Hybrid and Pentaquark states

E. Santopinto INFN Genova QCD@Work – 25-28 June 2018 Matera, 2018

Hadron spectroscopy: lab. for QCD@ work

Bulk of mass of hadrons Confinement X,Y, Z, etc. new hadron states

 Finally to claim new physics also in other sectors, a precise knowledge of non perturbative QCD observables is necessary if they are involved!

The gluons and the meson spectrum

Gluonic excitation models

Normal meson:

flux tube in

ground state

m=0 CP=(-1) ^{S+1}

a 🙂

Hybrid meson:

flux tube in

excited state

m=l

CP=(-1) s

ā

Flux tube

Lightest multiplet

 $(0, 1, 2)^{-+}, (0, 1, 2)^{+-},$

|--. |++

Lightest multiplet

(0, 1, 2)-+, 1--

Flux tube model

- Gluonic field confined in a tube between q and anti-q
- Linear Regge trajectories
- Hybrid mesons as transverse oscillation of the tube
- Flux-tube breaking give rise to meson decay

Bag model

- Quarks confined inside a cavity
- Full relativistic
- Gluonic excitation: gluonic field modes by boundary conditions

CQM + constituent gluon

- qq + massive transverse quasi-gluon (J_g^{PgCg})
- Gluon adds in relative S-wave to a qq pair is S-wave or P-wave

Starting from the study of the glue-lamp (lamp or "grumo" of gluons or " constituent gluon") as obtained from QCD in physical gauge

Gluelamp in Cb gauge QCD: P.Guo,A.Szczepaniak,G.Galatà,A. Vassallo, E.S.,PRD78,056003(2008)

it is easy to study the ccbar –gluon system, i.e. the hybrids (next two slides)

Charmonia (qq bar) & hybrids (qqg)

	$J_g^{P_g}$	This work [GeV]	J^{PC}	Lattice [14] [GeV]
١[1^{+}	4.476	$0^{-+}, 1^{-+}, 2^{-+}, [1^{}]$	4.291(48), 4.327(36), 4.376(24), [?]
	1-	4.762	$1^{+-}, 2^{++}, [0^{++}, 1^{++}]$	4.521(48), 4.508(48), [?,?]
ſ	2^{+}	5.144	$1^{+}, [2^{-}, 2^{+}, 3^{+}]$	4.696(103), [?,?,?]
	2^{-}	5.065	$2^{+-}, [1^{++}, 2^{++}, 3^{++}]$	4.733(42), [?,?,?]

J_g^{PC}=1⁺⁻, 1⁻⁻

[14]:J. J. Dudek, R. G. Edwards, N. Mathur, and D. G.Richards, Phys. Rev. D 77, 034501 (2008).

c-cbar states (yellow) hybrids (gray-dashed)

First exotic 1⁻⁺ (in agreement with lattice predictions)

1	Coloumbia
7	JLab
	Experiment

The lightest hybrid supermultiplets

The ligthest hybrid supermultiplet predicted (and explained)for charmonia by QCD in physical gauge , $1^{--}(0,1,2)^{-+}$, it is predicted also for light quarks by LQCD

Physical gauge QCD (Hamiltonian)

20XX experimental confirmation - discovery ?

Why pentaquark states?

The LHCb observation [1] was further supported by another two articles by the same group [2,3]:

- [1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115 (2015) 072001
- [2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117 (2016) no.8, 082002
- [3] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 117 (2016) no.8, 082003

Pentaquarks as compact five quark states, E. S., A. Giachino, Phys. Rev. D 96 (2017), 014014

- Using group theory techniques we found that the compact pentaquark states belong to to an SU(3) flavour octet.
- The masses of the octet pentaquark states were calculated by means of a Gürsey-Radicati mass formula extension.

