



## Prospects for Higgs Boson Measurements and Beyond Standard Model Physics at the High-Luminosity LHC with CMS

Rosamaria Venditti

Politecnico and INFN, Bari

On behalf of the CMS Collaboration

QCD@Work 2018: International Workshop on QCD: Theory and Experiment 25-28 Jun 2018, Matera (Italy)

## **The HL-LHC Project**

• To extend the sensitivity for new physics searches, a major upgrade of the LHC has been decided and is being prepared, the High Luminosity LHC starting from 2023.



### The CMS Experiment and the Phase 2 Upgrade

#### **New Tracker**

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to η ~ 4

#### **Barrel ECAL**

- Replace FE electronics
- Cool detector/APDs

#### **Barrel HCAL**

- Replace HPD by SiPM
- Replace inner layers scint. tiles?

#### **Trigger/DAQ**

- L1 (hardware) with tracks and rate up ~ 750 kHz
- L1 Latency 12.5 μs
- HLT output rate 7.5 kHz
- New DAQ hardware

#### **Other R&D**

• Fast-timing for in-time pileup suppression

#### Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to  $\eta \sim 3$
- CSC replace FE-Elec. for inner rings (ME 2/1, 3/1, 4/1)

#### New Endcap Calorimeters

- Radiation tolerant
- High granularity (HGCAL)

New all Al beam pipe with smaller cone angle and cyl. central pipe

#### **Proposal for a Timing layer**

- Timing resolution ~ 10 ps
- Space resolution ~ 10's of  $\mu m$

### The CMS Physics Program in the HL-LHC era

#### • Precision SM physics with High Luminosity

- Electroweak Physics (VBF and VBS, Triboson production, Foward EW physics)
- Strong Interactions (Photons and Jets, PDFs, Forward QCD physics)
- Top physics (Cross section, properties, couplings, mass, FCNC)
- Precision measurements in the (B)SM Higgs sector
  - Couplings to ~5%, Cross Sections, Differential Distributions, Width, top Yukawa
  - Rare & Exotic decays
  - Di-Higgs Production  $\rightarrow$  self coupling
  - BSM Higgs searches (extra scalars, BSM Higgs resonances, anomalous couplings)
- More exotic models become accessible thanks to the detectors upgrades at HL-LHC
  - Supersymmetry
  - Dark Matter Searches
  - Long Lived Particles, HSCP
  - Heavy Resonances, VLQ
- Flavor: Can we solve the puzzle of flavor with HL-LHC data?
  - Flavour Anomalies, CKM and Metrology, Spectroscopy

**Selected Examples in this talk** 

### **Higgs Searches**

R. Venditti-CMS Coll.

## **Higgs searches – the strategy**

### • HL-LHC will be a Higgs factory: over 170 million Higgs bosons in 3000 fb<sup>-1</sup>

- Achieve high precision measurements (down to the level of a few percents)
- With this precision → any deviations from SM would reveal New Physics (additional particles in loop processes (gluon fusion, di-photon decay)
- Reach sensitivity to coupling to 2nd generation ( $H \rightarrow \mu\mu$ )
- Extrapolation Strategy:
  - Projections: based on Run 1-2 at 7-13 TeV, extrapolate event yields and potentially systematic uncertainties using 1/sqrt(L)
  - Simulation: In 14 TeV MC, smear truth particles with resolutions expected with upgraded detectors in the Phase 2 collision conditions (200 pile-up interaction per BX)
- Several assumptions made for the coupling determination
  - **S1**: systematic uncertainties constant, unchanged detector performances
  - S2: theoretical uncertainties scaled by 0.5, experimental uncertainties scaled by luminosity

### **Higgs couplings and strenghts**

- Extrapolations based on Run1 results, effect of high pileup and upgraded detector not considered
- Precision on the signal strength and couplings: 5% for main channels, 10~20% on rare modes



