Stato della produzione, installazione e test diamanti

Belle II - Italia Pisa - November 22, 2017

Chiara La Licata - INFN & Univ. Trieste

Diamond sensor status

Phase 2: 8 "PXD" diamond sensorsPhase 3: 8 "PXD" + 12 "SVD" diamond sensors

Diamonds assembly and testing

24 diamonds mounted on the final support.23 fully tested:

- 14 already installed
- 9 almost ready for next installations

Schedule (only phase 3)

- 6 diamonds are needed for -X SVD half Ladder Mount and will be installed on December 01-16
- 8 more needed for Phase 3 for next year

Other activity

- Irradiation tests of diamond sensors for a calibration with γ from ⁶⁰Co

in parallel

Already installed

6 diamonds for +X SVD (June 2017)

Phase 2

INFN

Tests and calibrations

- the metallized diamond crystal is first glued on the printed circuit support
- the upper electrode is wire bonded

(0) Preliminary test: dark I-V characteristic:

Dark currents below the pA range at typical O(100V) operation voltage

- uniformity of electric field
- charge collection efficiency
- stability with time
- conversion from current to dose rate

TCT with Alpha source

(TCT = Transient Current Technique) α source: 241-Am, 55kBq

Check stability as diamonds will record dose for years

Transient

Use FLUKA to compare with measurement and infer the gain for each diamond

Comparison with FLUKA

- Installation of 8 diamond sensors for phase 2
- Installation of 6 +X SVD diamond sensors for phase 3
- Installation of 6 -X SVD diamond sensors for phase 3
 - December 2017
- Installation of 8 "PXD" diamond sensors for phase 3

next year

- Tests on diamond sensors go on, the last 8 diamonds calibrated ready for the beginning of the next year
- Irradiation tests: first next week.

DONE

BACKUP

Specification	Value	
Number of radiation sensors	20	
diamond sensor size	$5~{\rm mm}{\times}5~{\rm mm}{\times}500\mu{\rm m}$	
maximum coax. cable length from sensor to electronics	3 + 40 m	
sensor current/dose rate conversion factor	$1 \div 10 \text{ nA/(mrad/s)}$	
sensor current measurement sensitivity	0.01nA	
sensor current measurement range	$1 \div 10 \mathrm{mA}$	
normal frequency of current sampling	100 kHz	
depth of buffer memory for specific events (aborts etc)	600 ms	
normal frequency of data recording on slow control DAQ	$1 \div 10 \text{ Hz}$	
response time of fastest (hardware) beam abort trigger	$10 \mu s$	
response time of slow (software) beam abort trigger	> 10 s	
instantaneous dose rate sensitivity	1.0 mrad/s	
integrated dose overall relative uncertainty	5%	
for typical diamond sensors (fast aborts):	Value	
current measurement, precision (time scale 1 ms)	10 nA	
response time	up to 10 μs	
current range	$0 \div 5 \text{ mA}$	
for typical diamond sensors (slow aborts):	Value	
current measurement, precision (time scale 1 s)	< 1 nA	
response time	$>1 \div 100 \text{ s}$	
current range	$0 \div 15 \ \mu A$	

Transient

Diamond sensor response

INFN

Diamonds currents well correlated to their position on the beam pipe

Belle 2 Italia - Nov 22, 2017

19

Background Studies

IFN

Preliminary study from diamond sensors **Diamonds: Abort Buffer Memories**

- diamond current will be sampled and digitized at 100kHz
- several levels of running averages are computed providing an effective digital filter

Present configuration of revolving Abort Buffer Memories to be improved with really "running sums"

Stato della produzione, installazione e test diamanti

Buffer memories: snapshot example

Example of snapshot of Buffer Memories (Mem1 to Mem4) for Dia3 = BW_0 in stable beam conditions, with average I(BW_0) = 1.5 nA Noise decreases with increased averaging, from about 0.47 nA to < 0.04 nA OK both for fast (10 μ s) and slow (> 1 s) beam aborts with appropriate thresholds

simplified geometry:

Photoconductive gain

• 100 V 200 V • 300 V

distance source-sensor [mm]

Gain factor

Charge Collection Efficiency

Example: DM5, CCE \approx 100%

Landau Most Probable Value (MPV) vs HV \rightarrow Charge Collection Efficiency

$$CCE = \frac{Q_{raccolta}}{Q_{generata}} = \frac{v_{dr}\tau}{d} \left(1 - e^{-\frac{d}{v_{dr}\tau}}\right), \text{ con } v_{dr} = \mu \frac{V}{d}$$

ΙΝΓΝ

Reference: With β ⁹⁰Sr source at 18 mm distance -> FLUKA vs measurement We measure currents -> we need a conversion factor from current to dose

FLUKA

• RE (Released Energy) = 3.25 GeV/s

Current-dose calibration factor (2/2)

We measure currents -> we need a conversion factor from current to dose

- Source activity -> 7%
- Electronics Offset drift ~ 2%

FLUKA simulation -> 1 %

I-V with B ⁹⁰Sr source (d=18mm)

ΙΝΓΝ

BEAST sensors

SCVD, ZDLM at =0m downstream BGO crystals BGO crystals Diamonds	System	Detectors installed	Measurement
	"CLAWS" scintillator	8	injection backgrounds
	Diamonds	4	ionization dose
	BGO	8	luminosity
	Crystals	6 CsI(TI) 6 CsI 6 LYSO	EM energy spectrum
	He-3 tubes	4	thermal neutron flux
	Micro- TPCs	2	fast neutron
	PIN diodes	64	neutral vs charged radiation dose

Stato della produzione, installazione e test diamanti