The partial decay widths were calculated by means of an effective Lagrangian:

$$\begin{split} \mathcal{L}_{PNJ/\psi}^{3/2^-} &= i\bar{P}_{\mu} \bigg[\frac{g_1}{2M_N} \Gamma_{\nu}^- N \bigg] \psi^{\mu\nu} - i\bar{P}_{\mu} \bigg[\frac{ig_2}{(2M_N)^2} \Gamma^- \partial_{\nu} N \\ &\quad + \frac{ig_3}{(2M_N)^2} \Gamma^- N \partial_{\nu} \bigg] \psi^{\mu\nu} + \text{H.c.}, \end{split}$$

$$\Gamma_{\nu}^{-} = \begin{pmatrix} \gamma_{\nu}\gamma_{5} \\ \gamma_{\nu} \end{pmatrix}, \qquad \Gamma^{-} = \begin{pmatrix} \gamma_{5} \\ \mathbf{1} \end{pmatrix}.$$

Initial state	Channel	Partial width [MeV]
$P^{1'0}$	$\Lambda J/\Psi$	7.94
P^{1-}, P^{10}, P^{1+}	$\Sigma J/\Psi$	7.21
P^{1-}, P^{10}, P^{1+} P^{2-}, P^{20}	$\Xi J/\Psi$	6.35

Hidden-charm pentaquarks as a meson-baryon molecule with coupled channels for ${}^{-}D^{(*)}\Lambda_{c}$ and ${}^{-}D^{(*)}\Sigma_{c}$ Y. Yamaguchi, E. S., Phys. Rev. D Phys.Rev. D96 (2017) no.1, 014018

- Near the thresholds, resonances are expected to have an exotic structure, like the hadronic molecules.
- ► The observed pentaquarks are found to be just below the $\overline{D}^* \Sigma_c$ ($P_c^+(4380)$) and the $\overline{D}^* \Sigma_c^*$ ($P_c^+(4450)$) thresholds. Moreover, the $\overline{D}^* \Lambda_c$ threshold is only 25 MeV below the $\overline{D} \Sigma_c$ threshold. For this reason, the $\overline{D} \Lambda_c$, $\overline{D}^* \Lambda_c$ channels are not irrelevant in the hidden-charm meson-baryon molecules.

In Phys.Rev. D96 (2017) no.1, 014018 E. Santopinto e Y. Yamaguchi considered the coupled channel systems of $\overline{D} \Lambda_c$, $\overline{D}^* \Lambda_c$, $\overline{D} \Sigma_c$, $\overline{D} \Sigma_c^*$, $\overline{D}^* \Sigma_c$ and $\overline{D}^* \Sigma_c^*$ to predict the bound and the resonant states in the hiddencharm sector. The binding interaction between the meson and the baryon is given by the One Meson Exchange Potential (OMEP).

- ► In particular the bound and resonant states with $J^P = \frac{3}{2}^+, \frac{3}{2}^-, \frac{5}{2}^+$ and $\frac{5}{2}^-$ with isospin $I = \frac{1}{2}$ are studied by solving the coupled channel Schrödinger equations.
- Free parameter of the model: the cut-off parameter Λ ;
- Λ is fixed to reproduce the heaviest resonant

1800

1800

Coupled channel between the meson-baryon states

results

Λ [MeV]	1300	1400	1500	1600	1700	1800
$J^{P} = 3/2^{-}$	4236.9 <i>- i</i> 0.8	4136.0	4006.3	3848.2	3660.0	3438.26
	4381.3 <i>– i</i> 11.4	4307.9 <i>– i</i> 18.8	4242.6 <i>– i</i> 1.4	4150.1	4035.2	3897.3
	4368.5 <i>– i</i> 64.9	4348.7 <i>– i</i> 21.1	4312.7 <i>– i</i> 16.0	4261.0 <i>- i</i> 7.0	4187.7 <i>– i</i> 0.9	4092.5
$J^P = 3/2^+$	4223.0 <i>– i</i> 97.9	4206.7 <i>– i</i> 41.2	4169.3 <i>– i</i> 5.3	4104.2	3996.7	3855.8
1 1	4363.3 <i>– i</i> 57.0	4339.7 <i>– i</i> 26.8	4311.8 <i>– i</i> 6.6	4268.5 <i>– i</i> 1.3	4193.2 <i>– i</i> 0.1	4091.6
$J^{P} = 5/2^{-1}$		4428.6 <i>– i</i> 89.1	4391.7 <i>– i</i> 88.8	4338.2 - <i>i</i> 56.2	4286.8 <i>- i</i> 27.3	4228.3 <i>- i</i> 7.4
$J^{P} = 5/2^{+}$		····/	4368.0 <i>– i</i> 9.2	4305.8 <i>- i</i> 1.9	4222.7 – <i>i</i> 1.4	4111.1
		<u>\-/</u>	<u> </u>	_	4398.5 <i>– i</i> 15.0	4357.8 <i>- i</i> 8.2

