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@ In the last few years, a lot of progress has been made
in understanding the analytic structure of multi-loop

amplitudes

Q@ we review what implications that progress has had

on our understanding of:

— the Regge limit of QCD
— the Regge limit of N=4 Super Yang-Mills (SYM)



( Regge limit of QCD )

@ In perturbative QCD, in the Regge limit s » t,
any scattering process is dominated by gluon exchange in the t channel
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@  we may break the amplitude into even/odd states under s < u crossing
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Q@  we may decompose the amplitude into t-channel SU(3) representations.
For gluon-gluon scattering, it is
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Q@ attree level, and at leading power in t/s, there is only 8,
and only the odd amplitude under s < u crossing
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(LL accu racy)

At leading logarithmic (LL) accuracy in s/t, there is still only 8, L 1 (s o(t)
and loops corrections are obtained by the substitution t ot \—t

o(t) is the Regge gluon trajectory, with infrared coefficients
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the exponentiation through a Regge trajectory is called Reggeisation

in Mellin space, the amplitude displays a (Regge) pole
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the Regge gluon trajectory is universal, i.e. process independent



(Building blocks of BFKL at LL accuracy)

The building blocks of the BFKL equation at LL accuracy are

@  real: the emission of a gluon along the ladder
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( BFKL resummation )

])(l
BFKL is a resummation of multiple gluon radiation 2000000000000, 1]

out of the gluon exchanged in the t channel
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the LL (Balitski Fadin Kuraev Lipatov 1976-77) and
Next-to-Leading Logarithmic (Fadin-Lipatov 1998)
contributions in log(s/|t|) of the radiative corrections to
the gluon propagator in the t channel are resummed to

all orders in O 55T N
Pb
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the resummation yields an integral (BFKL) equation for the evolution
of the gluon propagator in 2-dim transverse momentum space

the BFKL equation is obtained in the limit of strong rapidity ordering
of the emitted gluons, with no ordering in transverse momentum -
multi-Regge kinematics (MRK)

the solution is a Green’s function of the momenta flowing in and out
of the gluon ladder exchanged in the t channel



( BFKL theory )

the BFKL equation describes the evolution of the gluon propagator
in 2-dim transverse momentum space
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the solution is given in terms of eigenfunctions ®yn and an eigenvalue Wyn
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as a function of rapidity, the solution is
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note that in N=4 SYM the eigenfunctions and the eigenvalue are the same



( Regge-pole factorisation )

@ gluon-gluon (odd) amplitude for 8,
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@ the Regge gluon trajectory is universal, i.e. process independent
: N -
Q@ the one-loop gluon impact factor Cl(t) is a polynomial in t, €

@ perform the Regge limit of the quark-quark amplitude
— get one-loop quark impact factor C{}) (1)

@ if factorisation holds, one can obtain the one-loop quark-gluon amplitude
by assembling the Regge trajectory and the gluon and quark impact factors
the result should match the quark-gluon amplitude in the high-energy limit: it does



(Regge-pole factorisation at NLL accuracy)

@ in the Regge limit, the two-loop expansion of the gluon-gluon (odd) amplitude for 8. is
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Q@ for the real part of the amplitude, at NLL accuracy in s/t there is still only 8,
which yields the 2-loop gluon trajectory

Q@  gluon Reggeisation has been proven at NLL accuracy ~ Fadin Fiore Kozlov Reznichenko 2006

Q@  the two-loop Regge gluon trajectory is universal



(Building blocks of BFKL at NLL accuracy )

The building blocks of the BFKL equation at NLL accuracy are

RR: the emission of two gluons, or a qq pair, along the ladder

Fadin Lipatov 1989
VDD 1996; Fadin Lipatov 1996

Fadin Lipatov 1993

Fadin Fiore Quartarolo 1994
Fadin Fiore Kotsky 1996
VDD Schmidt 1998

Fadin Fiore Quartarolo 1995
Fadin Fiore Kotsky 1995, 1996
VDD Glover 2001




(Infrared factorisation]

Mu({pi}, as) = Zn({pi}s as, 1) Hun({pi )}, s, 1)
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is given in terms of SVHPLs Almelid Duhr Gardi 2015



(Infrared factorisation in the Regge Iimit)

@ we introduce the colour operators
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@ in the limit s » t, the dipole operator Z becomes
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Z; are scalar factors which define the impact factors VDD Falcioni Magnea Vernazza 2014
in terms of cusp and collinear anomalous dimensions Caron-Huot Gardi Vernazza 2017
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colour and In(s/t) dependence are in the operator Z
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which is determined by the cusp anomalous dimension and by Q, through
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comparing infrared and Regge factorizations

the pole terms of the Regge trajectory are fixed by the operator K
and thUS b)’ the CUSP anoma|0us dimenSiOn Korchemskaya Korchemsky | 994

the pole terms of the (one-loop) impact factor are fixed

by the cusp and collinear anomalous dimensions
VDD Falcioni Magnea Vernazza 2014

in infrared factorisation, gluon Reggeisation at LL and NLL accuracy
is due to the operator Z being diagonal in the t-channel colour basis
VDD Duhr Gardi Magnea White 201 |