## Rare decays: $H \rightarrow \mu\mu$

- HL-LHC will provide high statistics  $\rightarrow$  rare decays become accessible [BR(H $\rightarrow$ µµ)=0.022]
- Probe coupling to 2nd generation of fermions
- $H \rightarrow \mu\mu$  decays can be completely reconstructed and identified as a mass peak on top of the large background from Drell–Yan di-muon production.
  - The di-muon invariant mass resolution is critical to maximizing the sensitivity
- Upgraded tracker allow to reach a mass resolution < 1% in Phase 2

 $\rightarrow$ Large impact on the analysis sentivity  $\rightarrow$  40% reduction of the systematics  $\rightarrow$  Prospects for coupling measurement  $\rightarrow$  5% uncertainty @ 3000fb<sup>-1</sup>



8

# **Top quark couplings**

- Extrapolation performed from 12.9 fb<sup>-1</sup> at 13 TeV of the early Run 2 analyses, taking into account effect of upgraded detector and pile-up conditions
- Recent combination of Run 2 results (35fb<sup>-1</sup>) allow to reach 10-20% uncertainty level
  - All of them (but  $k_{\mu}$  and  $k_{b}$ ) are systematics limited (theo and exp sys are now central)
- Statistics crucial in ttH ( $\gamma\gamma$ , ZZ $\rightarrow$ 4I) channels, although systematics also important
  - HL-LHC can bring uncertainty on tth rate down to 10% level
- Further improvement expected by incorporating features of recent Run 2 analyses (ttH)



# Higgs differential Cross Section

- Differential cross sections provide an interesting portal to a number of physical observables
  - The shape can be tested vs SM expectation:
    small variation of the couplings can lead to significant shape distortions
- p<sub>T</sub><sup>H</sup>: Sensitivity to modifications of effective Higgs Yukawa couplings at low pT and to finite top mass effects at high pT
- Jet multiplicity and first jet pT→New physics in the loop, sensitivity at high pT
- Rapidity |y<sup>H</sup>|: Theory distribution mostly determined by the gluon PDF; possible test
- Run2 results dominated by statistical uncertainties
- 3 ab<sup>-1</sup> of data opens up possibilities for new measurements, and would provide competitive limits on Higgs couplings





# **Double Higgs Production**

#### Arxiv: 1305.6397, 1505.05488 JHEP 04 (2016) 126

- The measurement of the Higgs boson self coupling is a fundamental test of the SM
- SM predicts a **extremely small cross section** for HH production (33.5 fb at 13 TeV→39 fb at 14 TeV)
- Modified in many BSM scenarios
  - Resonant Searches (MSSM, WED)
  - New Physics is in the ggF loop, anomalous couplings
- Anomalous Higgs boson couplings
  - Strong effect on cross-section and m(HH) shape
  - EFT approach parameterizes BSM theories
  - modifications to  $\kappa_{\lambda} = \lambda/\lambda_{sM}$  and  $\kappa_t = y_t/y_{t,sM}$  + three new interactions: **c2**, **c2g**, **cg** in the lagrangian

### **Run2 Results:**

- Similar sensitivity from several channels to SM HH production → limits reach 20xSM (non-resonant)
- Constraints set on anomalous Higgs boson couplings
  - 12 benchmarks of representative shapes
  - The different final states are complementary in different regions of BSM topologies
- Overall searches are limited by the statistics



## HH at HL-LHC

- Extrapolation from Run II to HL-LHC (3000 fb<sup>-1</sup>) based on 2015 data, about 2.3-2.7fb<sup>-1</sup>
  - Conservative and pessimistic, based on not optimized analyses
- Studies based on **full-sim/Delphes** are on going:
  - bb bb , bb γγ, bb VV, **bb** ττ, and VBF for VVHH
- In the HH→bb ττ performed: full analysis + projection based on full Run 2 dataset (35fb<sup>-1</sup>) → Results agree: UL at 95%CL on σ<sub>HH</sub> /σ<sub>SM</sub>~1.5
  - This is just an estimate in the bbττ channel: combination of all channels (and with ATLAS) allow to reach the discovery sensitivity
  - SM benchmark considered in these estimates
- Analysis improvements are faster than only luminosity gains
  - New tracker with extended acceptance, new timing detectors, high granularity calorimeters
    - 30% improvement in light-jet discrimination
  - x2 background reduction thanks to the enhanced object identification and analysis techniques





