Dynamical picture for the exotic XYZ states

M.A. Ivanov (JINR, Dubna)

QCD@Work

"International Workshop on QCD, theory and experiment"

25-28/June, 2018, Matera, Italy

Contents

Introduction

Dynamical picture for multiquark states

X(3872) as tetraquark

 $Z_c(3900)$

 $Z_b(10610)$ and $Z'_b(10610)$

Exotics

▶ The elementary constituents in QCD are

quarks q, antiquarks q, and gluons g.

- ► They are confined into color-singlet hadrons.
- ▶ The most stable hadrons predicted by the quark model:

conventional mesons $q\bar{q}$, baryons qqq and antibaryons $\bar{q}\bar{q}\bar{q}$.

► This simple picture was changed since 2003 with the discovery of almost two dozen charmonium- and bottomonium-like XYZ states that do not fit the naive quark-antiquark interpretation.

talk by Makoto Takizawa (Belle) at SFHQ school, Dubna, 2016

- $J^{PC} = 1^{--}$, neutral
- production e⁺e[−] → Y
- Y has cc pair
- But Y is not simple charmonium
- Examples: Y(4005), Y(4260), Y(4360), Y(4660)

Z (Z_c and Z_b)

- Z_c has cc pair and a charge
- Thus minimal quark content of Z⁺_c is ccud (exotic state!)
- Usually the isospin of the Z is 1, neutral partner should exist.
- Z_b has bb pair and a charge
- Examples: $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$, $Z_c(4200)$, $Z_c(4430)$, etc.

- X's are the non-qq mesons other than Y's and Z's
- Most famous is X(3872) observed by Belle in reaction

X(3872)

➤ X-mass is close to D⁰ - D^{*0} mass threshold:

$$\begin{array}{rcl} M_X & = & 3872.0 \pm 0.6 \, (\mathrm{stat}) \pm 0.5 \, (\mathrm{syst}) \, \overline{\mathrm{MeV}} \\ \\ M_{D^0} + M_{D^{*\,0}} & = & 3871.81 \pm 0.25 \, \overline{\mathrm{MeV}} \end{array}$$

- ▶ Its width $\Gamma_X \le 2.3$ MeV at 90% CL.
- Quantum numbers $J^{PC} = 1^{++}$.
- Strong isospin violation

$$\frac{\mathcal{B}(X \to J/\psi \pi^+ \pi^- \pi^0)}{\mathcal{B}(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \, (\mathrm{stat}) \pm 0.3 \, (\mathrm{syst}).$$

X(3872)

▶ An intepretation of the X(3872) as a tetraquark was suggested in

L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005)

$$\mathsf{X}_{\mathsf{q}} \Longrightarrow [\mathsf{c}\mathsf{q}]_{\mathsf{S}=1} \, [\bar{\mathsf{c}}\bar{\mathsf{q}}]_{\mathsf{S}=0} + [\mathsf{c}\mathsf{q}]_{\mathsf{S}=0} \, [\bar{\mathsf{c}}\bar{\mathsf{q}}]_{\mathsf{S}=1}, \qquad (\mathsf{q}=\mathsf{u},\mathsf{d})$$

 \blacktriangleright The physical states are the mixing of X_u and X_d

$$X_{l} \equiv X_{low} = X_{u} \cos \theta + X_{d} \sin \theta,$$

$$X_h \equiv X_{\rm high} = -X_u \sin \theta + X_d \cos \theta.$$

▶ The mixing angle θ is supposed to be found from the known ratio of the two-pion (via ρ) and three-pion (via ω) decay widths.

