$B_0 ightarrow \eta' K_0$: study on ΔT resolution. and first test of TreeFitter

Stefano Lacaprara, Alessandro Mordà

stefano.lacaprara@pd.infn.it

INFN Padova

8th Belle II Italian collaboration meeting, Pisa, 20 november 2017

Will talk about:

- ΔT resolution
 - analysis of structures of ΔT resolution
 - study of ΔT dependencies from other variables
 - \triangleright test of advanced ΔT resolution model with B⁰ lifetime au_B
 - ▶ analysis of *per-event* $\sigma_{\Delta}T$
- First test with TreeFitter
 - Efficiency
 - resolution

\mathcal{L} Time Dependent \mathcal{L} Violation using $\eta' K_0$ final state

Motivations:

- we want to study the ΔT resolution for ${\rm B^0} \to \eta^\prime {\rm K^0}$ final state
- assess the systematic uncertainties due to limited knowledge of $\Delta \mathcal{T}$ resolution
- provide a better definition of $\Delta {\cal T}$ reso to be used in the ML fit to extract the TDCPV parameters
- study the B^0 lifetime in the same channel τ ;
 - can be studied also in control channel $\mathsf{B}^\pm o \eta'\mathsf{K}^\pm$
- So far, used a single tri-gaussian pdf

Channel: $B^0 \rightarrow \eta' (\rightarrow \pi^+ \pi^- \eta (\rightarrow \gamma \gamma)) K^0 (\rightarrow \pi^{\pm})$ Tech. details: MC9, BGx0, Rel 00-09-02 with patch

\mathcal{B}_{B} tests - remind from last B2GM

 $au_B = 1.412 \pm 0.010$ ps

 au_B from fit to ΔT **PDF**: double sided decay function convoluted with ΔT resolution model

There's a non negligible underestimation of the τ_B , for both channels ($\tau_B^{gen} = 1.534$ ps)

Two possible causes:

- bias due to selection or reconstruction is ruled out
- symptomatic of a wrong estimation of ΔT resolution

 $\tau_B = 1.543 \pm 0.008~\mathrm{ps}$

S.Lacaprara (INFN Padova)

B0 to Eta' KS0

In Belle documented in [Tajima et al., 2004]

- ΔT reso is a convolution of four contributions:
 - z reso for B^0 vertex for signal
 - and tag side;
 - smearing due to additional non-primary tracks (K⁰, charm);
 - approx that B⁰ is at rest in the cms of Belle;
- and it is a (complex) function of:
 - no. of tracks used in vertex fit (both signal and tag side);
 - error on vertex fit positions;
 - $\chi^2/NDoF$ of vertices fit;

In Babar datasample was split in different categories of Flavor Tagging variable, and each category fitted separately

Signal side resolution depends on channel, not tag side

Structures visible:

- at $\Delta T_{truth} \sim$ 0 and $\Delta T_{truth} <$ 0
 - origin not so clear, not so visible in Δz signal
- at $z_{reco} \sim 0$
 - known vertex reco artifact
 - sometime the fit does not move from starting point

Structure more visible if we look at ΔT_{truth} for tails of ΔT_{reco}

S.Lacaprara (INFN Padova)

If we requires that π^{\pm} from η' has > 0 PXD hits

ΔT resolution improves (was 1.15 ps)

but > 15% of ϵ drop for each track!

	VXDTF1		VXI		
Channel	Overall reconstruction ε	PXD hit association ε	Overall reconstruction ε	PXD hit association ε	A. Gaz
φ[K ⁺ K ⁻] K _s [π ⁺ π ⁻]	24.0%	68.6%	30.1%	82.0%	ϕK_{S}^{0}
φ[π [*] π ⁻ π ⁰] Κ _s [π [*] π ⁻]	18.1%	78.9%	22.0%	92.7%	, 5

S.Lacaprara (INFN Padova)

Is a single tri-gaussian enough to model the ΔT resolution?

No! Clear dependence on ΔT_{reco}

∆(∆T) vs B0_DeltaT

- Divide distribution in slices (10)
- fit each with a tri-gaussian

Is a single tri-gaussian enough to model the ΔT resolution?

$\mathcal{E}_{\text{Rest}}$ $\Delta(\Delta T)$ vs B0 "DeltaT: slices fit

• search for correlation with other variables:

- Tag/Signal Vertex P-value;
- Number of tracks used in Tag Vertex;
- Flavor Tagging output (á la BaBar);
- ...
- nothing significant found

Bias vs abs(B0_FBDT_qrCombined)

NB: Red is for outliers, always \sim negligible fraction

S.Lacaprara (INFN Padova)

B0 to Eta' KS0

τ_B fit with ΔT -dependent time resolution function

how to take use correlation between resolution parameters and $\Delta T_{reco(true)}$

- RooDecay can convolute exp. with gaussian resolution functions, also parametric
- nevertheless it fails if the parameters of the resolution are left as functions of ΔT
- eventually the whole function has been written down by hand and coded

- \bullet Fit to the reconstructed one sided $\Delta {\cal T}$ distribution
- $\bullet\,$ resolution parameters from simultaneous fit in $\Delta {\cal T}_{true}$
- result seem ok: $au_B = 1.539 \pm 0.008...$
- but a strong dependence on the tails and outliers components is observed

