

Andrzej J. Buras (Technical University Munich, TUM-IAS)

QCD@Work Matera, June 2018

Overture

AJB:

Strong Belief in Great Future of Kaon Flavour Physics

The Renaissance of Kaon Flavour Physics

1606.06735

The Revival of Kaon Flavour Physics

1609.05711

Kaon Flavour Physics strikes back

1611.06206

The Return of Kaon Flavour Physics

1805.11096

Present Superstars of K Physics

$$\frac{\varepsilon}{\varepsilon} = (16.6 \pm 2.3) \cdot 10^{-4}$$

ε': direct CP violation in $K_L \rightarrow \pi \pi$

 ϵ : indirect CP violation in $K_{L} \rightarrow \pi\pi$

$$\epsilon = e^{i\phi_{\epsilon}} \left(2.23 \pm 0.01
ight) \cdot 10^{-3}$$

$$\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$$
 Mixing

$$(\Delta I = 1/2 \text{ Rule})$$

$$\frac{\operatorname{Re}\mathsf{A}_{0}}{\operatorname{Re}\mathsf{A}_{2}} = 22.35$$

$$A_{0} = A(K \rightarrow (\pi\pi)_{I=0})$$
$$A_{2} = A(K \rightarrow (\pi\pi)_{I=2})$$

$$\mathbf{K}^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu}$$
, $\mathbf{K}_{\mathsf{L}}
ightarrow \pi^{\scriptscriptstyle 0} \nu \overline{
u}$

$$\Delta M_{\kappa}$$

 $\mathbf{K}_{L} - \mathbf{K}_{S}$ Mass difference

Effective Hamiltonian and OPE

$$\begin{split} \mathbf{H}_{eff} &= \sum_{i} \mathbf{C}_{i} \mathbf{O}_{i}^{SM} + \sum_{j} \mathbf{C}_{j}^{NP} \mathbf{O}_{j}^{NP} \\ & \uparrow & \uparrow & \uparrow \\ \mathbf{C}_{i} &= \mathbf{C}_{i}^{SM} + \Delta_{i}^{NP} & \stackrel{Absent in}{SM} \end{split}$$

$$\mathbf{A} \left(\mathbf{K} \to \pi \pi \right) = \sum_{i} \underbrace{\mathbf{C}_{i}(\mu)}_{i} \left\langle \frac{\pi \pi \left| \mathbf{O}_{i}^{\mathsf{SM}}(\mu) \right| \mathbf{K}}{\mathsf{SD}} \right\rangle + \sum_{j} \underbrace{\mathbf{C}_{j}^{\mathsf{NP}}(\mu)}_{\mathsf{SD}} \left\langle \frac{\pi \pi \left| \mathbf{O}_{j}^{\mathsf{NP}}(\mu) \right| \mathbf{K}}{\mathsf{SD}} \right\rangle$$

Example:
$$O^{SM} = (\bar{s}\gamma_{\mu}(1-\gamma_{5})d)(\bar{d}\gamma^{\mu}(1-\gamma_{5})d)$$
 $\mu \approx 1-3 \text{ GeV}$ $O^{NP} = (\bar{s}(1-\gamma_{5})d)(\bar{d}(1-\gamma_{5})d)$ Renormalization
scale

Plan for next 23 min

Dual QCD Approach for Weak Decays

Successful low energy approximation of QCD

W. Bardeen

AJB

J.-M. Gérard

2014

Basics of Dual QCD

Chivukula, Flynn, Georgi Bardeen, AJB, Gérard (1986)

$$\mathbf{L}_{tr} = \frac{\mathbf{F}^{2}}{\mathbf{8}} \Big[\mathbf{Tr} \Big(\mathbf{D}_{\mu} \mathbf{U} \mathbf{D}^{\mu} \mathbf{U}^{+} \Big) + \mathbf{r} \mathbf{Tr} \Big(\mathbf{m} \mathbf{U}^{+} + \mathbf{h.c} \Big) + \mathbf{0} \Big(\mathbf{1} / \Lambda_{\chi}^{2} \Big) \Big]$$