(a mysterious relation ... ]

@ in infrared factorisation, we have a precise knowledge of how the infrared poles in €
occur in the impact factors and in the Regge trajectory.
Their finite parts, though, are treated as free parameters

Q@ the Regge limit is an expansion in In(s/t) and is valid to all orders of €

Q@ the one-loop gluon impact factor C{!)(¢) is known, in CDR/HV, to all orders of €
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Q the two-loop Regge trajectory is
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Q@ the O(g) term of the one-loop gluon impact factor predicts VDD 2017

the O(&€%) term of the two-loop Regge trajectory

it hints at more structure in infrared factorisation than we currently know
(perhaps related to this being a two-hard-scale problem)



(Regge-pole factorisation breaks at NNLO)

@ at LL accuracy for the amplitude, and at NLL accuracy for the real part of the amplitude,
Regge-pole factorisation is based on the t-channel exchange of 8. only as one Reggeised gluon

@ one can see in 3 ways that this is not correct at NNLO:

— if pole factorisation holds, one can obtain the two-loop quark-gluon amplitude

by assembling the two-loop Regge trajectory and gluon and quark impact factors.
The result should match the quark-gluon amplitude in the high-energy limit.

It doesn’t by an N~subleading T12/€2 factor VDD Glover 200

— in infrared factorisation at NNLL accuracy,

N VDD Duhr Gardi Magnea White 201 |
the operator 7 is non-diagonal in the t-channel colour basis

VDD Falcioni Magnea Vernazza 2014

— at NINLO, the picture based on one Reggeised-gluon exchange breaks down.
Using the Balitsky-]IMWLK rapidity evolution equation, or a direct computation,

one can see that a N~subleading 3-Reggeised-gluons exchange occurs at NNLO

and NNLL accuracy Caron-Huot GardiVernazza 2017

Fadin Lipatov 2017
Q@ It is still possible, though, to define a 2-loop impact factor,

based on one Reggeised-gluon exchange VDD Falcioni Magnea Vernazza 2014

Caron-Huot Gardi Vernazza 2017



( Regge factorisation at 2 Ioops)

@ in the Regge limit, the two-loop expansion of the gluon-gluon (odd) amplitude for 8, is

RMGE 0] = [ (o0) 0 (5) + (a2 +20om ()
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( Regge factorisation at NNLL accuracy]

ME0=) . g Regge pole, one Reggeised gluon
8., Regge cut, three Reggeised gluons (N~subleading)

MBL=) . 8, Regge pole, one Reggeised gluon
8., Regge cut, three Reggeised gluons
10 ¢ 10, Regge cut, three Reggeised gluons Caron-Huot GardiVernazza 2017

the N-subleading pole-factorisation violation (8., Regge cut, three Reggeised gluons)
predicted for AM©317) inVDD Falcioni Magnea Vernazza 2014
confirmed by the 3-loop 4-pt amplitude computation in full N=4 SYM  Henn Mistlberger 2016

one must also consider the imaginary parts at NLL accuracy,
since their squares would be relevant to resummations at NNLL accuracy

MEOF) . 8 Regge pole, one Reggeised gluon
| and 27, Regge cut, two Reggeised gluons
MEZL+) .1 and 27, Regge cut, two Reggeised gluons
Caron-Huot Gardi Reichel Vernazza 2017

finally, we may ignore Q% since it contributes to the imaginary parts at NNLL accuracy,
and to the real parts at N3LL accuracy Caron-Huot Gardi Vernazza 2017



(Building blocks of BFKL at NNLL accuracy )

The building blocks of a would-be BFKL ladder at NNLL accuracy

@  RRR:the emission of three partons along the ladder

5 VDD Frizzo Maltoni 1999

@  VVV:the three-loop Regge trajectory Caron-Huot GardiVernazza 2017

©

still unknown

RRV: the one-loop correction to the emission of two gluons, or a qq pair, along the ladder

RVV: the two-loop correction to the emission of a gluon along the ladder



(Planar N=4 Super Yang Mills)

In the last years, a huge progress has been made in understanding
the analytic structure of the S-matrix of planar N=4 SYM

Besides the ordinary conformal symmetry,

in the planar limit the S-matrix exhibits a dual conformal symmetry
Drummond Henn Smirnov Sokatchev 2006

Accordingly, the analytic structure of the scattering amplitudes is

highly constraint

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005
Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the finite part of the amplitudes is given in terms of a
remainder function R.The symmetries only fix the variables of R (some
conformally invariant cross ratios) but not the analytic dependence of R
on them



