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 1.  Introduction on active plasma lenses: working principle

Scheme of principle of an active plasma 
lens [courtesy of R. Pompili]

What is an active plasma lens*?

It is a device which can focus an electron beam, thanks to an azimuthal magnetic 
field generated by a discharge current induced in a gas-filled capillary

● Interesting features:

– Magnetic field gradients even higher than those achievable in permanent magnet 
quadrupoles, up to several kT/m

– Compact and capable of focusing a beam in both transverse planes

– The focusing strength, K, scales as 1/γ

Schematic transverse view of an active 
plasma lens

*W.K.H. Panofsky and W.R. Baker, Rev. Sci. Instr. 21, 445 (1950)
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 1.  Introduction on active plasma lenses: aberrations

However, transverse non-linearity of the azimuthal magnetic field produces 
aberrations which cause an increase of both emittance  and minimum achievable spot 
size.

● In a discharge the current density distribution is mainly dependent on the plasma 
electrical resistivity

● The plasma resistivity mainly depends on its temperature:

● The plasma tends to be warmer in the middle of the channel, due to the cooling effect 
of the capillary walls

● Current density concentrates near the axis

● Non satisfactory magnetic field profiles

Example of expected transverse distribution of current 
density and magnetic field in a capillary discharge (with 
a current of 45A).
[reprinted from Appl. Phys. Lett. 110, 104101 (2017)]
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2. Real device

● Made of printed plastic or sapphire (with external support of printed plastic)

● Filled with hydrogen (≈10-7g/cm3)

● Typical dimensions:

– Diameter of the aperture: 1-2 mm

– Length: 1-3 cm

Scheme of the electric circuit powering the 
gas discharge.Example of time profile of the current during a 

discharge

Capillary, 
made of 
printed 
plastic
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 3. Simulations: 1D case

● Time evolution of the plasma in 1D 
axis-symmetric approximation, 
quantities evolve only in radial 
direction and in time

● The time profile of the current is 
imposed, in order to emulate the 
measured current

 

Some 1D simulations for a case of our interest have been performed by N. A. Bobrova 
with a dissipative MHD code *:

● A capillary of radius 0.5mm was simulated, with an initial gas density of 6.4•1016  H
2 

particles per cm-3

*N. Bobrova et al., Phys. Rev. E65, 016407 (2001)
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3. Simulations: 1D case

● The time evolution of the magnetic field has been computed, and compared to what 
expected and measured

t=450ns, I=45A

Computed magnetic field at different times in 1D 
simulation.

Magnetic field expected after 450ns 
from the start of the discharge from 
analysis of Sparc electron beam*.

● It seems that the focusing 
properties of the active lens do 
not match what foreseen by the 
simulations, field quality is too 
good

*R. Pompili et al., Appl. Phys. Lett. 110,104101 (2017)

Beam spot 20cm 
downstream the 
active lens, 
operating at 
93A*. 
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3. Simulations: 1D case

● The time evolution of the average electron density has been computed and compared to 
the experimental value
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● There is a discrepancy in the decay of the electron density

● The difference may be due to gas outflow from the capillary (not accounted for in 1D 
model)

● With simple analytical calculations, it is possible to estimate the time scale of the gas 
outflow from the capillary*:

 

● To take into account gas outflow, one would need (at least) bi-dimensional simulations

*N. Bobrova et al., Phys. Rev. E65, 016407 (2001)
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3. Simulations: model for 2D simulations

● A fluid model is employed  ←   Kinetic approach is computationally impractical

● The plasma is studied as a hot gas which evolves because of the thermal pressure 
(hydrodynamic approximation)

● Main source of heat is the ohmic dissipation
● A divergence-free current density is computed with a time-varying static potential (static 

current flow case)

Further remarks:
● For now, Lorentz force on the fluid is neglected
● No self consistent magnetic field is present → skin effect cannot be seen
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Additional details:

● The capillary has a circular cross section → 2D axial symmetry is employed

● An ionization model exploiting a “local thermodynamic equilibrium” approximation is 
suitable:

● Lagrangian approach (the mesh moves to follow the matter):
➢ advantage: no need to mesh the whole domain, as it would be in Eulerian approach
➢ disadvantage: grid pathologies have to be controlled

Typical evolution of the mesh in a hydrodynamic simulation (with DUED)

3. Simulations: model for 2D simulations
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A suitably modified, reduced version of the code DUED*, that implements the 
above model, has been used to simulate the discharge in a realistic capillary

3. Simulations: preliminary  results of 2D simulations

Capillary diameter 2mm

Capillary length 2cm

Initial gas density 2·10-7 g/cm3

Initial gas temperature 9000K

Current profile

Discharge configuration:

*Atzeni et al., Comput. Phys. Commun. 169 (2005) 153
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● It is possible to compute the 
magnetic field as post-
processing

● Maps of relevant quantities 
can be obtained

● The temperature reached by 
the plasma seems to be in 
qualitative agreement with 
what expected

50mT
100mT
150mT
200mT
250mT
300mT
350mT
400mT

B =0mT

 capillary walle
le
ct
ro
d
e

Io
n 

te
m

pe
ra

tu
re

 (
eV

)

2

1

1.5

0.5

Particular of the plasma temperature (colored map) and 
azimuthal magnetic field (contour lines) in proximity of the left 
electrode at 300ns from the start of the discharge.

3. Simulations: preliminary  results of 2D simulations
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Mass density map 
and velocity field of 
the gas flowing from 
the capillary at 300ns 
from the start of the 
discharge.

3. Simulations: preliminary  results of 2D simulations

● The outflow of hot gas from the extremities of the capillary can be observed

● The bulk velocity of the gas near the electrodes (3·106 cm/s) is in accordance with the 
ion acoustic velocity (free expansion of plasma):
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● It is possible to compare the electron density computed by the code with the one that 
we can measure with the Stark broadening technique

● Longitudinally resolved electron density measurements is implemented at 
SPARC_LAB *, this will allow for a first validation of the simulation results

Electron density map at 300ns from the start of the discharge.

3. Simulations: preliminary  results of 2D simulations

*F. Filippi et al, J. Instrum, 11(09), C09015 (2016)
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5. Conclusions and outlook

● I have shown the working principle of an active plasma lens

– Active plasma lenses are promising technologies

– Non-uniform discharge current can lead to aberrations in the lens

● I have commented the results of 1D simulations for a case of our interest

– Plasma outflow cannot be considered in 1D models

– Predictions on the transverse magnetic field from 1D simulations are not satisfying

● The need for 2D simulations is being addressed

– Hydrodynamic model with joule heating driven by a static current flow

– Ionization degree computed with local thermodynamic equilibrium approximation

– Lagrangian approach

● Future steps:

– Thorough comparison of the computed longitudinal electron density profiles with 
the measured ones

– Optimization of the design parameters in order to improve the focal properties of 
the lens
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Appendix

Picture and data inside is courtesy of F. Filippi
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