Good agreement for the mass and quantum numbers of the lightest pentaquark $P_c^+(4380)$

The masses and widths of the two observed pentaquark states; BE AWARE: the mass of the lightest one is a prediction, while the mass of the heaviest is fitted to fix the cut-off parameter Λ

Upgrade of the model: Coupled channel between the meson-baryon states and the five quark states

In the current problem of pentaquark P_c , there are two competing sets of channels: the meson-baryon (MB) channels and the five-quark channels.

CAN A COUPLE CHANNEL BETWEEN THE MB CHANNELS AND THE CORE CONTRIBUTION DESCRIBE IN A MORE REALISTIC WAY THE PENTAQUARK STATES ?

Coupled channel between the meson-baryon states and the five quark states

Hidden-charm and bottom meson-baryon molecules coupled with five-quark states, Y. Yamaguchi, A. Giachino, A. Hosaka, E. S., S. Tacheuchi, M. Takizawa, Phys .Rev. D96 (2017) no.11, 114031

► Thidden-charm pentaquarks as $\overline{D} \Lambda_c$, $\overline{D}^* \Lambda_c$, $\overline{D} \Sigma_c$, $\overline{D}^* \Sigma_c$, $\overline{D} \Sigma_c^*$, and $\overline{D}^* \Sigma_c^*$, and molecules coupled to the five-quark states

ADDITION OF THE CORE CONTRIBUTION

- For the first time some predictions for the hidden bottom pentaquarks as $\overline{D} \Lambda_c$, $\overline{D}^* \Lambda_c$, $\overline{D} \Sigma_c$, $\overline{D}^* \Sigma_c$, $\overline{D}\Sigma_c^*$ and $\overline{D}^*\Sigma_c^*$ molecules coupled to the five-quark states are provided.
- In particular, by solving the coupled channel Schrödinger equation, we study the the bound and resonant hidden-charm

The Model

The meson-baryon channels describe the dynamics at long distances, while the fivequark part describes the dynamics at short distances (of the order of 1 fm or less).

Results for the hidden-charm sector

The lowest threshold $\overline{D} \Lambda_c$ is at 4153,46 MeV and the state whose energy is lower than the threshold is a bound state.

No resonant states and no bound states for $\frac{f}{f_0} = 0$

In the hidden-charm sector the OPEP is not enough strong to produce bound and resonant P_c states.

First results for the hidden-bottom sector

We found that, unlike the charm-sector, in which the five quark potential is needed to produce bound states, in the bottom sector the OPEP provides sufficiently strong attraction to generate several bound and resonant states.

Dot-dashed lines are the $\overline{B} \Lambda_B$ and $\overline{B}^* \Lambda_B$ thresholds. Dashed lines are the $\overline{B} \Sigma_B, \overline{B} \Sigma_B^*, \overline{B}^* \Sigma_B$ and $\overline{B}^* \Sigma_B^*$ thresholds.

Many $\overline{B} \Lambda_B$ and $\overline{B}^* \Lambda_B$ bound states appear.

Some $\overline{B} \Lambda_B$ bound states are produced even without introducing the five-quark potential !

