

BASF 2 Release 1.00

2

BASF2 Release 1 New Features

- VXDTF2 ON STAGE!
 - bug fixes, new filters, SVD timing cuts, early removal of bad candidates, better training.

- Fit with multiple mass hypothesis (pion, kaon, proton)
- More V0 candidates stored on MDST: Ks, Lambdas, photon conversions
- Combinatorial Kalman Finder (find, extrapolate, attach)
- CDC t₀ finders.

E. P. INFN

3

CDC Tracking

• We are learning from the CDC cosmic data sample

Track parameters resolution and error estimate correctness

♦ CDC based t₀ finding

 We need a dedicated task force and a better communication with the CDC, the L1 and the HLT teams

D. V. THANH (SOKEN,KEK) M. Uchida (TIT)

Ptresolution

Belle CDC only (cosmic) ~ $0.28P_t \oplus 0.35$ Pt resolution (%) GCR2017 Jul. GCR2017 Aug. 1.8 MC Aug. MC w/o Mapper 1.6 Belle CDC only 1.4 1.2 0.38% at 1.5GeV/c 0.6 0.8 0.4 0.6 0.4 0.2 0.2 Q 10 Pt (Gev/c)

- much improvement by better calibration and alignment
- improvement in high momentum region because of longer lever arm compared with Belle CDC as expected
- we will take local cosmic run to correct remaining mis-alignment - large data is necessary for wire-by-wire alignment

do resolution studies

Additional material from the field mapper:
3 slabs of Aluminum 1.2 cm thick

To Determination

To From LT (Nakazawa B2GM Oct 2017)

Timing Adjustment using rvc (revolution clock)

is calculated event by event on GDL as src_rvc + src_rvc_offset - final_rvc

8

Pisa 2017, KEK

E.P.

Clear, Isn't It? Uhm...

Comments on total latency

- We are not sure
 - if GDL generates L1 at 4.4 usec from t0
- We are sure that
 - GDL generates L1 with fixed latency
 - common L1 is given to CDCFEE after ~5 usec from t0
- ~5 usec is not the final value
 - Serious latency study has not started yet

The Quest For The Holy To_

- Apparently we are realizing only now that we have to determine the t₀
 - ♦ SVD: L1 trigger RMS jitter few ns
 - ♦ CDC: few ns during reconstruction
 - ♦ CDC: few ps during reconstruction
 - ♦ ECL: few ns during reconstruction

10

 Meeting last week to find a common strategy for the HLT and the final reconstruction

E. P.

INFN

"I got it on eBay."

Cdc To Determination

• Fast rough determination of the t₀ from the CDC hits

- Look for a sudden jump on the # CDC hits
- 4 ms/event can be executed on the HLT

To Success Rate And Resolution

Full Phase III Background

- Still working very well
- The uncertainty on the extracted t0 is large for single track, esp. for large t0 shifts

VXDTF2: Finally on Your Screens!

- The VXDTF2 will be the default SVD track finder in release 1.0.
 - ♦ We are still tuning its filters and the training procedure (cfr Valerio's talk)
 - We would like to collect users comments to improve its performances (cfr. Alessandro Gaz B-> Φ Ks)

13

E. P.

INFN

Users Perspective (release 9)

Tracking efficiency on Y(4S) generic events with (without) the expected background at full luminosity.

INTEGRATED EFFICIENCIES	vxdtf version	tracking ε	ε factoring out geom accept	vxdtf ε
noBKG	VXDTF1	(84.8 ± 0.1)%	(94.9 ± 0.1)%	(87.8 ± 0.1)%
	VXDTF2	(86.0 ± 0.1)%	(96.2 ± 0.1)%	(88.9 ± 0.1)%
stdBKG	VXDTF1	(77.5 ± 0.1)%	(86.9 ± 0.1)%	(78.3 ± 0.1)%
	VXDTF2	(82.4 ± 0.1)%	(92.4 ± 0.1)%	(82.6 ± 0.1)%

Overall we are delivering an additional 5% of good tracks to the user

We are gaining at the edge of the acceptance boundary

 Overall tracking efficiency (VXD+CDC, pattern recognition & fitting) on Y(4S) events with nominal background conditions.