@

for n = 6, the conformally invariant cross ratios are
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x; are variables in a dual space s.t. Ppi = i — Zit1
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for n points, dual conformal invariance implies dependence on 3n-15
independent cross ratios

2 2 2 2 2 2
T i45Ti42,i44 TN i43TT,i4-2 L1 i4aT243
U1, = D) ’ Ug; = D D ’ uz; = D) D)

2
Lit1,i+4Li42,i+5 LN i+2071i+3 L1 i4+3%2 i+4

Tit+2 Ti+3  Tiy2 Ti+4  Ti43

Lit+4

Tiy5

U4 U4 U3;




Q@ amplitudes in planar N=4 SYM are much simpler
than in Standard Model processes

Q@ use planar N=4 SYM as a computational lab:

w to learn techniques and tools to be used in Standard Model
calculations

¥ to learn about the bases of special functions which may occur
in the scattering processes



(Multi-Regge kinematics in planar N=4 SYM)

@ Amplitudes in multi-Regge kinematics (MRK) at LL accuracy factorise
in terms of building blocks, which are expressed through Regge poles
and can be determined through the 4-pt and 5-pt amplitudes

Q@ In planar N=4 SYM, the symmetries (BDS ansatz) fix the 4-pt and
5-pt amplitudes to all orders. Thus, it comes as no surprise that
(in the Euclidean region) the remainder functions R vanish at all points
Brower Nastase Schnitzer Tan; Bartels Lipatov Sabio-Vera;VDD Duhr Glover 2008

@ If, before taking the multi-Regge limit, we analytically continue to
regions of the Minkowski space where some Mandelstam invariants
may pick up a phase, the amplitude may develop cuts,

due to 2-Reggeon exchange.
The discontinuity of the amplitude is described by a dispersion relation

for the adjoint, which is similar to the singlet BFKL equation in QCD
Bartels Lipatov Sabio-Vera 2008



(Discontinuity of the amplitude in MRK)

6-pt amplitude n-pt amplitude

continue to a Minkowski region

S34, 856 <0 S, 845 >0

one cross ratio picks up a phase

512545 i

—+\u1\e_2”

U1 =
53455456

compute  Disc(M)|s,.




( Moduli space of Riemann spheres ]

in MRK, there is no ordering in transverse momentum,
i.e. only the n-2 transverse momenta are non-trivial

dual conformal invariance in transverse momentum space
implies dependence on n-5 cross ratios of the transverse

momenta
. = (X1 — Xiy3) (Kig2 —Xip1) Qi ks i=1....n—5
(X1 — Xit1) (Xi+2 — Xit3) qi—1 kit

@

q1

X1 e

aN-—5

Mo = space of configurations of p points on the Riemann sphere

e X3

Because we can fix 3 points at 0, |, 00, its dimension is dim(#o,)= p-3

Q o2 is the space of the n-pt amplitudes in MRK, with dim(#o,..2) = n-5

Its coordinates can be chosen to be the z/s,
i.e.the cross ratios of the transverse momenta

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

@ on M, the singularities are associated to degenerate configurations

when two points merge x; = X+
i.e. when momentum p; becomes soft pi = 0



( Iterated integrals on #n-2 )

Q@ iterated integrals on .%o, can be written as multiple polylogarithms (MPL)
» amplitudes in MRK can be written in terms of MPLs Brown 2006

@  unitarity implies that for massless amplitudes

@  dual conformal invariance requires that the first entry be a cross ratio
in particular, for amplitudes in MRK A(M) =In|x; —x;°® ...

Q@  except for the soft limit pi = 0,in MRK the transverse momenta never vanish

x; — x;|* #0 * single-valued functions

thus, n-point amplitudes in MRK of planar N=4 SYM can be written
in terms of single-valued iterated integrals on 4 -2

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

Q@  for n=6, iterated integrals on .#o4 are harmonic polylogarithms
so, 6-point amplitudes in MRK of can be written in terms of

single-valued harmonic polylogarithms (SVHPL) Dixon Duhr Pennington 2012



( Unitarity on massless amplitudes )

Q@ analytic structure of amplitudes is constrained by unitarity Disc(M) = iMM!'

massless amplitudes may have branch points when Mandelstam invariants
vanish sj = 0 or become infinite sjj =

discontinuity acts in the first entry of the coproduct ADisc = (Disc ® id)A

then the coproduct of an amplitude is related to unitarity, Duhr 2012

and for massless amplitudes A(M) =1In(s;;) ® ...