First Results for the hidden-bottom sector

Moreover, many states appear, when the 5q potential is switched on.

the hidden-bottom pentaquarks are more likely to form than the hiddencharm pentaquarks

The hidden-bottom sector is an interesting environment to search for pentaquark states

First results for the hidden-bottom sector

Y. Yamaguchi, A. Giachino, A. Hosaka, E. S., S. Tacheuchi, M. Takizawa, Phys .Rev. D96 (2017) no.11, 114031

Why bound and resonant states are more likely to be found in the bottom sector?

 In the hidden-bottom sector, the OPEP is strong enough to produce states due to the mixing effect enhanced by the small mass splitting between B, B* and Σ_B, Σ_B* In the hidden bottom sector, the kinetic energy of the meson-baryon system is suppressed with respect to the charm sector due to the higher mass of the system.

Task for the future

- What does it happen if one consider a coupled channel MB-core with a OMEP?
- So far in our analysis we have studied only the negative parity states dominated by the s-wave configurations. For positive parity states, we need p-wave excitations for both meson-baryon and for 5q states.

Thiese task require further technical developments which will be a future work.

Unquenching the quark model for the MESONS & Why Unquenching?

Santopinto, Galatà, Ferretti, Vassallo

UQM: Meson Self Energies & couple channels

• Hamiltonian:

$$H = H_0 + V$$

- H_0 act only in the bare meson space and it is chosen the Godfray and Isgur model
- V couples |A> to the continuum |BC>
- Dispersive equation

$$\Sigma(E_a) = \sum_{BC} \int_0^\infty q^2 dq \ \frac{|V_{a,bc}(q)|^2}{E_a - E_{bc}}$$

- from non-relativistic Schrödinger equation
- Bare energy E_a (H_0 eigenvalue) satisfies:
 - $M_a =$ physical mass of meson A
 - $\Sigma(E_a) =$ self energy of meson A

$$M_a = E_a + \Sigma(E_a)$$

UQM: Meson Self Energies -- UQM I

• Coupling $V_{a,bc}(q)$ in $\Sigma(E_a)$ calculated as:

Sum over a complete set of accesible

ground state (1S) mesons

$$V_{a,bc}(q) = \sum_{\ell J} \left\langle BC\vec{q}\,\ell J \right| T^{\dagger} \left| A \right\rangle$$

Coupling calculated in the ${}^{3}P_{0}$ model

• Two possible diagrams contribute:

• Self energy in the UQM:

$$\Sigma(E_a) = \sum_{BC\ell J} \int_0^\infty q^2 dq \; \frac{\left| \langle BC\vec{q}\,\ell J | \,T^\dagger \, |A\rangle \right|^2}{E_a - E_b - E_c}$$

Godrey and Isgur model as bare mass

- Bare energies E_a calculated in the relativized G.I.Model for mesons
- Hamiltonian:

$$H = \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + V_{\rm conf} + V_{\rm hyp} + V_{\rm SO}$$

• Confining potential:

$$V_{\text{conf}} = -\left(\frac{3}{4}c + \frac{3}{4}br - \frac{\alpha_s(r)}{r}\right)\vec{F_1}\cdot\vec{F_2}$$

• Hyperfine interaction:

$$V_{\text{hyp}} = -\frac{\alpha_s(r)}{m_1 m_2} \left[\frac{8\pi}{3} \vec{S}_1 \cdot \vec{S}_2 \ \delta^3(\vec{r}) + \frac{1}{r^3} \left(\frac{3 \ \vec{S}_1 \cdot \vec{r} \ \vec{S}_2 \cdot \vec{r}}{r^2} - \vec{S}_1 \cdot \vec{S}_2 \right) \right] \vec{F}_i \cdot \vec{F}_j$$

• Spin-orb. :

$$V_{\text{so,cm}} = -\frac{\alpha_s(r)}{r^3} \left(\frac{1}{m_i} + \frac{1}{m_j} \right) \\ \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j} \right) \cdot \vec{L} \quad \vec{F}_i \cdot \vec{F}_j$$

$$V_{\rm so,tp} = -\frac{1}{2r} \frac{\partial H_{ij}^{conf}}{\partial r} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2} \right) \cdot \vec{L}$$