### **Beyond Standard Model**

## **SUSY Searches**

### Present LHC has excluded large part of the natural SUSY parameter space

• Limits for strong SUSY production are above 1 TeV

### Still lots of opportunities in the electroweak sector

- May dominate if s-quarks and gluinos are heavy
- In most SUSY breaking scenarios EWK-ino masses are expected to be O(100 GeV) based on naturalness
- EWK-inos are produced via small EWK production cross sections  $\rightarrow$  accessible to HL-LHC

## Search of EWK-inos into WW

- Radiative Natural SUSY (RNS) with higgsino, bino, and wino at a few hundred GeV scale or below, and almost mass degenerate higgsino-like
- The associated production cross section of wino-like expected to be smaller than a few pb
  - Such processes can only be studied with the high luminosity
- In RNS χ2± and χ4 are then expected to decay into higgsinos emitting same charge W bosons with a total branching ratio close to 25%



arxiv 1310.4858 CMS-TDR-017, CMS-TDR-016



jet activity

- Analysis performed using Delphes (fast simulation tool)
- Upgraded CMS detector simulation. Benefit from:
  - Upgraded high-granularity calorimeters  $\rightarrow$  improved  $p_T^{\text{miss}}$ measurement
  - Extended Muon system acceptance → factor 3 reduction of the irreducible WZ background

## Search of EWK-inos into WW

- Two Higgisno mass (μ) scenarios considered:
  - $m(\chi_1) = 150$  GeV is representative of the region of the parameter space outside the reach of the Run 2
  - $m(\chi_1)$  =250 GeV is outside the sensitivity reach of the same search when extrapolated to the HL-LHC
- Wino-like mass degenerate χ2,χ4 are excluded at 95% CL up to 900 GeV in the μ=150 and 250 GeV scenarios



## **SUSY Long Lived Particles**



- Searches for the direct s-particles production with long lifetimes difficult in Run 2
  - gauge-mediated SUSY breaking models where s-muons can be (co-)NLSPs and decay to a muon and a gravitino have been considered to quantify the HL-LHC discovery potential
  - small cross sections (~10<sup>-2</sup> fb for 1 TeV smuon)→become possible at the HL-LHC.
- The sensitivity depends on *cτ*: the shorter the decay lengths the larger the SM bkg
  - Discovery sensitivity of 3σ significance can be reached with 3000fb<sup>-1</sup> of data with the trigger/reconstruction/analysis efficiency closer to the Run 2 in the PU200 environment
  - Key role of the muon system → additional station allow for an efficient reconstruction



R. Venditti-CMS Coll.

## **Heavy Stable Charged Particles**

- Several extensions of the standard model (Split SUSY) predict HSPC as NLSP
  - Lifetime larger than a few nanoseconds  $\rightarrow$  travel through the detector before decaying
  - Mass ~ PeV scale  $\rightarrow$  heavily ionizing the sensor material as they pass through.
  - Model independent searches have been investigated based on TOF and dE/dx
- Very small cross section → the HL-LHC will allow collecting large data sets needed to reach better sensitivity with respect to Run 2
- Upgraded tracker, muon system are crucial for HSCP identification