Users Perspective (release 9 no background): $B \rightarrow \Phi K_s$

$\phi[K^+K^-] K_{s}[\pi^+\pi^-]$ efficiency breakdown $\phi[\pi^+\pi^-\pi^0] K_{s}[\pi^+\pi^-]$ efficiency breakdown

BGx0	VXDTF1		VXDTF2	
	Efficiency	Rel. efficiency	Efficiency	Rel. efficiency
Reconstructed ($M_{bc} > 5.25$, $ \Delta E < 0.2$)	47.5%	47.5%	49.9%	49.9%
M(φ) cut	45.7%	96.1%	47.9%	96.1%
d ₀ (K) cut	43.3%	97.0%	46.4%	96.9%
z ₀ (K) cut	44.3%	97.7%	45.5%	98.1%
PID(k)	39.0%	90.2%	41.1%	90.3%
K PXD hits cut	26.8%	68.6%	33.7%	82.0%
K _s VtxProb	26.4%	98.5%	33.2%	98.6%
<pre></pre>	25.9%	98.3%	32.8%	98.6%
B VtxProb	24.0%	92.6%	30.1%	91.8%

Kaons from $\phi \rightarrow K^{+}K^{-}$

BGx0	VXDTF1		VXDTF2	
	Efficiency	Rel. efficiency	Efficiency	Rel. efficiency
Reconstructed ($M_{bc} > 5.25, -0.1 < \Delta E < 0.2$)	30.9%	30.9%	31.8%	31.8%
M(π ⁰) cut	30.2%	97.5%	31.0%	97.5%
E(π ⁰) cut	27.1%	90.0%	27.8%	89.7%
$M(\phi)$ and $M(K_s)$ cut	25.6%	94.3%	26.3%	94.5%
d ₀ (π) cut	24.3%	94.8%	25.1%	95.5%
z ₀ (π) cut	23.9%	98.4%	24.8%	98.8%
π PXD hits cut	18.8%	78.9%	23.0%	92.7%
K _s VtxProb	18.5%	98.3%	22.6%	98.4%
φ VtxProb	18.4%	99.3%	22.5%	99.9%
B VtxProb	18.1%	98.3%	22.0%	98.0%

Pions from $\phi \rightarrow \pi^+ \pi^- \pi^{\parallel}$

<u>Memory Footprint Issue: To run on the < 2 GBytes</u>

♦ VXDTF2 steps

- 1. Find good triplets of space points using the Sector Map
- 2. Join the triplets using a Cellular Automaton
 - Seldom the number of candidates harvested by the Cellular Automaton exceeds 10⁶
- 3. Solve the overlaps and find the best candidates
 - Overwhelming task if the candidates are order of 10⁶
- How to reduce the number of candidates from the CA?
 - A. With a tighter time window for the SVD signals (120ns -> ~ 40ns)
 - B. With a slimmer Sectormap.
 - C. With a clever preselection of the good candidates from the CA.
- The code for A, B and C is available in release 1. We are tuning their parameters.

Phase 2 Readiness

Phase 2

- Phase 2 geometry is quite different with respect to the one showed so far
- ◆ Same geometry used in the test beam:
 - ► 6 layers
 - one single ladder per layer
 - no pin wheel geometry

Overall tracking efficiency VXDTF2 in phase 2

♦ Yes, we are still able to find tracks by ourselves

Phase 2 VXD used as a stand alone track device

Efficiency normalized to "Trackable" tracks

♦ "Trackable": 3 or more sensors hit by the particle

Overall Track Finding Efficiency (including CDC)

♦ We do really improve tracking performances

Error on the transverse impact parameter

Multiple Mass Fit Hypothesys

Particle type	Average fraction	PDG Id
π^{\pm}	72.8%	211
K^{\pm}	14.9%	321
e^{\pm}	5.8%	11
±	4 707	11
μ^-	4.1/0	13
p^{\pm}	1.8%	2212

24

E. P.

INFN

Kaons

E.C.

INFN

Fitting with correct Hypothesis improves the Fit Bias and the Resolution in all Pt ranges

Protons

E.P.

- Fitting with correct Hypothesis improves the Fit Bias and the Resolution in all Pt ranges
- Big improvement with Proton hypothesis as expected due to the large mass difference btw. Proton and Pion

26

Pisa 2017, KEK

Conclusions 1

• Release 1 is in the validation phase.

- VXDTF2 is the standard silicon stand alone track-finder.
 - ♦ We are tuning and training it.

E. P. INFN

- ✦ Freeze-out of the parameters within two weeks.
- We are able to reconstruct tracks in Phase 2 (even with the VXD alone)
- We are going to store additional fit results for kaons and protons mass hypothesis

27

Conclusions 2

E. P. INFN

- We are entering in the phase of tuning, commissioning and maintenance of the track reconstruction software.
 - ♦ We will appreciate feed backs from the users
 - We will highly appreciate your help on systematic/ performance studies
- We will discuss these in the forthcoming Face 2 Face tracking meeting here in Pisa in two weeks from now: December the 5th - December the 7th.

28