UQM or couple channel Quark Mode

• Parameters of the relativized QM fitted to

$$M_a = E_a + \Sigma(E_a)$$

• Recursive fitting procedure

• M_a = calculated physical masses of q bar-q mesons → reproduce experimental spectrum [PDG]

• Intrinsic error of QM/UQM calculations: 30-50 MeV

UQM: charmonium with self-energy corr

• Parameters of the UQM (${}^{3}P_{0}$ vertices)

Parameter	Value
γ_0	0.510
lpha	0.500 GeV
r_q	0.335 fm
m_n	0.330 GeV
m_s	0.550 GeV
m_c	1.50 GeV

• fitted to:

State $DD DD^* D^*D^* D_s D_s D_s D_s D_s^* D_s^* D_s^*$ Total Exp.

		38.8	52.3	_			91.1	_
$\Psi(4040)(3^3S_1)$	0.2	37.2	39.6	3.3			80.3	80 ± 10
	_	64.6	_	_	_	_	64.6	_
1000			_		_	_	97.7	_
				_			37.0	_
$\Psi(3770)(1^3D_1)$					_	_	27.7	27.2 ± 1.0
$c\bar{c}(1^{3}D_{3})$	1.7	_	_	_		_	1.7	_
$c\bar{c}(2^{1}D_{2})$			46.4	_	8.8	_	117.9	
$\Psi(4160)(2^3D_1)$	11.2	0.4	39.4	2.1	5.6	_	58.7	103 ± 8
$c\bar{c}(2^{3}D_{2})$	_	43.5	49.3	_	11.3	_	104.1	_
$c\bar{c}(2^{3}D_{3})$	17.2	58.3	48.1	3.6	2.6		129.8	_

UQM: charmonium spectrum with self-energy corr. Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013)

State	J^{PC}	DD	$\overline{D}D^*$ $D\overline{D}^*$	\bar{D}^*D^*	$D_s \bar{D}_s$	$D_s \bar{D}_s^* \bar{D}_s^* \bar{D}_s D_s^*$	$D_s^* \bar{D}_s^*$	$\eta_c \eta_c$	$\eta_c J/\Psi$	$J/\Psi J/\Psi$	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$				
$\eta_{c}(1^{1}S_{0})$	0-+		-34	-31	_	-8	-8		_	-2	-83		2979	2980				
$J/\Psi(1^3S_1)$	1	-8	-27	-41	-2	-6	-10	_	-2	_	-96		3137	3097				
$\eta_{c}(2^{1}S_{0})$	0^{-+}		-52	-41	_	-9	-8	_	_	-1	-111		3588	3637				
$\Psi(2^3S_1)$	1	-18	-42	-54	-2	-7	-10	_	-1	_	-134		3640	3686				
$h_c(1^1P_1)$	1+-		-59	-48	_	-11	-10		-2	_	-130		3501	3525				
$\chi_{c0}(1^3P_0)$	0++	-31	_	-72	-4	_	-15	0	_	-3	-125		3430	3415				
$\chi_{c1}(1^3P_1)$	1++	_	-54	-53	_	-9	-11	_	_	-2	-129		3494	3511				
$\chi_{c2}(1^3P_2)$	2^{++}_{+-}	-17	-40	-57	-3	-8	-10	0	_	-2	-137		3527	3556				
$h_c(2^1P_1)$	$1^{+-}_{0^{++}}$		-55	-76	-	-12	-8	_	-1	-	-152		3877	-				
$\chi_{c0}(2^3P_0)$	1^{++}	-23		-86	-1	- 11	-13	0	_	-1	-124		3863	-				
$\chi_{c1}(2^3P_1)$	2^{++}	-2	-30 -42	-66 -54	-4	-11 -8	-9 -10	0	_	-1	-117		3908 3932	3872 3927				
$\chi_{c2}(2^3P_2)$	2^{-+}		-42 -99	-54 -62			-10 -10	0	_	-1	-121		3932	3927				
$c\bar{c}(1^1D_2)$ $\Psi(3770)(1^3D_1)$	2 1	-11	-99 -40	-02 -84	-4	-12 -2	-10 -16	_										
$\psi(3770)(1^{-}D_{1})$ $c\bar{c}(1^{3}D_{2})$	$2^{}$	-11	-40 -106	-64 -61	-4	-2	-10	_	N	Λ								
$c\bar{c}(1^{3}D_{3})$	3	-25		-88	-4	-11	-10	_										
cc(1 D3)	0	-20	-40	-00	-4	-0	-10		(Ge	v)								
									4.	0				X(387	(2)			
									7.						<u>,</u>			
•									~	~ _	. =							
									3.	5		-			_			
									3.	<u> </u>								
									5.		_							
	38			DM1		908	Me\	/	-	_								
									2.	5-								
									2	0								
									2.	0								
									1.	5 —								
										<u> </u>	+ 1-	- 1	+-	0++ 1+-	+ 2++	2+	2	3
															-		-	