Still some work is needed for a deeper understanding

ΔT -dependent time resolution function - Main issues

- ullet tried modelling the resolution as a function of $\Delta {\cal T}_{reco}$ or $\Delta {\cal T}_{truth}$
 - ▶ in principle the two approaches should be equivalent, but results differs
- **(2)** how properly evaluate the ΔT resolution parameters
 - some parameters \sim constant (σ , fractions)
 - compute the functional dependence of bias: two approaches under study
 - ★ bin dataset wrt $\Delta T_{reco(true)}$ and perform independent
 - $\star\,$ simultaneous fit in those categories

		fit in bins	simultaneous fit
resolution parameters vs ΔT_{reco}	μ_{C} [ps]	$0.09\cdot\Delta T - 0.05$	$0.07 \cdot \Delta T - 0.06$
• environment environment environment harburger	μ_{T} [ps]	$0.34 \cdot \Delta T - 0.04$	$0.72 \cdot \Delta T - 0.06$
• core and outlier params consistent between	μ_O [ps]	$0.57 \cdot \Delta T + 1.92$	$0.51 \cdot \Delta T + 0.8$
the two methods	$\sigma_C \text{ [ps]}$	0.55	0.60
 Not so for tail 	σ_T [ps]	1.01	0.73
• fraction of core component is consistent	σ_O [ps]	3.00	2.54
 Inaction of core component is consistent, 	f _C	0.70	0.73
larger unterence in tail/outlier components	f _T	0.27	0.20

S.Lacaprara (INFN Padova)

since some release, ΔT error is available *per event*

- computed propagating the signal/tag vertex uncert. from vertex fit taking into account all correlation
- Warning: bug present in rel-00-09-xx fixed in rel-01-00-xx and patched for this work

B0 to Eta' KS0

Tag vertex fit (breco) is performed using all RoE tracks

- iterative process, trying to add one track at a time;
 - possible to exclude tracks based on N_{PXD} hits
 - default no cut: $N_{PXD} >= 0$
 - (only modifying the code)*
- it also perform a vertex constraint (iptube);
- if the constraint fails, a non constrained fit algo is used as a fall-back
 - (algo actually used not available at user level)*

peak for tag-side due fit with fall-back algorequiring $N_{PXD} > 0$ also remove peak To be investigated by expert

Impact on Tag-vertex resolution

Only 1.6% of events fitted with fall-back algo, but vertex resolution is significantly worse

Can we use the *per-event* $\sigma \Delta T$ in the ML fit? Technically yes. We need to check that the pull $(\Delta T / \sigma_{\Delta T})$ is reasonably gaussian (*mean* = 0, σ = 1)

- Not gaussian for ΔT ;
- $\sigma \sim 1$ for z_{signal} , but large tails;
- good gaussian for z_{tag} but $\sigma = 1.5$;

S.Lacaprara (INFN Padova)

First test with TreeFitter: efficiencies

Started with default configuration (no constraints on intermediate state masses)

ε (%)	$\eta_{\gamma\gamma}$
VR all	36.4
${\sf VR} ~{\sf B0_VtxPvalue} > 0.001$	31.7
TF all	39.4
$TF \ B0_{-}VtxPvalue > 0.001$	22.1
head release: 20000 events	

Issue with efficiency

- $\bullet\,$ The default cut on the Vtx P-value is 0.001 \Rightarrow efficiency drop $\sim\,50\%$
- efficiency recovered (and slight improved) once all events are kept
- need to understand who are those guys with vtx P-val=-1: bug, wrong tool configuration
- had a look at some distributions but nothing relevant spotted (next slides)
- in contact with authors

- overall comparable performances with both Vertex Rave method (VR) and Tree Fitter (FT)
- no appreciable differences are observed between events with vxt P_{Val} =-1 or \geq 0
- a slight shift in ΔE is observed when using TF
- likely to be improved when intermediate masses constraints will be added

- also for good quality events comparable performances are observed with both Vertex Rave method (VR) and Tree Fitter (FT)
- likely to be improved when intermediate masses constraints will be added

Still work in progress, no conclusion yet: hopefully for next B2GM

- ΔT resolution has several structures related to reconstruction/vertexing
 - Some identified, some still unclear
 - need to test VXDTF2 reconstruction to see if improves PXD hits usage for prompt tracks

• τ_B fit with ΔT dependent resolution function tried

- still technical difficulties
- preliminary results promising

• per event $\sigma_{\Delta} T$ has still many issues, mostly on tag side

- also pulls are not so good
- will test anyway in the au fit

• first test with TreeFitter

- Issues with efficiency
- vertex P-value interpretation

Additional or backup slides

[Tajima et al., 2004] Tajima, H., Aihara, H., Higuchi, T., Kawai, H., Nakadaira, T., Tanaka, J., Tomura, T., Yokoyama, M., Hazumi, M., Sakai, Y., Sumisawa, K. and Kawasaki, T. (2004). Proper-time resolution for measurement of time evolution of B mesons at the KEK B-Factory. NIM 533, 370 – 386. doi:https://doi.org/10.1016/j.nima.2004.07.199.