ľ

$$\mathbf{U} = \exp\left[\mathbf{i}\sqrt{2}\,\frac{\Pi}{\mathbf{F}}\right]$$

$$\Pi = \frac{\text{octet of}}{\text{pseudoscalar mesons}}$$

$$r(\mu) = \frac{2m_{K}^{2}}{m_{s}(\mu) + m_{d}(\mu)}$$
$$F \approx F_{\pi} \sim 0 \left(\frac{1}{\sqrt{N}}\right)$$

$$\overline{\mathbf{q}}_{L}^{b}\gamma_{\mu}\mathbf{q}_{L}^{a} = i\frac{\mathbf{F}^{2}}{8}\left[\left(\partial_{\mu}\mathbf{U}\right)\mathbf{U}^{+} + 0\left(\frac{1}{\Lambda_{\chi}^{2}}\right)\right]^{ab}$$

$$\overline{\mathbf{q}}_{R}^{b}\mathbf{q}_{L}^{a} = -\frac{\mathbf{F}^{2}}{8}r\left(\mu\right)\left[\mathbf{U} - \frac{1}{\Lambda_{\chi}^{2}}\partial^{2}\mathbf{U}\right]^{ab}$$

$$\mathbf{q}_{R}^{b}\mathbf{q}_{L}^{a} = -\frac{\mathbf{F}^{2}}{8}r\left(\mu\right)\left[\mathbf{U} - \frac{1}{\Lambda_{\chi}^{2}}\partial^{2}\mathbf{U}\right]^{ab}$$

quark-currents

quark-densities

Meson Evolution

Loops with a physical cutt-off Λ : 1/N non-factorizable contributions

Very different philosophy from Chiral PTh

No dimensional regularisation !!!

Responsible for $\Delta I = 1/2$ Rule, ε'/ε , ε , ΔM_{κ} , $K \rightarrow \pi\pi$ in general.

The Main Role of DQCD

Efficient approximate method for obtaining results for non-leptonic decays: years, even decades before Lattice QCD.

BSM:2018

(1986 - 2012)

24 Giving insight in numerical results obtained by Lattice QCD at 2-3 GeV.

Progress in LQCD $(2012 \rightarrow)$

The only existing QCD method allowing to study analytically the dominant dynamics between m_{κ} and 1 GeV.

MESON EVOLUTION

The pattern of operator mixing found to agree with SD mixing. both for SM and BSM operators.

14 Bari0618

$\hat{\mathbf{B}}_{\mathbf{K}}$ Parameter for $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ Mixing, $\varepsilon_{\mathbf{K}}$

1986	Donoghue et al Pich + Rafael	Ê _κ ≈ 0.33	Ê _κ ≈ 0.4 Ι	Lattice QCD	Â _κ ≈ '
1987	BBG $\hat{\mathbf{B}}_{\mathbf{K}} = \mathbf{C}$	0.67 ± 0.07	$\hat{B}_{\kappa} = 0.75$ (La	rge N limit)	
2018	BBG Â _κ = C Gérard	9.73±0.02 : Ê _κ < 0.75	Lattice QCD:	$\hat{\mathbf{B}}_{\mathbf{K}} = 0.766 \pm$	0.010
	QCD and Ele	ctroweak Pen	guin Matrix E	lements	
1986	BBG strict Large N limit		$B_6^{1/2} = B_8^{3/2}$	² = 1 (µ ≈ 0((m _π))
2015	AJB + Gérard 1507.06326	Including 1/N (meson evolut for B ₆ , B ₈)	ion $B_6^{1/2} < B_8^{3/2}$	² < 1 at µ ≥	1GeV
			Μ	ore about it late	ər.

2018 Results in DQCD

: BSM hadronic Matrix elements

Matrix elements of chromomagnetic penguinsAJB + Gérard1803.08052(First on-shell K $\rightarrow \pi\pi$ calculation to date)

Much smaller than early estimates in chiral quark model

Explanation of BSM B_i parameters (K⁰ – \overline{K}^0 Mixing) obtained by Lattice QCD 1804.02401 (AJB + Gérard)

 $K \to \pi\pi~$ matrix elements of all BSM 4-quark operators

Jason Aebischer

AJB

J.-M. Gérard

(1807.xxxx)