## **Conclusions and Perspectives**

- HL-LHC will be the first Higgs factory. Potential to reach the percentage level in precision on the Higgs coupling modifiers and signal strengths.
  - Thanks to the high statistics  $\rightarrow$  rare processes become accessible
  - Possibility to study the deviation from the Standard Model
  - Statistically-limited analyses can further combine ATLAS+CMS
  - Towards the high precision era: is important to reduce further the theoretical and experimental systematics
- Rich BSM potential at HL-LHC. Looking forward to another discovery.
  - Several projections and full analyses for a variety of existing benchmark channels.
  - With HL rare processes and low couplings become accessible. New models also welcome.
- Large interplay between theoretical models, extrapolation and detector design for the HL phase
- Update of projections is on-going in view of the CERN Yellow Report that will be released at end of the year towards European Strategy in 2020

Long-term exploration of Higgs sector and New Physics searches will have crucial impact on our understanding of nature

### Backup

# **Triggering at HL-LHC**

### The goals:

- Maintain sensitivity to electroweak scale physics keeping acceptable rate even for low L1 pT thresholds.
- Add sensitivity to new physics scenarios, i.e. acceptance to displaced muons and HSCPs from long-lived particle decays

### The HL-LHC challenges (induced pile-up and electronics):

- worse muon pT resolution
- increase of the trigger rate
- lack of redundancy in the forward region

#### CMS will have new handle to cope these conditions

- New detectors in the forward region (ME0, GE21, RE31,RE41) → Additional bending angle measurement and improved time resolution
- L1 Track Trigger  $\rightarrow$  require clever segmentation for the new detectors
- Increased latency and bandwidth  $\rightarrow$  new on-detector electronic
- Add triggering capabilities in the forward region  $2.4 < |\eta| < 2.8$

### This implies a completly new design for phase 2 Muon trigger

## **BSM searches: HSCP**

- Split SUSY predict the existence of new heavy particles with long lifetimes
  - it can travel through the majority of the detector before decaying and therefore appear as stable
- HSCPs can move much more slowly than muons→identified using **time-of-flight (TOF)** from the center o CMS to the muon systems.
- Particles moving slowly through the muon systems leave hits with a linear pattern in hitposition versus time. The **hits can be spread across several bunch crossings.** 
  - muon detectors with precise timing can provide important information for the HSCP signal searches→exploit RPC time resolution with the upgraded linkboard



# **Displaced Muon trigger performance**

### Very fwd region



L1 muon trigger rate vs trigger pT threshold (left) and trigger efficiency vs true muon pT (right) for the endcap displaced muon algorithm in the region and  $2.1 < |\eta| < 2.4$ . The track veto is not applied here yet.

| 5/06/18 | R. Venditti-CMS Coll. |
|---------|-----------------------|
| 100/20  |                       |

### HL LHC science goals (and guide-lines for experiment upgrade)

### Precision measurement of the Standard Model

- EWK Bosons and fermions couplings
- Differential distributions

### Search for new physics in SUSY and exotic scenarios

- Characterized by small cross sections and/or challenging final state signatures
- displaced tracks and HSCP are probe of new physics

#### Maintain sensitivity to electroweak scale

- keeping accetable rate even for low L1 pT thresholds.
- Ensure robust reconstruction/ID at L1 and offline

### Add sensitivity to new physics scenarios

- Restore TrackTrigger ineff. for d<sub>xv</sub> >2 mm
- Improve pT assignment for displaced tracks
- Use timing info for HSCP triggers

### **Effective weak mixing angle measurement**



- Measurement of the effective weak mixing angle using the forwardbackward asymmetry in Drell-Yan events
  - Generator level study with detector effect smearing
- Significant improvement brought by the extended eta coverage→

significantly increase of the coverage for larger x-values of colliding partons  $\rightarrow$ 

- 30% reduction of the statistical uncertainties
- 20% reduction of the pdf uncertainties

# Н→үү

•  $H \rightarrow \gamma \gamma$ : the di-photon mass resolution is mostly driven by photon energy and vertexing resolutions

 Mass resolution is worsened in the different radiation ageing scenarios of the barrel calorimeter