-
 MRK at LL accuracy)

Q@ In MRK, 6-pt MHV and NMHYV amplitudes are known at any number of loops

Lipatov Prygarin 2010-201 |
Dixon Duhr Pennington 2012
Lipatov Prygarin Schnitzer 2012

@ knowing the space of functions of the n-point amplitudes in MRK,

(i.e. that is made of single-valued iteratec
allowed us to compute all MHV amplituc

integrals on #on-2)
es at £ loops in LL accuracy

in terms of amplitudes with up to (£+4) points, in practice up to 5 loops,

and all non-MHYV amplitudes in LL accuracy up 8 points and 4 loops
VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

for MHV amplitudes in MRK at LL accuracy at:
® at 2 loop, the n-pt remainder function R,(?)

of 2-loop 6-pt remainder functions Rs(?)
°

can be written as a sum

Prygarin Spradlin Vergu Volovich 201 |
Bartels Kormilitzin Lipatov Prygarin 201 |
Bargheer Papathanasiou Schomerus 2015

® at 5 loops, the n-pt remainder function R,(®) can be written as a
sum of 5-loop 6-, 7-, 8- and 9-pt amplitudes
VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

Q MRK factorisation works also for non-MHV amplitudes,
however at each loop the number of building blocks is infinite



(Beyond the LL accuracy)

The building blocks of 6-pt amplitudes: N
impact factors and 2-Reggeon exchange,
have been determined at finite coupling
Basso Caron-Huot Sever 2014
I
2

Beyond 6 points, the only additional building block -
is the central-emission vertex.

That has been determined at NLO, which allows for
computing the 7-pt amplitudes at NLL accuracy

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2018 -




(BFKL eigenvalue at LL accuracy in QCD)

Q@ The singlet LL BFKL ladder in QCD, and thus the dijet cross section

in the high-energy

imit, can also be expressed in terms of SVHPLs,

i.e.in terms of single-valued iterated integrals on . #0.4

VDD Dixon Duhr Pennington 2013

Q@ Mueller & Navelet evaluated analytically the inclusive dijet cross section
up to 5 loops.We evaluated it analytically up to |3 loops

@  Also, we could evaluate analytically the dijet cross section differential
in the jet transverse energies or the azimuthal angle between the jets

(up to 6 loops)



(BFKL eigenvalue at NLL accuracy in QCD)

Q At NLL accuracy in QCD and in N=4 SYM, the eigenvalue is

1 1 1 1 3 oL
(1) s | (2 - s(3) (2) ot 2 2 Fadin Lipatov 1998
Won = 3 %n + 3 0 7 0 T YK Xom = 2BoXin +568 Kotikov Lipatov 2000, 2002

with one-loop beta function and two-loop cusp anomalous dimension

G 12N o) _ 1 (64 10N;\ G
0= 3 T 3N, K T3 \9 " 9N, 2
and with

51(/%1) — Q%Xvn Xvn — Wz(/gz)

by = —2®0(n,7) — 2®(n, 1 —7)

&2:—Fg+wﬁ@_”0h(1+w>—¢cewal

20V 2 2
" [5”0 (3 ! (1 ! ﬁf) e 23%211?22)) ~ i ((l § xf) G- ;)—(? : m))]

®(n,Y) is a sum over linear combinations of Y functions
and Y is a shorthand Yy = [/2 + iV

In blue we labeled the terms which occur only in QCD,
in red the ones which occur in QCD and in N=4 SYM



(BFKL ladder in a generic SU(N.) gauge theory]

In moment space, the maximal weight of the BFKL eigenvalue and of

the anomalous dimensions of the leading twist operators which control
the Bjorken scaling violations in QCD is the same as the corresponding
quantities in N=4 SYM (Principle of Maximal Transcendentality)

Kotikov Lipatov 2000, 2002
Kotikov Lipatov Velizhanin 2003
Interestingly, in transverse momentum space at NLL accuracy, the maximal weight

of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

VDD Duhr Marzucca Verbeek 2017

There is no theory whose BFKL ladder has uniform maximal weight which agrees
with the maximal weight terms of QCD

We determined the conditions for a SU(N.) gauge theory to have a BFKL ladder
of maximal weight, and found that there are four solutions to those conditions

,'\" 4 2 1 1
na | O 0 0 2 VDD Duhr Marzucca Verbeek 2017
np | 0 AN, 6N, 2N

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nr= 2N, hypermultiplets
— the third is N=1 superconf. QCD



(Lipatov large N picture)

Q@ In MRK, amplitudes of QCD in the large N¢ limit and amplitudes of
planar N=4 SYM are described by similar (BFKL-like) Hamiltonians,

corresponding to the t-channel exchange of n Reggeons
P & & 88 Lipatov 1993 - 2009

) — 1 1
H=h+h h=) hiin hi2 = In(p1p2) + o In(p12)p1 + . In(p12)p2 — 2¢(1)
i=1 1 2
. .0
P12 = P1 — P2 Pr = Tk + W Pr = 1——
Opk

@ those Hamiltonians coincide with the Hamiltonian

of an integrable Heisenberg spin chain Lipatov 1994
Faddeev Korchemsky 1995

@ the Hamiltonians differ only by the boundary conditions, which one
chooses for the t-channel exchange of an adjoint (— open spin chain)
in planar N=4 SYM, or of a singlet (— closed spin chain) in large N. QCD