Section 2 ε΄/ε strikes back

2015 Anatomy of $\epsilon^{\prime}\!/\epsilon$: 1507.06345

AJB

AJB

Martin Gorbahn

Jean-Marc Gérard

Sebastian Jäger

Matthias Jamin

Large N news 1507.06326

FSI 1603.05686

Present Status of ε'/ε in the SM

June 2018

RBC-UKQCD (1505.07863)	$(\epsilon'/\epsilon)_{SM} = (1.4 \pm 6.9) \cdot 10^{-4}$	No isospin breaking correction (IB)
AJB, Gorbahn, Jäger Jamin (1507.06345)	$(\epsilon'/\epsilon)_{SM} = (1.9 \pm 4.5) \cdot 10^{-4}$	Lattice results + IB
AJB + Gérard (1507.06326)	$(\epsilon'/\epsilon)_{SM} < (6.0 \pm 2.4) \cdot 10^{-4}$	Dual QCD bound
Kitahara, Nierste, Tremper (1607.06727)	$(\varepsilon'/\varepsilon)_{SM} = (1.1 \pm 5.1) \cdot 10^{-4}$	Lattice results + IB
Gisbert, Pich (1712.06147)	$(\epsilon'/\epsilon)_{SM} = (15\pm7)\cdot10^{-4}$	Chiral Pert. Th.
Experiment (NA48, KTeV)	$(\varepsilon'/\varepsilon)^{exp} = (16.6 \pm 2.3) \cdot 10^{-4}$	

2016 Standard Model Results

Teppei Kitahara

Ulrich Nierste

Paul Tremper

 $(\varepsilon'/\varepsilon)_{SM} = (1\pm 5)\cdot 10^{-4}$

1607.06727

2018

NLO

First NNLO Result for (ε΄/ε)_{SM}

Maria Cerda-Sevilla

New IAS Postdoc

Martin Gorbahn

Ahmet Kokulu

New TUM Postdoc

Four dominant contributions to ϵ'/ϵ in the SM

AJB, Jamin, Lautenbacher (1993); AJB, Gorbahn, Jäger, Jamin (2015)

Assumes that ReA_0 and ReA_2 ($\Delta I=1/2$ Rule) fully described by SM (includes isospin breaking corrections)

Extracted from

$$B_{6}^{(1/2)} = B_{8}^{(3/2)} = 1 \text{ in the large N limit}$$

$$RBC-UKQCD : B_{6}^{(1/2)} = 0.57 \pm 0.19 \quad B_{8}^{(3/2)} = 0.76 \pm 0.05$$

Main Actors in ϵ'/ϵ in SM

Q₆ – QCD Penguin operator Q₈ – Electroweak Penguin operator

$$\begin{aligned} \mathbf{Q}_{6} &= \left(\overline{\mathbf{S}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{V}-\mathbf{A}} & \sum_{\mathbf{q}} \left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{V}+\mathbf{A}} \\ \mathbf{Q}_{8} &= \left(\overline{\mathbf{S}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{V}-\mathbf{A}} & \sum_{\mathbf{q}} \mathbf{e}_{\mathbf{q}} \left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{V}+\mathbf{A}} \end{aligned}$$

Why
$$B_6^{(1/2)} < B_8^{(3/2)} < 1$$
?

and not $B_6^{(1/2)} > 1$, $B_8^{(3/2)} < 1$ (Pallante, Pich... FSI 2000)

Answer in Large N (Dual QCD) Approach AJB + Gérard (1507.06326)

Before 2015 it was wrongly assumed that $B_6^{(1/2)} = B_8^{(3/2)} = 1$ at $\mu \approx 0(1 \text{ GeV})$

But
$$B_6^{(1/2)} = B_8^{(3/2)} = 1$$
 is large N prediction
for $\mu = m_{\pi} \underline{\text{not}} \mu = 0(1 \text{ GeV})$

Meson evolution $m_{\pi} \rightarrow \mu = 0(1 \text{ GeV})$ suppresses $B_6^{(1/2)}$ and $B_8^{(3/2)}$ below 1 and $B_6^{(1/2)}$ stronger than $B_8^{(3/2)}$ in accordance with quark evolution for $\mu > 1 \text{ GeV}$

B₆ and **B**₈ in the Perturbative Regime (1993!)

AJB, Jamin, Lautenbacher, (9303284)

Note $B_6 = B_8 = 1$ at $\mu = m_c$ wrong!!

Scale Dependence of B₆ and B₈

AjB+ Gerard (1507.06326)

AJB, Gérard 1603.05686

Relevant for ∆I=1/2 Rule (in agreement with Pallante, Pich,...)