R. Venditti-CMS Coll.

# H→γγ Systematics Breakdown

### CMS H→γγ

### 35.9 fb<sup>-1</sup> (13 TeV)



Current dominant uncertainties for overall  $\mu$ : uncertainty on **photon identification BDT** 

overall theory uncertainties (due to QCD scale variations, primarily on ggH)

### **Higgs charge-parity**

- $H \rightarrow ZZ \rightarrow 4I$  gives sensitive test of charge-parity
- Angular and mass distributions of leptons and Z bosons
- **Statistics-limited:** Precision in CP-odd fraction all way down to 1% level even with current systematics
- CMS detector will be much improved, and systematics decrease with more data



## Double Higgs Production Upper Limits-Run2



### **VBF tagging:** $H \rightarrow \gamma \gamma$

- $H \rightarrow \gamma\gamma$ : CMS High-Granularity Calorimeter allows inclusion of photons up to  $|\eta| = 3.0$ 
  - increase in efficiency of the analysis by 12% in the barrel only
  - The resolution of endcap-endcap diphoton pairs is found to be very similar to the barrel one
- High granularity and precision timing capabilities of the HGCAL
  - improvement in pileup suppression in primary vertex reconstruction, isolation, jet shape observables and missing energy
  - improved reconstruction and identification of the forward jets in VBF production
- Analysis performed using a multivariate discriminator (BDT), combining photons and jets variables
- Precision in coupling measurment in Run2 analysis limited by JES, Photon ID, Theoretical uncertainties→further room for improvement



# New heavy bosons: W'→tb

- Many SM extensions require additional heavy gauge bosons.
  - SSM predicts the existence of a new massive charged boson, W' (SM W like)
  - additional decay channel W'→tb opening up if the new boson is sufficiently massive.
- In a scenario  $M(v_R) > m(W') \rightarrow$  the decay to leptons is forbidden
- Projections using the baseline analysis at Vs=13 TeV with 12.9 fb-1 data that excludes W' up to 2.67 TeV @ 95% CL





31



### **VBF tagging:** $H \rightarrow \tau \tau$

- The VBF production mode offers a higher signal purity compared to the dominant gluon-fusion production mechanism.
- During the HL-LHC operation O(1M) VBF H  $\rightarrow \tau\tau$  events will be produced.
- Highest Sensitivity to the Yukawa couplings between the Higgs boson and the tau leptons
  - An excellent mass resolution is required, at HL-LHC almost the same as in Run2 → a good measurement of the MET is crucial for pileup mitigation
- Full simulation performed to account for the new tracker and upgraded calorimeters
  - +10% increase in signal acceptance thanks to the tracker and calorimeter extensions
  - Up to a factor 2 in QCD multijet bkg suppression thanks to the precise association of VBF jets to the PV







CMS projected precision at  $3ab^{-1}$  for [S1-S2] scenarios: [5-8]% level on the signal strength [2-5]% level on the coupling modifiers  $\kappa\tau$  $\rightarrow$ The full simulation results confirm the predictions

### **ECFA 2016- Phase 1 Projections**



R. Venditti-CMS Coll.

# LFV Tau $\rightarrow$ 3µ: a test of the SM

- Extremely low cross-section also in BSM models→ accessible at HL-LHC
- The main source of  $\tau$  leptons in pp collisions is  $Ds \rightarrow \tau v$  decays.
  - Muons with very low momenta and boosted in the forward direction.
- The upgraded muon system increases the signal fiducial acceptance by a factor of 2 but
  - worse trimuon mass resolution at high  $|\eta|$  $\rightarrow$  event categorization
  - Optimal Momentum measurement not yet implemented
- Projected exclusion limit for 3000 fb<sup>-1</sup>
  - − B( $\tau$ →3µ) is 4.3×10<sup>-9</sup> at 90% without ME0
  - B(τ→3µ) is 3.7×10<sup>-9</sup> at 90% CL with ME0