UQM: charmonium with self-energy corr.

Ferretti, Galatà, Santopinto, Phys. Rev. C 88, 015207 (2013)

- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- Several predictions for X(3872)'s mass. Here: c bar-c + continuum effects

$\chi_{c1}(2^{3}P_{1})$'s m	ass (MeV)	Reference
3908		This paper
4007.5		° [20]
3990	. [1]	
3920.5		
3896	[3]	

- [1] Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013);
- [2] Eichten et al., Phys. Rev. D 69,(2004)
- [3] Kalashnikova, Phys. Rev. D 72, 034010 (2005)
- [4] Eichten et al., Phys. Rev. D 73, 014014 (2008)
- [5] Pennington and Wilson, Phys. Rev. D 76, 077502 (2007)

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum Ferretti,Galatà, Santopinto, Phys. Rev. C88 (2013) 1, 015207

- UCQM results used to study the problem of the X(3872) mass, meson with $J^{PC} = 1^{++}$, $2^{3}P_{1}$ quantum numbers
- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- X(3872) very close to D bar-D* decay threshold
- Possible importance of continuum coupling effects?
- Several interpretations: pure c bar-c

- D bar-D* molecule
 - tetraquark
- c bar-c + continuum effects nessary to study strong and radiative decays to uderstand the situation

Radiative decays

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

Transition	$E_{\gamma} [\text{MeV}]$	$\Gamma_{c\bar{c}}$ [KeV] present paper			$\begin{array}{c} \Gamma_{D\bar{D}^{*}} \ [\text{KeV}] \\ \text{Ref.} \ [59] \end{array}$] Γ _{exp.} [KeV] PDG [43]
$X(3872) \rightarrow J/\Psi\gamma$ $X(3872) \rightarrow \Psi(2S)\gamma$ $X(3872) \rightarrow \Psi(3770)\gamma$ $X(3872) \rightarrow \Psi_2(1^3D_2)\gamma$		$11 \\ 70 \\ 4.0 \\ 0.35$	8 0.03 0 0	64 - 190	125 - 251	$2 - 17 \\ 7 - 59$	≈ 7 ≈ 36

[7] Swanson: molecular interpretation[9] Oset: moleacular interpretation[59]-[60] Faessler : molecular ; ccbar +molecular

The Molecular model does not predict radiative decays into $\Psi(3770)$ and $\Psi_2(1^3D_2) \rightarrow Possible$ way to distinguish between the two interpretations

Bottomonium spectrum (in couple channel calculations) Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014

• Parameters of the UQM (${}^{3}P_{0}$ vertices)

Parameter	Value
$egin{array}{l} \gamma_0 & & \ lpha & & \ r_q & & \ m_n & & \ m_s & & \ m_b & & \ m_b & & \ \end{array}$	0.732 0.500 GeV 0.335 fm 0.330 GeV 0.550 GeV 1.50 GeV 4.70 GeV