P1Pn

singlet £, ; — In==
q

adjoint

Q the simplest case is the t-channel exchange of two Reggeons

(— two links on the spin chain), which corresponds to the BFKL
equation in QCD and to the 6-pt amplitude in planar N=4 SYM



(Double discontinuity of the amplitude in MRK]

@ in planar N=4 SYM, 3-Reggeon exchange
starts occurring with the 8-pt amplitude. -
We need take the double discontinuity

8-pt amplitude

continue to a Minkowski region I

S, S4567, S56 > 0

S34, 545, 567, S78 < 0

@ we examined the double discontinuity
of two-loop amplitudes, and found that impact factor
it is determined to any number of points
by building blocks which appear through
9 points.

Caron-Huot VDD Duhr Dulat Penante, in preparation

This is consistent with the picture above: the building blocks
of double Disc are impact factors and 3-Reggeon exchange.
Beyond 8 points, the only additional building block

is the central-emission vertex, occurring at 9 points



(Conclusions)

Q@ In QCD,amplitudes in the Regge limit features one-Reggeon exchange
through NLL accuracy (for the real part,and 2-Reggeon exchange for

the imaginary part)

3-Reggeon exchange appears in Nc-subleading pieces at NNLL accuracy

Although we are far from having a BFKL ladder,
we understand the NNLL context in which it would arise

Q@ In analogy to planar N=4 SYM, the functions which characterise
the BFKL ladder in QCD are single-valued functions,
specifically (generalised) SVMPLs

@ In planar N=4 SYM, 2-Reggeon exchange is understood, even at
finite coupling (where we just miss the central-emission vertex).
At weak coupling, we know amplitudes at LL and NLL accuracy,

in terms of SYMPLs

@ We have just begun exploring 3-Reggeon exchange



Back-up slides



(Factorisation in MRK at LL accuracy)

Q  Factorisation in MRK at LL accuracy implies that the building blocks are: =~ ---------

the impact factors, the 2-Reggeon exchange, and the central-emission vertex o1 ex
q1 e X3 :
Q For the helicities hy, ..., hn.4 define the ratio ko
X1 e
o AP (=4, ) IMRK, LLA R xm_skw_li
Q@ factorisation in MRK at LL accuracy av-a [ e XN-2

Rhl,...,hN_4 (7-17 Zly+++3yTN—=5, ZN—5>

o0 N-—-5
. ; | PR T
~271 Z Z a ( H — In"* Tk> g,(lll,_'_,hz_i)(zl, iy ZN_5)

i=2 i1+ iy _s—i—1 p—1 Uk 2
with Tk = function of cross ratios, and with coefficients
N+4+1 [N=5 +o0 nk/2  p+too d
(’il,...,iN_5) o (_1) 2k Vi 9 .
ghl)"'ah’N—4 (Zl,...7ZN_5) o 2 H Z = 2—|Zk| szEZkknk

k=1 np=—00 “k —0o0 @
k
N -5

h h ; —hn_
X X" (v, 1) H CY (vj—1,mj-1,v5,n5) | X V" (UN—5,nN-5) ChN-5
where: J=2 >

the X’s are the 2 impact factors,
the C’s are the N-6 central-emission vertices |
the E’s are the N-5 BFKL-like eigenvalues for octet exchange




( Convolutions )

we use the Fouries-Mellin (FM) transform

FlF(v,n)] = i (i)n/2 /+OO ;Z—Z 2|*" F(v,n)

2 _
n—=—o00 o0

which maps products into convolutions

FIF -Gl =F|F|xF|Gl=(f*g)(z) = - d—w (w) g<i)

w ) |wf?

we compute the integral through the residue formula

d2
/ 2 (2) = ResecaoF(2) = 3 Resucy, F(2) Schnetz 2013

where F is the antiholomorphic primitive of f 0.F = f



( Convolutions and factorization )

Q through the FM transform of the BFKL eigenvalue
E(z) = F[Eyn]
we can write the recursion

Z1,...,2N_5) = E(z1) * gjf{’;”'N*)(zl, e ZN—5)

which implies that we can drop all the propagators without a log

(O,...,O,'L'al,0,...,O,ia2,O,...,O,iak,O,...,O) (ial,iGQ,...,iak)
g—l—...—l— (p17"'7pN—5) :g—|—...—|— (pialapia27°”710iak)

example for N=7, with h; = h;

which connects amplitudes with a different number of legs



in fact, if all indices are zero except for one

0,....0,i4,0,...,0 i
gi...+ )(:017'“7:0]\7—5) =g§r+>(pa)

which implies that

2 1
RSF.).JL = Z In; gil(m)
1<i<N-5
with
1 1 1
gi)L(,Ol) = —190,1 (p1) — 191,0 (p1) + 591,1 (p1)

which shows, as previously stated, that in MRK at LLA, the 2-loop n-pt remainder function R,(?)
can be written as a sum of 2-loop 6-pt amplitudes, in terms of SVHPLs



