TOP STATUS

WENLONG YUAN

INFN PADOVA

8th Belle II Italian collaboration meeting 21 November 2017 - Pisa

Outline

- Firmware status
- TOP in GCR
- Calibration status
- PEEK delamination issue
- TOP Upgrade
- Summary

Firmware Issues

- Known Issues/Bugs:
 - B2llost.
 - Carrier-level synchronization issues.
 - **O Board stack-level synchronization issues.**
 - Apparent event skew.
 - Dropping matching efficiency over runs.
- Fundamental problems:
 - **O** Limited event rate
- 4 boardstacks are masked due to
 - Data corruption (s05-b)
 - Data taking stops (s07-c, s13-b, s16-d)
- Some more unstable boardstacks
 - Data corruption (s10-b,d, s03-a,b)
 - Data taking stops (s07-a, b, d)
 - Sudden turn off of LV power supplied off (s02-d, s03-a,d)

Green – Solved, deployed, verified. Blue – Tentatively solved, waiting to be fully verified. Red – Unsolved or unverified fix.

= unmasked, ((O)) = mostly masked			
	BS 0	BS 1	BS 2	BS 3
slot 01	ο	0	0	0
slot 02	0	0	0	0
slot 03	0	0	0	0
slot 04	0	0	0	0
slot 05	0	MASKED	0	0
slot 06	0	0	0	0
slot 07	((O))	((O))	MASKED	((O))
slot 08	0	0	0	0
slot 09	0	0	0	0
slot 10	0	0	0	0
slot 11	0	0	0	0
slot 12	0	0	0	0
slot 13	0	MASKED	0	0
slot 14	0	0	0	0
slot 15	0	0	0	0
elot 16	0	0	0	MASKE

Summary of Slot Status

Will investigate these BS's and give feedback to firmware experts.

Firmware known bugs (fixed)

800

150 200 25 Sample# of the first calibration put

Firmware Existing bugs

Event number shifts/misalignments

Data from single event is split into several events

• Explains loss of matching efficiency

Calpulse Hits

- Several possible causes were evaluated, shown to not be the problem
 - Appears to be dropped trigger?
- Likely an issue in the messy PS code (interrupts, data handling, complicated call structure, etc.)

- Decision was made to focus on production firmware effort instead:
 - Person who wrote the PS code no longer working on Belle II
 - Production code is being built with all-new PS base code (may solve problem)

Production Firmware

- Current FW:
 - Existing system is operating in "simple" mode.
 - Analog recording stops upon receipt of a trigger.
 - Each channel of each ASIC digitizes and reports 256 samples for every system trigger, resumes sampling only after digitization.
 - Timings not optimised
 - This is in obvious need of upgrade for high rate running.
 - * Limited to \sim 750 Hz, as verified in local single module tests.

- Production mode:
 - Implements simultaneous sampling and digitizing/readout.
 - Only data for channels with hits. (32 samples around trigger)
 - Details available in Luca's slides from TOP firmware bootcamp.
 - Split into two components:
 - Updated Carrier PL firmware to implement above.
 - Updated SCROD PL/PS to process new data stream.

TOP Calibration Status

Umberto Tamponi

TOP calibration is mostly about channel-by-channel synchronization

Time base correction (TBC)

H. Kichimi, W. Xiaolong

- Each of the capacitors on the sampling array has a different time constant, and gives different time bin width.
- The trace is sampled in blocks of 64 samples ("windows"). Each ASIC has a sampling array of 4 windows, then saved in a much deeper buffer memory (Storage array)

Local TO

A. Morda, W. Yuan, S. Lacaprara, R. Stroili

To synchronize the channels within a single module we flash them with a laser pulse

- goal of the channel time calibration is the measurement of the time offset (T^0) of each MCP-PMT pixel
- T^0 different for each pixel due to electronic & pixel properties
- $\bullet\,$ a total of 512 $\times\,16$ channels must be calibrated

The simple case:

$$t_{(A,B)} = T^0_{(A,B)} + \ell_{(A,B)}/c_n$$

 $T^0 = t_{data} - t_{MC}$
 $\delta T^0 = \delta t|_{data} + \delta t|_{MC} + \delta t|_{DATA\&N}$

- $T^0_{(A,B)}$: channel time cal. constant
- δt|_{data&MC}: a large systematic error if mismatch data&MC

Padova test bench studies

Padova equipment

- 1 MCP-PMT Hamamatsu (2nd PMT is ready)
- 1 SiPM FBK
- HV = 2500 V
- digitizer CAEN V1742 @5 GHz
- $\bullet \ \ {\sf fibers} + {\sf final} \ {\sf bundle}$
- nominal lens used in the experiment

Superposition of adjacent fibers - time distribution x-axis range [-1.5,2] ns

- Laser Tune 50
- example on PMT with two separate signals

- the contribution of the adjacent fiber appears to be negligible in this position
- likely two signals are enough to fit the whole spectrum with all fibers
- will check for the other positions

Fit of pixel column 3

PMT illuminated from two sources, laser @ T50

"Hybrid" model (naive compromise between data agreement & number free parameters):

Preamplifiër

THS4303.

- \blacktriangleright rows 1-3 : one signal described by gaussian core \oplus kinematic recoil component
- \blacktriangleright rows 4-8 : two signals. Low time described by pure gaussian, high time signal as in rows 1-3

Polarization change with temperature variation

Laser stability system

Fiber 1 from Laser

Fiber 2 from Laser Control time stability

The box with components

Assembling is ongoing.

for the laser stability system.