Less important for ε'/ε (in variance with Pallante, Pich,...) As the existence of Meson Evolution has been questioned over last 30 years by some Chiral Experts by some Lattice Experts

Let me demonstrate its existence by considering BSM operators in $(K^{\circ} - \overline{K}^{\circ} \text{ Mixing})$

ΔS = 2 Operators in SUSY Basis

SM

$$\mathbf{0}_{1} = \left(\overline{\mathbf{s}}^{\alpha} \gamma_{\mu} \mathbf{P}_{L} \mathbf{d}^{\alpha}\right) \left(\overline{\mathbf{s}}^{\beta} \gamma_{\mu} \mathbf{P}_{L} \mathbf{d}^{\beta}\right) \rightarrow \mathbf{B}_{1}$$

BSM

$$\begin{bmatrix}
0_{2} = (\bar{s}^{\alpha} P_{L} d^{\alpha})(\bar{s}^{\beta} P_{L} d^{\beta}) \rightarrow B_{2} \\
0_{3} = (\bar{s}^{\alpha} P_{L} d^{\beta})(\bar{s}^{\beta} P_{L} d^{\alpha}) \rightarrow B_{3} \\
0_{4} = (\bar{s}^{\alpha} P_{L} d^{\alpha})(\bar{s}^{\beta} P_{R} d^{\beta}) \rightarrow B_{4} \\
0_{5} = (\bar{s}^{\alpha} P_{L} d^{\beta})(\bar{s}^{\beta} P_{R} d^{\alpha}) \rightarrow B_{5}
\end{bmatrix}$$

$$\langle 0_{i}(\mu) \rangle \approx \frac{B_{i}(\mu)}{m_{s}^{2}(\mu)}$$

$$\begin{array}{c|c} B_1(0) = 0.75 \Rightarrow B_1(0.7 \ \text{GeV}) = 0.62 & \left| \begin{array}{c} \left| \begin{array}{c} 0.61 = B_1(1 \ \text{GeV}) \Leftarrow 0.53 = B_1(3 \ \text{GeV}) \right| \\ \hline \\ Meson Evolution \end{array} \right| \\ \hline \\ Vector mesons \\ (2014) \end{array} \end{array}$$

(AJB + Gérard, 1804.02401) (ETM15, SWME, RBC-QCD)

BSM
$$K^{0} - \overline{K}^{0}$$
 Mixing

Meson Evolution B_i(Λ) in the Chiral Limit

(Pattern consistent with quark-gluon evolution)

$$\begin{split} & \mathsf{B}_{2}\left(\Lambda\right) = 1.2 \Bigg[1 - \frac{8}{3} \frac{\Lambda^{2}}{\left(4\pi\mathsf{F}_{\mathsf{K}}\right)^{2}} \Bigg] \qquad \text{(strong suppression)} \\ & \mathsf{B}_{3}\left(\Lambda\right) = 3.0 \Bigg[1 - \frac{16}{3} \frac{\Lambda^{2}}{\left(4\pi\mathsf{F}_{\mathsf{K}}\right)^{2}} \Bigg] \qquad \text{(even stronger suppression)} \\ & \mathsf{B}_{4}\left(\Lambda\right) = 1.0 \Bigg[1 - \frac{4}{3} \frac{\Lambda^{2}}{\left(4\pi\mathsf{F}_{\mathsf{K}}\right)^{2}} \Bigg] \qquad \text{(moderate suppression)} \\ & \mathsf{B}_{5}\left(\Lambda\right) = 0.23 \Bigg[1 + 4 \frac{\Lambda^{2}}{\left(4\pi\mathsf{F}_{\mathsf{K}}\right)^{2}} \Bigg] \qquad \text{(strong enhancement)} \end{split}$$

 $\Lambda = Cut-off$, separates the non-factorizable meson evolution physical from the quark-gluon evolution.

Similar to B₆ and B₈

No FSI Meson evolution exhibited much clearer than in K $\rightarrow \pi\pi$

This insight in B_i values from Lattice QCD has been obtained from DQCD without ANY input beyond $\Lambda \approx m_{\rho}$ (Only pseudoscalar masses, F_K and α_{QCD} involved)

No low-energy constants L_i etc. familiar from Chiral Pert. Th.

Question

Can this insight be obtained from Chiral Pert. Th. ?