At 3 loops, the n-pt remainder function R,(3) can be written
as a sum of 3-loop 6-pt and 7-pt amplitudes

3 1 2 1,1
RY (=2 > Wngllle)+ Y, lmlmgli(ep)

1<i<N—5 1<i<j<N-5

with

gfl(m) = — %Q0,0,l (p1) — igo,l,o (p1) + %go,l,l (p1) — %gl,0,0 (p1)
- 391,0,1 (p1) + %gm,o (p1) — G111 (p1)

1 1 1 1
ggtljrli(ﬂhw) = _ggo,l,pz (p1) — gg(),pg,l (p1) + §g1,1,p2 (p1) — ggl,pg,o (p1)

1 1 1 !
— ggm,m (p1) + ggpg,l,l (p1) + 191,,;2,1 (p1) — Zgl (p2) G1,p5 (p1)

- %Ql (p1) Go,0 (p2) — %Qo (p2) Go.1 (p1) + %% (p2) Go,1 (p1) — %ng (p1) Go,1 (p2)
+ 261 (p2) G (1) — G0 (p2) G0 (p1) + 261 (p2) G0 (p1) + 2Go (p2) G (o)
61 (02) G0t (02) — 501 (01) Gt (02) + Gy (p1) Gt (02) + 50 (p2) G g (1)
+ 561 (92) G (91) — 561 (02) Gyt (1)

Note that R,(3) cannot be written only in terms of SVHPLs, but SYMPLs are necessary



( Mueller-Navelet jets )

Mueller Navelet 1987

Dijet production cross section with two tagging
= jets in the forward and backward directions

Py

Pa = 2o Pa  py, = 2, Pg INCOMINg parton momenta

Pa _
J1

- S: hadron centre-of-mass energy
" S = XaXpS: parton centre-of-mass energy
E7j: jet transverse energies
‘] S
— Tj1H=Tg2
P " is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and
Py resummed through the LL BFKL equation



(Mueller—NaveIet dijet cross section)

Q@  the cross section for dijet production at large rapidity

: S
intervals Ay =1y, —yp =In (_t> > 1

with  §=x.2,8, t=—\/p? p3,

d(Afgg 7 [CAOzS] R R CAOzS
— = f<Q1J_7 q21 , Ay)
dpi dp3 do;; 2 | pi, Py,

can be described through the BFKL Green'’s function

1

+o0 . ~+o00 q2 iv
f(q_)].J_7 JQJ.) Ay) — 5 5 5 Z Eizn(/5 / dv (%) el Xv,n
(277) 71 95 —_ oo — 00 q5 |

CACES

with 7= Ay and @ the angle between qi2and @22 »

and the LL BFKL eigenvalue

L In] L In]

Xu,nZ—QWE—¢<§+7+73V> —¢<§+7—iV)



(Mueller—NaveIet dijet cross section]

@  azimuthal angle distribution (¢ = $-TT)

d6gy _ (Cacy)? o
o =" o T (Z T

nN=—oo

1 1 i x,,n

n dv
with  for =54, e

.o . . A CAas
Q@  the dijet cross sectionis g9 = 2E2 Z forn" Mueller Navelet 1987
f0,0 — 17
fO,l — 07
with Jo2 = 2(2,
foz = —3Cs,
53
Joa =~ G4
1
Jo5 = —=5 (115C5 + 48¢2(3)

12

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops



(BFKL Green’s function and single-valued functions]

Q@  use complex transverse momentum Gk = qj; + iqy
and a complex variable z = ({—1
q2

the Green's function can be expanded into a power series in 7, =@,y

1 1 0t
fLL(CILQQ,??u) — —5(2)(611 — C]2) + E — T (Z)
2 271'1/(]% q% 1 k!

where the coefficient functions f« are given by the Fourier-Mellin transform

+00 —+ o0
LL/.\ _ k1 _ E)”/Q/ av . o &
k (Z) =F [Xyn} - Z (Z I ‘Z| Xvn

n—=—o00 — 00

the fx have a unique, well-defined value for every ratio of the magnitudes
of the two jet transverse momenta and angle between them.
So, they are real-analytic functions of w

