In the plots shown here and in the next slides signal and bkg are normalized to 1 ab⁻¹

Cuts on the BDT, M_{bc} ΔE , missing mass, and signal side track momentum are optimized maximizing the FOM* in the M_{bc} and E_{extra} signal windows (respectively 5.275-5.29 GeV/c² and 0-0.2 GeV). Optimization for hadronic and leptonic tau decay modes separately

Belle II

Selection efficiency and comparison with Belle MC

10

Signal and background event yields in 1 ab⁻¹

	$E_{ m ECL}$	$< 1 {\rm GeV}$	$< 0.25{\rm GeV}$
Belle II	# background events	7420	1348
	# signal events	188	136
	signal efficiency $(\%)$	2.2	1.6
Belle*	# background events	2160	365
	# signal events	97	60
	signal efficiency $(\%)$	1.2	0.7

*PRL 110, 131801 (2013)

- In Belle II we have higher bkg contamination and higher signal efficiency
- Statistical improvement (S/sqrt(S+B)), but we need to evaluate the systematics impact (e.g. uncertainty on the peaking background)

 E_{extra} has a narrow peak at 0 for Belle II MC → better extra clusters reconstruction despite higher beam background

Branching ratio and projection with systematic uncertainties

- Branching ratio: fit to the E_{extra} distribution for toy MC pseudo-datasets and take mean and width of the results
- p-value determination: use the test statistics Q = L(s+b)/L(b) evaluated on pseudo-datasets sampled from S+B and B only E_{extra} distributions.

 $BR(B \rightarrow \tau \nu) = 0.82 \pm 0.24 \times 10^{-4} \sim 30\% \text{ precision}$ p-val = 0.000385 \rightarrow significance: 3.4 σ

in 1 ab⁻¹

• The main systematic uncertainties are: signal and background E_{Extra} PDFs, branching fractions of the peaking backgrounds, tagging efficiency, and K^0_L veto efficiency (followed by the signal efficiency and others)

Systematics extrapolation based on Belle II note*

Integrated Luminosity (ab^{-1})	1	5	50
statistical uncertainty $(\%)$	29.2	13.0	4.1
systematic uncertainty $(\%)$	12.6	6.8	4.6
total uncertainty $(\%)$	31.6	14.7	6.2

luminosity needed for $B \rightarrow tau nu 5\sigma$ observation is 2.6 ab⁻¹

* Belle2-note-0021

https://confluence.desy.de/download/attachments/35838603/belle2-note-0021.pdf?version=1&modificationDate=1468937879217&api=v2

Impact of beam background

 Impact of beam background evaluated re-performing the study described above on MC5 samples without beam background

BGx0

• Toy MC: expected precision for BGx0 is 20% (30% for BGx1) with a significance $> 5\sigma$ in 1 ab⁻¹

Analysis update

Selection update

- PID selection
 - Use the release-09 recommended working points (95-99% efficiencies) <u>https://confluence.desy.de/display/BI/Physics+StandardParticles</u>
- Extra clusters and piO selection
 - See presentation at the tools session this morning: MVA classifiers trained for the extra clusters and piOs
 - The selection used in the analysis presented before performs much worse with the increased level of background of the last MC campaigns (MC8 and MC9)

Extra clusters MVA

15

• Train a BDT with $B \rightarrow \tau v$ events from MC9 production bgx1 (using TMVA)

To choose the optimal cut point look at the E_{extra} distributions for $B \rightarrow \tau v$ and generic BB (next slide)

Extra clusters MVA: performance on E_{extra} distribution

- 16
 - E_{extra} distribution for tau nu signal and $B^+B^$ background with $M_{bc} > 5.27$ GeV

MC9 bgx1: $B \rightarrow \tau v$ and B^+B^-

ΙΝΓΝ

0.1 0.2 0.3 0.4 BDT response

-0.5

-0.4 -0.3 -0.2 -0.1 0

WG1 validation

https://confluence.desy.de/display/BI/Data+Production+Validation

- Within the leptonic, semi-leptonic and missing energy B decays working group we have four modes for analysis validation: $B \rightarrow \tau v$, $B \rightarrow \pi l v$, $B \rightarrow D^* l v$, $B \rightarrow D^* \tau v$
- The basic idea is set up a simple analysis for each mode and check the effect of the changes from a software release to an other

 $B \rightarrow \tau v$

18

Comparison between MC8 and MC9 (bgx1)

Brief summary of the reconstruction steps:

- Reconstruct the B-tag with Full Event Interpretation and pick the best candidate per event
- Require only 1 track on the signal side, PID (four τ decay channels considered: $\mu\nu\nu$, $e\nu\nu$, $\pi\nu$, $\pi \pi^0 \nu$) and neutrals quality criteria

$B \rightarrow \tau v$: leptonic and hadronic tau modes

19

efficiency	MC9/MC8
тот	84%
Lep modes (mu/ele)	99% (135% / 81%)
Had modes $(\pi u \ / \ \pi \ \pi^0 u)$	75% (76% / 73%)

electron: eid; muon: muid and !(eid) pion: piid and !(muid) and !(eid)

Improvement of muid in MC9

$B \rightarrow \pi l \nu$ validation

20

Comparison between MC8 and MC9

- Reconstruct the signal B–> π I v
- Apply tracks and cluster cleaning* to the Rest of Event (ROE) of the signal

*remove tracks originating far from the IP and remove low energetic / out-of-time clusters

 $MC9/MC8 \sim 82\%$

"Before ROE" distribution looks better in MC9: from release 09 we have a new 99% efficient cut on the cluster timing at mdst level (|t|/dt99 < 1 for E < 50MeV, where dt99 is the time containing the 99% of the signal)

Summary and plans

- 21
- $B \rightarrow \tau v$ sensitivity study on 1 ab⁻¹ of MC5 production: precision on the branching ratio measurement found to be 30% (3.4 σ stat. only) with beam bkg, and 20% (>5 σ stat. only) without beam bkg. Including systematic uncertainties the observation (5 σ) is expected at 2.6 ab⁻¹
- Analysis update with last MC9 campaign
 - New MVA selection for extra clusters and π^0 improvement of signal / BB separation in E_{extra}
 - To do list:
 - Evaluate the impact of the MVA on the branching ratio measurement (after continuum suppression and selection cuts)
 - Study the peaking background KL veto
 - Signal extraction: 2D fit with E_{extra} and missing mass
- Validation studies comparing MC8 and MC9 show improved PID and robust reconstruction against beam background

Purity after FEI reconstruction

23

• Purity of the background and signal samples is evaluated via fit to M_{bc} distribution with Argus (combinatorics) + double gaussian (true B candidates)

continuum rejection applied

Full Event Interpretation: variables

- 24
- Input variables used to train the multivariate classifiers:
 - PID, tracks momenta, impact parameters (charged FS particles);
 - cluster info, energy and direction (photons);
 - invariant mass, angle between photons, energy and direction (π^0) ;
 - released energy, invariant mass, daughter momenta and vertex quality ($D^{(*)}_{(s)}$, J/ψ);
 - the same as previous step plus vertex position, ΔE (B);
 - additionally, for each particle the classifier output of the daughters are also used as discriminating variables.

Full Event Interpretation (FEI) performances

Total reconstruction efficiency compared with Belle I

Belle II

${ m B}^+$ (hadronic)	0.78 %	B ⁺ (semileptonic)	1.05 %
${ m B}^0$ (hadronic)	0.59 %	${ m B}^0$ (semileptonic)	1.17 %

Belle I

B ⁺ (hadronic)	0.39 %
${ m B}^0$ (hadronic)	0.28 %

- B^+ (semileptonic) 0.80 %
- ${
 m B}^0$ (semileptonic) 0.86 %

Belle paper

26

Belle paper, hadronic tag, PRL 110, 131801 (2013)

Entire Belle data sample $\sim 700 \text{ fb}^{-1}$

TABLE I. Results of the fit for $B^- \rightarrow \tau^- \bar{\nu}_{\tau}$ yields $(N_{\rm sig})$, detection efficiencies (ϵ), and branching fractions (\mathcal{B}). The efficiencies include the branching fractions of the τ^- decay modes. The errors for $N_{\rm sig}$ and \mathcal{B} are statistical only.