2

Support for ϵ'/ϵ anomaly from DQCD

Summary on ϵ'/ϵ in the SM

 ϵ'/ϵ anomaly could turn out to be the largest anomaly in flavour physics !

$$(\epsilon'/\epsilon) = (\epsilon'/\epsilon)_{SM} + (\epsilon'/\epsilon)_{NP} (\epsilon'/\epsilon)_{NP} = \kappa_{\epsilon'} \cdot 10^{-3}$$

$$0.5 < \kappa_{\epsilon'} < 1.5$$

(\vert \Lambda \Log_{SM} < (6.0 \pm 2.4) \cdot 10^{-4} \quad Dual QCD
(\vert \Lambda \Lambda \Log_{exp} = (16.6 \pm 2.3) \cdot 10^{-4} \quad \lambda \La

Will new RBC-QCD results support this claim?

Section 3

Beyond SM

Effective Hamiltonian and OPE

$$\begin{split} \mathbf{H}_{eff} &= \sum_{i} \mathbf{C}_{i} \mathbf{O}_{i}^{SM} + \sum_{j} \mathbf{C}_{j}^{NP} \mathbf{O}_{j}^{NP} \\ & \uparrow & \uparrow & \uparrow \\ \mathbf{C}_{i} &= \mathbf{C}_{i}^{SM} + \Delta_{i}^{NP} & \text{Absent in} \\ & \text{SM} \end{split}$$

$$\mathbf{A} (\mathbf{K} \to \pi \pi) = \sum_{i} \mathbf{C}_{i} (\mu) \left\langle \pi \pi \left| \mathbf{O}_{i}^{\mathsf{SM}} (\mu) \right| \mathbf{K} \right\rangle + \sum_{j} \mathbf{C}_{j}^{\mathsf{NP}} (\mu) \left\langle \pi \pi \left| \mathbf{O}_{j}^{\mathsf{NP}} (\mu) \right| \mathbf{K} \right\rangle$$

$$\text{SD} \qquad \text{LD} \qquad \text{SD} \qquad \text{LD} \qquad \text{SD} \qquad \text{LD}$$

Example:
$$\mathbf{O}^{SM} = (\overline{\mathbf{s}}\gamma_{\mu}(\mathbf{1}-\gamma_{5})\mathbf{d})(\overline{\mathbf{d}}\gamma^{\mu}(\mathbf{1}-\gamma_{5})\mathbf{d})$$

 $\mathbf{O}^{NP} = (\overline{\mathbf{s}}(\mathbf{1}-\gamma_{5})\mathbf{d})(\overline{\mathbf{d}}(\mathbf{1}-\gamma_{5})\mathbf{d})$

$$\mu \approx 1 - 3 ~GeV$$

Renormalization scale

All Dimension 6 Operators beyond SM

(lineary independent)

SM	:	7	
BSM	:	7	obtained from SM through L ↔ R (primed operators)
QCD * QED invariant	{	13 13´	operators unrelated to SM operators primed operators L ↔ R
		33	new operators with 33 new Wilson coefficients calculable in a given NP model
SMEFT Invariance	9	(13 + 1	3') \rightarrow (7 + 7') operators unrelated to SM
under SM gauge gro	up		→ 21 new Wilson coefficients

How many new hadronic matrix elements have to be calculated (contributing to A₀ and A₂)?

Message

: More work for Lattice QCD (26 or 14)

No more work for DQCD :

Aebischer, AJB, Gérard (1807.xxxxx) all 26 matrix elements recently calculated including meson evolution in the chiral limit

Magnificant Seven

Allowed by SMEFT

$$Q_{1}^{\text{VLL},d-s} = (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha}) \left[(\bar{d}^{\beta}\gamma^{\mu}P_{L}d^{\beta}) - (\bar{s}^{\beta}\gamma^{\mu}P_{L}s^{\beta}) \right],$$

$$Q_{1}^{\text{VLR},d-s} = (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\beta}) \left[(\bar{d}^{\beta}\gamma^{\mu}P_{R}d^{\alpha}) - (\bar{s}^{\beta}\gamma^{\mu}P_{R}s^{\alpha}) \right],$$

$$Q_{2}^{\text{VLR},d-s} = (\bar{s}^{\alpha}\gamma_{\mu}P_{L}d^{\alpha}) \left[(\bar{d}^{\beta}\gamma^{\mu}P_{R}d^{\beta}) - (\bar{s}^{\beta}\gamma^{\mu}P_{R}s^{\beta}) \right].$$

$$Q_{2}^{\text{SLL},u} = (\bar{s}^{\alpha}P_{L}d^{\beta}) (\bar{u}^{\beta}P_{L}u^{\alpha}),$$

$$Q_{2}^{\text{SLL},u} = (\bar{s}^{\alpha}P_{L}d^{\alpha}) (\bar{u}^{\beta}P_{L}u^{\beta}),$$

$$Q_{3}^{\text{SLL},u} = -(\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\beta}) (\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}u^{\beta}),$$

$$Q_{4}^{\text{SLL},u} = -(\bar{s}^{\alpha}\sigma_{\mu\nu}P_{L}d^{\alpha}) (\bar{u}^{\beta}\sigma^{\mu\nu}P_{L}u^{\beta}),$$