• Pair-creation strength γ_0 fitted to:

$$\Gamma_{\Upsilon(4S)\to B\bar{B}} = 2\Phi_{A\to BC} \left| \langle BC\vec{q}_0 \ell J | T^{\dagger} | A \rangle \right|^2$$

$$= 2\Phi_{\Upsilon(4S)\to B\bar{B}}$$

$$\left| \langle B\bar{B}\vec{q}_0 11 | T^{\dagger} | \Upsilon(4S) \rangle \right|^2$$

$$= 21 \text{ MeV} ,$$

Bottomonium Strong Decays

Ferretti, Santopinto, Phys.Rev. D90 094022 (2014)

State	Mass [MeV]	J^{PC}	ΒB	$B\bar{B}^*$ $\bar{B}B^*$	B*B*	$B_s B_s$	$B_s B_s^* \\ \bar{B}_s B_s^*$	$B_s^* \bar{B}_s^*$
$\Upsilon(4^3S_1)$	10.595 $10579.4 \pm 1.2^{\dagger}$	1	21	_	_	_	_	_
$\chi_{b2}(2^3F_2)$	10575.4 ± 1.2	2^{++}	34	_	_	_	_	_
$\Upsilon(3^3D_1)$	10661	1	23	4	15	_	_	_
$\Upsilon_2(3^3D_2)$	10667	$2^{}$	_	37	30	_	_	_
$\Upsilon_2(3^1D_2)$	10668	2^{-+}	_	55	57	_	_	_
$\Upsilon_3(3^3D_3)$	10673	$3^{}$	15	56	113	_	_	_
$\chi_{b0}(4^3P_0)$	10726	0^{++}	26	_	24	_	_	_
$\Upsilon_3(2^3G_3)$	10727	$3^{}$	3	43	39	_	_	_
$\chi_{b1}(4^3P_1)$	10740	1^{++}	_	20	1	_	_	_
$h_b(4^1P_1)$	10744	1^{+-}	_	33	5	_	_	_
$\chi_{b2}(4^3P_2)$	10751	2^{++}	10	28	5	1	_	_
$\chi_{b2}(3^3F_2)$	10800	2^{++}	5	26	53	2	2	_
$\Upsilon_3(3^1F_3)$	10803	3^{+-}	_	28	46	_	3	_
$\Upsilon(10860)$	$10876 \pm 11^{\dagger}$	$1^{}$	1	21	45	0	3	1
$\Upsilon_2(4^3D_2)$	10876	$2^{}$	_	28	36	_	4	4
$\Upsilon_2(4^1D_2)$	10877	2^{-+}	_	22	37	_	4	3
$\Upsilon_3(4^3D_3)$	10881	$3^{}$	1	4	49	0	1	2
$\Upsilon_3(3^3G_3)$	10926	$3^{}$	7	0	13	2	0	5
$\Upsilon(11020)$	$11019 \pm 8^{\dagger}$	1	0	8	26	0	0	2

Bottomonium spectrum (in couple channel calci a)

Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014)