{
Razre
-



(Azimuthal angle distribution )

this allows us to write the azimuthal angle distribution as

dogy 7T(CAOés)Q [ (6 _|_§: af (/5.7.7 k
3j

do;; 2B} —

where the contribution of the kt loop is

> d|wl Im Ag(d;;)
JJ
ax(Pjj) = / — fr(w,w*) = —
0 |w| sin ¢
with
1
A1(¢jj) - _§H07
Aa(¢j) = Hip,
2
As(pj) = gHo 0,0 2H110+ CQHO —im (o,
4 4 10 4 ,
Ay(pj5) = —§H0,0,1,0 — Hp 1,00 — ng,o,o,o +4H1 11,0 — C2| 2Ho1 + §H1,0 + §C3 Hy +am (2C2H1 — 2C3) :
46 8 8
As(pj;) = 15]‘1’00000ﬂL 3H00110+2H01010+2H01100+ 3H10010+2H10100
8 33 20
+ §H1,1,0,0,0 —8Hi 11,10 — C2< = Hyo0—4Ho11 —4H101 — §H1 1 o)

8 217 10 10
— (3 (2H0,1 + §H1,0) —C4H0 +am [C2< 3 Hyo—4H; 1) + 4¢3 Hy — EQL]

VDD Dixon Duhr Pennington 2013

where H;; . Hi,j,...(6_2i¢jj>



(Transverse momentum distribution)

A 2
Q dO'gg o 7T(Canfs> 5(]92 _p2 >_|_ 1 b(p 77)
2 2 2 .2 1L 21 2 .2 ’
dpy, dps 2p1, D5, 2 \/PT | P53,
, 2T p k
where p = |v| blosn) = 1— 3 > Bi(p)n
—p
k=1
with
Bl(p) — 17
1
Bz(p) = —5 H() — 2H1 y
1
Bsz(p) = g Hoo +2Ho1 +Hyo+4H 1,
1 4 1 1
By(p) = —ﬂﬂo,o,o —3Ho01 — Ho10—4Hp11 — §H1,0,0 —4H101 —2H1 10— 8H1 11 + 3 3,
Bs(p) = — 2 Ho o0 + 2 Hopr0 + SHooi + 2 Ho o + 4H
5(p) = TogHo0.00 + 5Ho001 + 5Ho01.0 + 5Ho011 + 5Ho00 0,1,0,1
1 8
+2Hp 11,0+ 8Ho 1,11+ EHLO,O,O + §H1,0,0,1 +2H1010+8H1,0,1,1
2 1 2
+ §H1,1,0,0 +8H11,01 +4H11,1,0+16H1 111+ (3 _EHO — §H1 ,

Hi,j,...(PQ) Dixon Duhr Pennington VDD 2013

where H;; .



(Mueller—NaveIet dijet cross section reloaded]

A C'AO‘s)2 i k
the MN dijet cross section is Ogg = 252 Zfo k1]

the first 5 loops were computed by Mueller-Navelet.

We computed it through the |3 loops VDD Dixon Duhr Pennington 2013

13, 3737
foe = —C3+ 120 6
116 3983

fo,7 =——§3C4——C2C5—mC7,

369 50606057
f0,8=——C53+—C2C3 C5C3 m(s,

139 15517 3533 957 5215361

Cuc

<5 <7a

7 3

fo,9 =——C3 C6C3——C4C5——C247 60430 Co
2488 94721 1948 2608 12099 1335931 925669936301
4725
2872 13211 661411
f0,11 — ECBSCB m(533 - 945 C2C.‘3 672 C5 C3 3024 CS C3
~ 795760 M 3024 % 1g200 “*S7 T 340200
74711 13793 3965011 33356851 ¢
162000 93
+ 181420 © 1 0080 G G5 + 75600 4658 T 37gp @27 G
* 7680400 Co s+ 1587600 GG + 620606448000 2 ¥ 2721600
f0,13 - 1890 CS 3 C5 23625 CS 3,3 CZ 235200 CS 5 3 75600 C7 3 C3
12700800 %3 ~ 14175 Ga G 4725 G2Gs G5 7302400
5724191 1874972477 2418071698069
__2379684877<, ¢ __297666465053CC __1770762319<_C 229717224973
11527 7593008000 °°7 " 2494800 °°° 628689600

_ 2

fo,10 = (5,3 C2 — 211680 Gr,3 + C4 (3 + Cz C5C3 + C7 Cs + 47040 Cs + 63504000

242776937 605321 2583643 28702763

¢2Co,

f0,12 - C5,3 C4 7560 CG 4,1, 1+ 793800 C? 3 Cﬁz M

252163 ., 620477 8101339 342869

101571047 71425871 904497401571619 484414571

4513 927248 97003 13411

7997743 187318 125056 17411413

1mw0%@_ %mmogﬁb_zmwmmogﬁ

6048000

G4 Co



(BFKL eigenfunctions at NLLAD

Q At NLLA in QCD, the eigenfunction is Chirilli Kovchegov 2013

@

Duhr Marzucca Verbeek VDD 2017

2 2
=0 _ Bo q Xvn : q Xvn _9
Pun(a) = 2 (0) [1 T (8 om0 P&/xm) +O(a“)]