Forbidden by SMEFT but allowed by QCD*QED

$$Q_1^{\text{SLR},u} = (\bar{s}^{\alpha} P_L d^{\beta}) (\bar{u}^{\beta} P_R u^{\alpha}),$$
$$Q_2^{\text{SLR},u} = (\bar{s}^{\alpha} P_L d^{\alpha}) (\bar{u}^{\beta} P_R u^{\beta})$$

 $Q_1^{\text{SLL},d} = (\bar{s}^{\alpha} P_L d^{\beta}) (\bar{d}^{\beta} P_L d^{\alpha}),$ $Q_2^{\text{SLL},d} = (\bar{s}^{\alpha} P_L d^{\alpha}) (\bar{d}^{\beta} P_L d^{\beta}).$

$$Q_1^{\text{SLL},s} = (\bar{s}^{\alpha} P_L d^{\beta}) (\bar{s}^{\beta} P_L s^{\alpha}),$$
$$Q_2^{\text{SLL},s} = (\bar{s}^{\alpha} P_L d^{\alpha}) (\bar{s}^{\beta} P_L s^{\beta}).$$

Anatomy of ϵ'/ϵ beyond the SM in progress: Aebischer, Bobeth, AJB, Straub, 1807.xxxxx

NP Models and ϵ'/ϵ Anomaly

Bobeth + AJB (1712.01295)

Littlest Higgs (T parity)	Blanke, AJB, Recksiegel (1507.06316)		
Z-FCNC	AJB (1601.00005), Bobeth, AJB, Celis, Jung (1703.04753) Endo, Kitahara, Mishima, Yamamoto (1612.08839)		
Z´-Models	AJB (1601.00005), AJB, Buttazzo, Knegjens (1507.08672)		
331- Models	AJB, De Fazio (1512.02869, 1604.02344)		
Vector-Like Quarks	Bobeth, AJB, Celis, Jung (1609.04783)		
SUSY	Tanimoto, Yamamoto (1603.07960) Kitahara, Nierste, Tremper (1604.07400) Endo, Mishima, Ueda, Yamamoto (1608.01444) Crivellin, D'Ambrosio, Kitahara, Nierste (1703.05786) Endo, Goto, Kitahara, Mishima, Ueda, Yamamoto (1712.04959)		
Right-handed Currents	Cirigliano, Dekens, De Vries, Meraghetti (1703.04751)		
SU(2) _L ⊗SU(2) _R ⊗U(1) _{B-L}	Haba, Umeeda, Yamada (1802.09903)		
Leptoquark Models	Bobeth, AJB (1712.01295)		

Main Messages on LQs in ϵ'/ϵ and rare K Decays

If improved lattice calculations will confirm the ϵ'/ϵ anomaly at the level $(\epsilon'/\epsilon)_{NP} \ge 5 \cdot 10^{-4}$ LQs are likely not responsible for it.

But if ϵ'/ϵ anomaly disappears large NP effects from LQs in rare K decays still possible.

(Need non-zero couplings to first generation!!) (Need imaginary couplings!) (Need both left-handed and right-handed couplings!)

In contrast to most explanations of B-anomalies

Section 4

Summary

The inclusion of meson evolution in the phenomenology of any non-leptonic transition like $K^0 - \overline{K}^0$ mixing, $K \to \pi\pi$ decays ($\Delta I = 1/2$ Rule, ϵ'/ϵ) is mandatory !

Meson Evolution is hidden in LQCD results but among analytic approaches only DQCD takes this important QCD dynamics into account.

DQCD Prediction

ε'/ ε anomaly will be confirmed by RBC-UKQCD this summer !