State	J^{PC}	BB		B^*B^*	$B_s \overline{B}_s$	_	$B_s^*B_s^*$	$B_c B_c$	_	$B_c^* B_c^*$	$\eta_b \eta_b$	$\eta_b \Upsilon$	ΥΥ	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$
			$\bar{B}B^*$			$B_s B_s^*$			$B_c B_c^*$								
$\eta_b(1^1S_0)$	0^{-+}	_	-26	-26	_	-5	-5	_	-1	-1	_	_	0	-64	9455	9391	9391
$\Upsilon(1^3S_1)$	$1^{}$	-5	-19	-32	-1	-4	-7	0	0	-1	_	0	_	-69	9558	9489	9460
$\eta_b(2^1S_0)$	0^{-+}	_	-43	-41	_	-8	-7	_	-1	-1	_	_	0	-101	10081	9980	9999
$\Upsilon(2^3S_1)$	$1^{}$	-8	-31	-51	-2	-6	-9	0	0	-1	_	0	_	-108	10130	10022	10023
$\eta_b(3^1S_0)$	0^{-+}	_	-59	-52	_	-8	-8	_	-1	-1	_	_	0	-129	10467	10338	_
$\Upsilon(3^3S_1)$	$1^{}$	-14	-45	-68	-2	-6	-10	0	0	-1	_	0	_	-146	10504	10358	10355
$h_b(1^1P_1)$	1^{+-}	_	-49	-47	_	-9	-8	_	-1	-1	_	0	_	-115	10000	9885	9899
$\chi_{b0}(1^3P_0)$		-22	_	-69	-3	_	-13	0	_	-1	0	_	0	-108	9957	9849	9859
$\chi_{b1}(1^3P_1)$		_	-46	-49	_	-8	-9	_	-1	-1	_	_	0	-114	9993	9879	9893
$\chi_{b2}(1^3P_2)$		-11	-32	-55	-2	-6	-9	0	-1	-1	0	_	0	-117	10017	9900	9912
$h_b(2^1P_1)$	1^{+-}	_	-66	-59	_	-10	-9	_	-1	-1	_	0	_	-146	10393	10247	10260
$\chi_{b0}(2^3P_0)$		-33	_	-85	-4	_	-14	0	_	-1	0	_	0	-137	10363	10226	10233
$\chi_{b1}(2^3P_1)$	1^{++}	_	-63	-60	_	-9	-10	_	-1	-1	_	_	0	-144	10388	10244	10255
$\chi_{b2}(2^3P_2)$		-16	-42	-72	-2	-6	-10	0	0	-1	0	_	0	-149	10406	10257	10269
$h_b(3^1P_1)$		_	-18	-73	_	-11	-10	_	-1	-1	_	0	_	-114	10705	10591	_
$\chi_{b0}(3^3P_0)$		-4	_	-160	-6	_	-15	0	_	-1	0	_	0	-186	10681	10495	_
$\chi_{b1}(3^3P_1)$	1^{++}	_	-25	-74	_	-11	-10	_	0	-1	_	_	0	-121	10701	10580	_
$\chi_{b2}(3^3P_2)$	2^{++}	-19	-16	-79	-3	-8	-12	0	0	-1	0	_	0	-138	10716	10578	_
$\Upsilon_2(1^1D_2)$	2^{-+}	_	-72	-66	_	-11	-10	_	-1	-1	_	_	0	-161	10283	10122	_
$\Upsilon(1^3D_1)$	$1^{}$	-24	-22	-90	-3	-3	-16	0	0	-1	_	0	_	-159	10271	10112	_
$\Upsilon_2(1^3D_2)$	$2^{}$	_	-70	-68	_	-10	-11	_	-1	-1	_	0	_	-161	10282	10121	10164
$\Upsilon_3(1^3D_3)$	$3^{}$	-18	-43	-78	-3	-8	-11	0	-1	-1	_	0	_	-163	10290	10127	_

Bottomonium

Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

• Results:

Couple Channels corrections to Bottomonium , the $\chi_b(3P)$ system Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022 : 1306.2874

- Results used to study some properties of the $\chi_b(3P)$ system, meson multiplet with N=3, L=1 quantum numbers
- $\chi_b(3P)$ states close to first open bottom decay thresholds
- Possible importance of continuum coupling effects?
- **Pure c bar-c** and c bar-c + continuum effects interpretations
- Necessary to study decays (strong, e.m., hadronic, ...) to confirm one interpretation

Couple Channels corrections to Bottomonium , the χ_b(3P) system Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

- Some experimental results for the mass barycenter of the system:
- $M[\chi_b(3P)] = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV}$
- Aad et al. [ATLAS Coll.], Phys. Rev. Lett. **108**, 152001 (2012)
- $M[\chi_b(3P)] = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.)} \text{ GeV}$
- Abazov et al. [D0 Coll.], Phys. Rev. D 86, 031103 (2012)
- Mass barycenter in the UQM:

Back-up Slides