At NLLA, the expansion of the BFKL ladder is

fla1,q2,v) = f(q1,q2,m0) + @, N (g1 q2,m0) + 00, mu=a,y

fNLL contains the NLO corrections to the eigenvalue and to the eigenfunctions,
however if we use the scale of the strong coupling to be the geometric mean
of the transverse momenta at the ends of the ladder, then we can use the LO
eigenfunctions instead of the NLO ones

+0o0 —+ oo B B L
Fgao Z/ dy 30 (g) BO* (gy) ¥ s (0wl +as(s0)e] |

n=—oo

with  1® =s0 =1/4}43

Duhr Marzucca Verbeek VDD 2017



(Fourier—MeIIin transform)

At NLL accuracy, the BFKL ladder is

s _
fNLL(Ch G2, Msy) = Z — l?—fi—LlL Nso = s(50) Y
Vaia k=1 !

with coefficients given by the Fourier-Mellin transform

+00 400
ANLE: dv y
éVLL( >_I{ 1(/%1) Xl/n i| — Z (%) / 2 ‘Z’m 1(/%1) Xl/n Xvn :w](/(/?’},)

using the explicit form of the eigenvalue
1 3
why) = 1 51(/%1) T3 51(/%3 +4 0% + E)Xun — gﬁoxgn +§C3

the coefficients can be written as
1 1 1 1 3
Y ) = 1 O () + G (R) 7 CP @) T ) - 5 Bo () 5 G S (2)
with CV(z) = ]‘"{5(2) Xom }

the weight of NLL is

weight(NLth)= & k 0<w<k k—-2<w<k k-1 k



(SV functions]

c{”(z)  are SVHPLs of uniform weight k with singularities at z=0 and z=|

0,23)(2') are MPLs of type G(ay,...,an;|2|) with a € {—i,0,i}

they are SV functions of z because they have no branch cut on the positive real axis,
and have weight 0 < w < k

For Cff) (2) one needs Schnetz’ generalised SVMPLs with singularities at

azZ+f 0. 575 €C Schnetz 2016

° T vyZ+6'

then one can show that ('*(z) are Schnetz’ generalised SVMPLs

G(ai,...,an;2)  with singularities at a; € {-1,0,1,-1/%}
VDD Duhr Marzucca Verbeek 2017

In moment space, the maximal weight of the BFKL eigenvalue and of
the anomalous dimensions of the leading twist operators which control
the Bjorken scaling violations in QCD is the same as the corresponding

quantities in N=4 SYM (Principle of Maximal Transcendentality) Kotikov Lipatov 2000, 2002
Kotikov Lipatov Velizhanin 2003

Interestingly, in transverse momentum space at NLL accuracy, the maximal weight

of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM
VDD Duhr Marzucca Verbeek 2017



(BFKL ladder in a generic SU(N.) gauge theory)

Q one can consider the BFKL eigenvalue at NLL accuracy in a SU(Nc) gauge theory
with scalar or fermionic matter in arbitrary representations

1 1 1 ~ ~ 3 L 1 .
W,(/Q — 151(/172 + 151(/272 + 151(/?;3 (NfaNS) + §C3 -+ 7(2>(nf7n8) Xvn — éﬁ()(nf7n8) Xz%n

Kotikov Lipatov 2000

(2)< . 1 (64_10ﬁf_4ﬁ5>_<j_2

11 27, i )
_ n nS - —
A 9 9N. 9N, 9

3 3N. 6N,

with 50(ﬁf7ﬁ8) — y

i i 1
p=3 niTr  Bs=3 niTh  Te(T{TH) =Ted™  Tr=
R R

is(is) = number of scalars (VWeyl fermions) in the representation R

6 (N, No) = 05 (Np, No) + 6,37 (N, N,)

~

. 1 R
with N, = 5;% Tr(2CR = N.), x=fs

Q Necessary and sufficient conditions for a SU(N.) gauge theory to have a BFKL ladder
of maximal weight are:

— the one-loop beta function must vanish
— the two-loop cusp AD must be proportional to G,
— §(32) must vanish = 2N, = N2 + N,

=== [here is no theory whose BFKL ladder has uniform maximal weight which agrees
with the maximal Weight terms of QCD VDD Duhr Marzucca Verbeek 2017



Matter in the fundamental and in the adjoint

We solve the conditions above for matter in the fundamental F and in the adjoint A
representations. Ve obtain:

Qn?:nf 2n?22+nf

which describes the spectrum of a gauge theory with N supersymmetries
and nf = n¢ chiral multiplets in F and nA = n# - N chiral multiplets in A

There are four solutions to those conditions

N 4 2 1 I
nA 0 0 0 2
\

ngp | 0 AN, 6N, 2N VDD Duhr Marzucca Verbeek 2017

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nr= 2N, hypermultiplets
— the third is N=1 superconf. QCD

because the one-loop beta function is fixed by matter loops in gluon self-energies,
we are only sensitive to the matter content of a theory, and not to its details
(like scalar potential or Yukawa couplings)