The difference can be re-interpreted as an effective gain in integrated luminosity ~1.35  $\rightarrow$  from 3000 to ~ 4000 fb<sup>-1</sup> due to the muon extension

## $H \rightarrow ZZ^* \rightarrow 4\ell$

- During the HL-LHC period gluon fusion is expected to give rise to about 20k H $\rightarrow$  ZZ\*  $\rightarrow$  4 $\ell$  decays, and vector boson fusion will add another ~1550
- Upgraded detectors bring significant improvements:
  - increased acceptances (Tracker+Muon System)  $\rightarrow$ +15%
  - new EM/μ trigger
  - higher reconstruction efficiency and momentum resolution
- Challange: control the experimental uncertainties
  - theoretical uncertainty on the total signal cross section does not play a role.
- Signal acceptance and mass resolution <u>fairly immune to the pile-up conditions</u>
- The increase of acceptance in this channel is relevant in differential measurements, CP measurements, the Higgs mass measurement, and studies of anomalous couplings.



## **Dark Matter Searches**

M<sub>DM</sub> (GeV)

- The DM in the form of WIMPs will be one of the top priorities of the HL-LHC.
- Colliders can set competitive constraints on spin-dependent interactions
  - For the pseudoscalar mediated model, the LHC is uniquely place to probe this interaction
- DELPHES fast simulation tool, with parametrization close to the Run2 analysis

3000 fb<sup>-1</sup> (14 TeV)

= 2 TeV, g\_\_\_ = 1, g\_= 0.25

2000

E<sup>miss</sup> [GeV]

2500

= 450 GeV. M = 3 TeV. a = 1. a = 0.25

1500



Two benachmark models considered

The projected exclusion reach for 3000 fb<sup>-1</sup> at 95% confidence level (3 sys scenario) Sensitivity up to 2.5 TeV for the AV-model and 600 GeV for the PS-model Limits in the best "scaled" uncertainty scenario: 3 TeV (AV) and 900 GeV (PS)

500

Events

10<sup>6</sup>

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

CMS Preliminary Simulation

1000

ckground (V+jets)

# New heavy bosons: Z'→ttbar

- Projections are performed for two signal models:
  - Narrow Z' signal hypothesis: width of the resonance is set to 1% of the resonance mass
  - Randall-Sundrum Kaluza- Klein gluon resonance where the resonance width is 16% of the resonance mass.
- CMS published Z'→tt in two channels I+jets (B2G-15-002), all-hadronic (B2G-15-003)
- Projections for HL-LHC are performed using two scenarios
  - S1: Same systematic uncertainties @13 TeV

#### CMS FTR 16-005 Full simulation ongoing

- S2: Remove all systematic uncertainties, only stat considered
- The realistic case should be in between since reduction in systematic uncertainties is expected
  - QCD multijet background is derived from data and scales with L, ttbar cross section, jet energy scale and resolution, lepton ID efficiencies



S1:expectation is to exclude the narrow Z' model up to 3.3 TeV, and the RS KK Gluon model up to 4 TeV. S2:signal models are excluded to well beyond the 4 TeV limit of this analysis.

```
25/06/18
```

R. Venditti-CMS Coll.

# New heavy bosons: Z'→ttbar

- Projections are performed for two signal models:
  - Narrow Z' signal hypothesis: width of the resonance is set to 1% of the resonance mass
  - Randall-Sundrum Kaluza- Klein gluon resonance where the resonance width is 16% of the resonance mass.
- Projections for HL-LHC are performed using two scenarios
  - S1: Same systematic uncertainties @13 TeV

#### CMS FTR 16-005 Full simulation ongoing

- S2: Remove all systematic uncertainties, only stat considered
- The realistic case should be in between since reduction in systematic uncertainties is expected



Discovery sensitivities in the possible presence of a new physics signal estimated by using toy datasets with different amounts of injected signal. The p-values are used to compute expected significances, reported as the number of standard deviations.

25/06/18

R. Venditti-CMS Coll.