$K \rightarrow \pi \pi$ hadronic matrix elements of all DIM=6 BSM operators will be available soon (DQCD)

Tensor-Tensor and scalar-scalar operators could be behind the ϵ'/ϵ anomaly

Open Questions for Coming Years

$$\begin{array}{c} \mathsf{Br}\big(\mathsf{K}^{+} \to \pi^{+} \nu \overline{\nu}\big) ?\\ \mathsf{NA62} \end{array} \qquad \begin{array}{c} \mathsf{Br}\big(\mathsf{K}_{\mathsf{L}} \to \pi^{0} \nu \overline{\nu}\big) ?\\ \mathsf{KOTO} \end{array} \qquad \begin{array}{c} \mathsf{B} \to \mathsf{K}\big(\mathsf{K}^{*}\big) \nu \overline{\nu} ?\\ \mathsf{Belle} \end{array} \\ \\ \begin{array}{c} \mathsf{Belle} \end{array} \\ \end{array} \\ \begin{array}{c} \left(\epsilon'/\epsilon\right)_{\mathsf{SM}}, \kappa_{\epsilon'} ?\\ \end{array} \qquad \begin{array}{c} \left(\epsilon_{\mathsf{K}}\right)_{\mathsf{SM}}, \kappa_{\epsilon} ?\\ \end{array} \end{array} \qquad \begin{array}{c} \left(\Delta\mathsf{M}_{\mathsf{K}}\right)_{\mathsf{SM}} ?\\ \end{array} \end{array}$$

New Anomalies in Flavour Physics (B, D, LFV)?

New Particles discovered at the LHC?

What about $\Delta I = 1/2$ Rule?

(New Physics at 10-20% ?)

Lattice QCD Can hopefully answer this question. **Coming Years** : Flavour Precision Era

LHC Upgrade E = 14 TeV (CERN) Precision B_{d,s} – Meson Decays LHCb, CMS KEK (Japan)

$$K^{+} \rightarrow \pi^{+} \nu \overline{\nu} \quad (\sim 10^{-10}) \text{ (CERN)}$$
$$K_{L} \rightarrow \pi^{0} \nu \tilde{\nu} \quad (\sim 3 \cdot 10^{-11}) \text{ J-PARC}$$
$$\text{(Japan)}$$

Lepton Flavour Improved **Electric** Violation Lattice Dipole Moments **Gauge Theory** $\mu \rightarrow e\gamma$ **Calculations** $\mu \rightarrow eee$ $\tau \rightarrow \mu\gamma, \ \tau \rightarrow 3\mu$ 313 $\Delta I = \frac{1}{2}$ Rule, (g-2)_{...} **Neutrinos** ΔM_{κ}

Exciting Times are just ahead of us !!!

Exciting Times are just ahead of us !!!

Backup

 ε'/ε strikes back (CP-Violation in $K_L \rightarrow \pi\pi$)

New results on hadronic matrix elements of QCD penguin (B_6) and electroweak penguin (B_8) operators

More papers later

(1703.04753)

Littlest Higgs Model (Blanke, AJB, Recksiegel, 1507.06316) 331 Models (AJB, De Fazio, 1512.02869,1604.02344) New Strategy (AJB, 1601.00005) Vector-like Quarks (Bobeth, AJB, Celis, Jung, 1609.04783) Leptoquarks (Bobeth, AJB, 1712.01295) Bari0618

51

General Z' at Work

Can solve anomalies in R_K, R_{K*}, P₅['] (many papers)

Here:
$$\epsilon'/\epsilon, \mathbf{K}^+ \to \pi^+ \nu \overline{\nu}, \mathbf{K}_L \to \pi^0 \nu \overline{\nu}, \Delta \mathbf{M}_K$$

$$Q_6, Q_6' - QCD$$
 Penguin operators $Q_8, Q_8' - Electroweak$ Penguin operators

$$\mathbf{Q}_{6} = \left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{V}-\mathbf{A}} \qquad \sum_{\mathbf{q}} \left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{V}+\mathbf{A}}$$
$$\mathbf{Q}_{8} = \left(\overline{\mathbf{s}}_{\alpha} \mathbf{d}_{\beta}\right)_{\mathbf{V}-\mathbf{A}} \qquad \sum_{\mathbf{q}} \mathbf{e}_{\mathbf{q}} \left(\overline{\mathbf{q}}_{\beta} \mathbf{q}_{\alpha}\right)_{\mathbf{V}+\mathbf{A}}$$

$$s$$
 Z' $\overline{v}, \overline{q}$ v, q

$$\begin{array}{c} \textbf{Strategy} \quad (\textbf{Z}') \\ AJB (1601.00005) \end{array}$$