Control intensity stability

- Will be installed in KEK
- A second box will be used in the Padova-Setup

Local TO constant implementation (preliminary)

before t0 calib. (slot#14)

a very rough fit using a single crystal ball function

• one single Gaussian or single crystal ball function is not an appropriate description on this data sample

after t0 calib. (slot#14)

Module T0

S. Senga, A. Gaz

Studies in physics channels

Slides from Toru lijima, 28th B2GM

PEEK Delamination Issue

- Most plausible reason is the interface stress by thermal expansion
- Confirmed that visible area of the delamination depends on whether the electronics is on or off
- Plan to measure the temperature distribution of the spare TOP module, and investigate a risk of developing delamination

Reinsty Bills	2014-12-10 22:2
1	-
1-1-	3 2 2

Delamination visible in CCD photos

			B-field Slot																
Shooting date		LV	(T)	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
201	5/16 (after installation) 19:45	on	0																
6	7/26 (after B-field meas.) 10:00	on	0																
	7/26 (after 1st repair) 11:00	on	1.5																
	9/13 (after 2 nd repair) 17:00		0																
	9/16 09:15		0/1/1.5											-					
9/19 (start of 1 week B test) 08:45		on	0/1/1.5										d d	ent					
9/26,27 (after 1 week B test) ^{08:45}		on	1.5/0										- No	ccid					
	9/27,28,29,30,10/1,2,3		1.5											ě					
	10/3 (slot11 glue broken) 17:45		0																
	10/4,10 ^{21:15} 10:30		0																
201	4/20 (after roll-in) 14:30	off	0																
2	5/24,26 16:45 15:15	on	0/1.5																
	7/10 (1 st GCR) 14:00		1.5																
7/25 (1 h after LV off) 15:40		off	1.5																
7/28 (after E-hut shutdown) 09:00		off	1.5																
Blue: Small delamination (apparently or in suspicion) from the beginning Red: Small delamination can be seen (compared to 5/16)								16)											

Black: Large delamination can be seen (compared to 5/16)

Orange: Small delamination can be seen (compared to 5/16)

Thermal expansion of the PEEK frame/glue made the delamination (in)visible.

It could be a possible cause of the delamination.

Doubt if the optical oil can enter the thin gap.

Kodai Matsuoka

TOP upgrade

Summary of the number of MCP-PMTs

	Conventional	ALD	Life-extended ALD
Total in hand	277	231	108
To be returned	16	7	0
Installed	255	221	64
Available spares	6	3	44
To be delivered			16 + 20 (new order)

Total available for replacement of the installed conventional MCP-PMTs: 83 Conventional MCP-PMTs to be replaced: 224 Necessary additional order: 141

- The current estimation of the time of the replacement is 2020 summer shutdown, which depends on the actual level of the beam background (current assumption is 5-8 MHz/PMT) and on the PMT gain (current assumption is 2.5x10⁵).
- Production rate: about 10 PMTs/month → 16 months for 161 PMTs
 Need continuous production for stable production referring back to experience.
- Plan to continue small production until the actual beam background is understood in Phase 2 operation, but need budget.
- Decide a plan of the later production after Phase 2.

Year	2017				201	.8			201	.9		2020					
Month	1	4	7	10	1	4	7	10	1	4	7	10	1	4	7		
Global schedule					Phas	e 2			Phys	ics r	un	Phy	sics r	run			
PMT production	Curr	ent p	produ	ictio	n												
			Ano	ther	smal	l pro	ducti	on (-	+20)								
							Mass production if necessary										
PMT test																	
PMT installation													Ass	y li	nstal		
Available PMTs			44	63	83	Unclear (depends on budget situation)											

BG x 1

TOP upgrade

Conventional MCP-PMTs to be replaced: 224

Summary

- Firmware status
 - Event skew
 - Trigger rate limitation
 - Feature extraction optimization
- Calibration tools for beam collision are becoming ready
 - \checkmark Time Base Calibration
 - ✓ Local TO (close)
 - ✓ Alignment (close)
- TOP upgrade
 - New PMTs production and test

BACKUP

TOP in GCR

- "b2llost" problem, initially stopped DAQ frequently, was turned out to be due • to frequent register access
- New firmware versions were developed •
 - 32-31/3D-06: temporary fix, requires special HSLB fw, since June/end.
 - 32-31-b2llfix/3D-06: can work with normal HSLB. Was ready by the middle of Aug., but not used in Aug. GCR.

readout timing alignment : tuning of

max : ~12 us

r Win=5

windows "lookback" ~5 us

cosmic ray signal

hit time distribution

ro

lin=7

- 33-31/3D-06, 34-31/3D-06: fix for "timing mis-alignment" problem
- Limitation
 - Single hit / channel
 - Trigger rate ≤750 Hz,
 - need 1.5ms "hold-off" time.
 - Another limitation from disk I/O
 - \rightarrow \$200 Hz in practical use
- Tuning of readout parameters carried out.
 - Readout windows
 - Lookback window
 - CFD thereshold

- Module N_{hit} distribution is as expected: $\langle N_{hit} \rangle = 20$
- Module efficiency is high with BKLMhit > 0
 - 12(7) out of 16 modules have eff. > 90%(95%)
- Still have to understand and study
 - N_{bit} stability
 - Detailed comparison between data and MC (for N_{bit} and track momentum dist.)
 - Time calibrated (x, t) ring image _

Slides from Toru lijima, 28th B2GM