Submode	$N_{ m sig}$	ϵ (10 ⁻⁴)	$\mathcal{B}(10^{-4})$
$\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$	16^{+11}_{-9}	3.0	$0.68^{+0.49}_{-0.41}$
$ au^- ightarrow \mu^- ar{ u}_\mu u_ au$	26^{+15}_{-14}	3.1	$1.06\substack{+0.63\\-0.58}$
$\tau^- \to \pi^- \nu_\tau$	8^{+10}_{-8}	1.8	$0.57\substack{+0.70 \\ -0.59}$
$\tau^- \to \pi^- \pi^0 \nu_\tau$	14^{+19}_{-16}	3.4	$0.52\substack{+0.72 \\ -0.62}$
Combined	62^{+23}_{-22}	11.2	$0.72\substack{+0.27 \\ -0.25}$

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = [0.72^{+0.27}_{-0.25}(\text{stat}) \pm 0.11(\text{syst})] \times 10^{-4}$$

Significance: 3.0 σ

Photon cuts

Y4S photons

- E > 72 MeV, -114 < clusterTiming < -46, E9E25>0.800, minC2HDist>39 cm forward
- E > 71 MeV, -112 < clusterTiming < -48, E9E25>0.805, minC2HDist>29 cm barrel
- E > 66 MeV, -142 < clusterTiming < -18, E9E25>0.710, minC2HDist>23 cm backward

Each cut corresponds to an efficiency of photons form physics of 95%

Extra photons

- E > 48 MeV, -121 < clusterTiming < -39, E9E25>0.665, minC2HDist>32 cm forward
- E > 51 MeV, -123 < clusterTiming < -37, E9E25>0.685, minC2HDist>22 cm barrel
- E > 49 MeV, -151 < clusterTiming < -9, E9E25>0.650, minC2HDist>24 cm backward Each cut corresponds to an efficiency of photons form physics of 90%

Signal $B \rightarrow \tau \nu$ sample

Photon and PID selection eff: 12.2 %

N.B. before PID selection we have a lot of multiple candidates (particle reconstructed as mu and ele and pi)

Continuum rejection - BDT

30

Input Variables: R2, $Cos\theta_{th}$, Cleo Cones and Kakuno Super Fox-Wolfram (KSFW) moments: 30 variables

• R2:
$$R_2 = H_2/H_0$$
 where $H_l = \sum_{i,j} \frac{|\vec{p_i}||\vec{p_j}|}{W^2} P_l(\cos \vartheta_{ij})$ are the Fox-Wolfram moments

•
$$\cos\theta_{\text{th}} \colon \left|\cos(\vartheta_{thrust})\right| = \frac{\left|\vec{p}_B \cdot \hat{T}\right|}{\left|\vec{p}_B\right|}$$
 where T is the thrust axis of the rest of the event

• Cleo Cones: momentum flow around the B thrust axis in 9 angular bins

• KSFW:
$$KSFW = \sum_{l=0}^{4} R_l^{so} + \sum_{l=0}^{4} R_l^{oo} + \gamma \sum_{n=1}^{N_t} |(P_t)_n|$$
 so: particles from b-tag and ROE are considered on particles from ROE only are considered scalar sum of the transverse momentum of each particle memory of each particle $R_l^{so} = \sum_i \sum_{jx} Q_i Q_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$ [odd $R_l^{oo} = \sum_j \sum_k \beta_l Q_j Q_k |p_j| |p_k| P_l(\cos \theta_{j,k})$]
even $H_{xl}^{so} = \sum_i \sum_{jx} |p_{jx}| P_l(\cos \theta_{i,jx})$ [even $R_l^{oo} = \sum_j \sum_k \beta_l |p_j| |p_k| P_l(\cos \theta_{j,k})$]

Continuum rejection - BDT

- BDT training
 - Preselection cuts on M_{bc} (5.27-5.29 GeV/c²) and E_{extra} (< 0.3 GeV)
 - 20000/3000 events used for signal/background training (~3/10% of the entire samples)
 - Remove the "less powerful" (according to the BDT variable ranking) and highly correlated variables → 20 variables left with a negligible degradation of the BDT performances (i.e. ROC curve integral)

Highest ranked variables

32

Signal: $B \rightarrow \tau \nu$ Background: $q \bar{q}$

Training results

33

Background rejection 6.0 8.0 8.0 0.75 0.7 MVA Method: 0.65 BDT 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 1 Signal efficiency

Background rejection versus Signal efficiency

ROC curve

Overtraining under control Limited statistics for the backgrounds

Good separation power

$B \rightarrow$ tau nu projections

	Integrated Luminosity (ab^{-1})	1	5	50
Hadronic tag	statistical uncertainty (%)	29.2	13.0	4.1
	systematic uncertainty $(\%)$	12.6	6.8	4.6
	total uncertainty (%)	31.6	14.7	6.2

Integrated Luminosity (ab^{-1})	1	5	50
statistical uncertainty (%)	19.0	8.5	2.7
systematic uncertainty $(\%)$	17.9	8.7	4.5
total uncertainty $(\%)$	26.1	12.2	5.3

Semileptonic tag