$$(\varepsilon'/\varepsilon)^{NP} = \kappa_{\varepsilon'} \cdot 10^{-3} \\ \textbf{0.5} \leq \kappa_{\varepsilon'} \leq \textbf{1.5} \\ (Im) \quad (Im, Re) \\ \textbf{(Im)} \quad (Im, Re) \\ \textbf{Re and Im Parts: Z' Couplings} \end{array}$$

$$\begin{array}{c} \varepsilon_{\kappa} \text{ more important} \\ \textbf{than } K_{L} \rightarrow \mu^{+}\mu^{-} \\ \textbf{in Z' models} \end{array}$$

$$\begin{array}{c} \Delta_{L}^{sd}(\textbf{Z}), \ \Delta_{R}^{sd}(\textbf{Z}) \\ \textbf{(Im)} \\ \textbf{(Re, Im)} \\ \textbf{(Im)} \\ \textbf{(Re)} \\ \textbf{(Im)} \\ \textbf{(Re)} \\ \textbf{(Im, Re)} \end{array}$$

Basic Structure of NP Contributions

AJB (1601.00005)

$$\begin{split} & \left(\epsilon^{\tilde{}}/\epsilon \right)^{\mathsf{NP}} \to \mathsf{Im} & \epsilon^{\mathsf{NP}}_{\mathsf{K}} \to \mathsf{Im} \cdot \mathsf{Re} \\ & \left(\kappa_{\epsilon^{'}} \ge 0.5 \right) & \left(\kappa_{\epsilon} \ge 0.1 \right) \\ & \Delta \mathsf{M}^{\mathsf{NP}}_{\mathsf{K}} \sim \left[\left(\mathsf{Re} \right)^2 - \left(\mathsf{Im} \right)^2 \right] \end{split}$$

Dominance of
$$\mathbf{Q}_{6}(\mathbf{Q}_{6}) \Rightarrow \mathbf{Im} \gg \mathbf{Re} \Rightarrow \left\{ \Delta \mathbf{M}_{K}^{NP} < \mathbf{0} \right\}$$
(large)

Dominance of
$$Q_8(Q_8) \Rightarrow \text{Re} \gg \text{Im} \Rightarrow \{\Delta M_K^{NP} > 0\}$$
(small)

Distinction between these scenarios

Main Message

Correlation between ϵ'/ϵ and $K \to \pi v \overline{v}$ in Z' scenarios depends on whether QCP Penguin (Q₆) or EWP (Q₈) dominates NP in ϵ'/ϵ

Effects in $K \rightarrow \pi v \bar{v}$ much larger if Q_6 dominates NP

 ϵ'/ϵ within SM

$$\epsilon'/\epsilon \sim \left[\frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \operatorname{Im} C_6 \langle Q_6 \rangle_0 - \operatorname{Im} C_8 \langle Q_8 \rangle_2 + \text{ smaller contributions} \right]$$

$$\left\{ \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \approx \frac{1}{22} \quad \frac{\operatorname{Im} C_6}{\operatorname{Im} C_8} \approx 90 \quad \frac{\langle Q_8 \rangle_2}{\langle Q_6 \rangle_0} \approx 2 \right\} \Rightarrow \text{ strong cancellations}$$

$$\epsilon'/\epsilon \text{ beyond SM} \quad \left(Q_6, Q_8, Q_6', Q_8' \right)$$

$$\left\{ \frac{\operatorname{Re} A_2}{\operatorname{Re} A_0} \otimes Q_8 \text{ wins over } Q_6 \text{ because} \left(\frac{\operatorname{Im} C_6}{\operatorname{Im} C_8} \right)^{\operatorname{NP}} \approx 0(1) \right\}$$

- Q₆ wins over Q₈ in the presence of a flavour symmetry forbidding Q₈
- **3.** Chromomagnetic operators

Stars of KAON Flavour Physics

$$\begin{split} \epsilon_{\kappa}, \Delta M_{\kappa} & \epsilon'/\epsilon & K^{+} \to \pi^{+} \nu \overline{\nu} & K_{L} \to \pi^{0} \nu \overline{\nu} \\ \hline K_{L,S} \to \mu^{+} \mu^{-} & K_{L} \to \pi^{0} I^{+} I^{-} & \Delta I = 1/2 \text{ Rule} \end{split}$$

They all can give some information about very short distance scales but to identify new physics, correlations with $B_{s,d}$ and D observables, EDMs, Lepton physics crucial

In particular if we want to reach Zeptouniverse without any direct hints from the LHC