Dynamical picture for multiquark states: covariant confined quark model

- ► Main assumption: hadrons interact via quark exchange only
- ► Interaction Lagrangian

$$\mathcal{L}_{int} = g_H \cdot H(x) \cdot J_H(x)$$

Quark currents

$$\begin{split} J_{M}(x) &= \int\!\! dx_{1}\!\!\int\!\! dx_{2}\, F_{M}(x;x_{1},x_{2}) \cdot \bar{q}_{1}^{a}(x_{1})\, \Gamma_{M}\, q_{2}^{a}(x_{2}) \qquad \text{Meson} \\ \\ J_{B}(x) &= \int\!\! dx_{1}\!\!\int\!\! dx_{2}\!\!\int\!\! dx_{3}\, F_{B}(x;x_{1},x_{2},x_{3}) \qquad \qquad \text{Baryon} \\ &\quad \times \Gamma_{1}\, q_{1}^{a_{1}}(x_{1}) \left(q_{2}^{a_{2}}(x_{2})C\, \Gamma_{2}\, q_{3}^{a_{3}}(x_{3})\right) \cdot \varepsilon^{a_{1}a_{2}a_{3}} \\ \\ J_{T}^{\mu}(x) &= \int\!\! dx_{1} \ldots \int\!\! dx_{4}\, F_{T}(x;x_{1},\ldots,x_{4}) \qquad \qquad \text{Tetraquark} \\ &\quad \times \left(q_{1}^{a_{1}}(x_{1})\, C\Gamma_{1}\, q_{2}^{a_{2}}(x_{2})\right) \cdot \left(\bar{q}_{3}^{a_{3}}(x_{3})\, \Gamma_{2}C\, \bar{q}_{4}^{a_{4}}(x_{4})\right) \cdot \varepsilon^{a_{1}a_{2}c} \varepsilon^{a_{3}a_{4}c} \end{split}$$

The vertex functions and quark propagators

The vertex functions

$$\begin{split} F_H(x,x_1,\ldots,x_n) \, = \, \delta^{(4)}\Big(x - \sum_{i=1}^n w_i x_i\Big) \, \Phi_H\bigg(\sum_{i < j} (x_i - x_j)^2\bigg) \\ \text{where } w_i = m_i / \sum_i m_i. \end{split}$$

- ▶ We choose a Gaussian form for the function Φ_H with the only dimensional parameter Λ_H characterizing the size of the hadron.
- ▶ The quark propagators

$$S_q(x_1 - x_2) = \int \frac{d^4k}{(2\pi)^4i} \frac{e^{-ik(x_1 - x_2)}}{m_q - k}$$

► The matrix elements of the physical processes are described by the Feynman diagrams which are the convolution of vertex functions and quark propagators.

Quark diagrams

- ▶ Let us consider a general ℓ-loop Feynman diagram with n local propagators and m Gaussian vertices.
- ▶ Use the Schwinger representation of the propagator:

$$\frac{\mathbf{m} + \mathbf{k}}{\mathbf{m}^2 - \mathbf{k}^2} = (\mathbf{m} + \mathbf{k}) \int_0^\infty d\alpha \, \exp[-\alpha(\mathbf{m}^2 - \mathbf{k}^2)]$$

▶ The general expression for the diagram

$$\Pi(p_1,\ldots,p_m) = \int\limits_0^\infty d^n \alpha \int [d^4k]^\ell \, \mathbf{Num} \, \exp[-\sum_{i=1}^n \alpha_i m_i^2 + \sum_j \tilde{\alpha}_j (\mathsf{K}_j + \mathsf{P}_j)^2)]$$

where K_i is the linear combination of the loop momenta and P_i is the linear combination of the external momenta. Num stands for the numerator product of propagators.

Go to integration over a simplex

- Generally speaking, the diagram contains the branch points and thresholds corresponding to quark production.
- After doing the loop integrations one obtains

$$\Pi = \int_{0}^{\infty} d^{n} \alpha F(\alpha_{1}, \ldots, \alpha_{n}),$$

where **F** stands for the whole structure of a given diagram.

The set of Schwinger parameters α_i can be turned into a simplex by introducing an additional t-integration via the identity

$$1 = \int_{0}^{\infty} dt \, \delta(t - \sum_{i=1}^{n} \alpha_{i})$$

leading to

$$\Pi = \int\limits_0^\infty dt t^{n-1} \int\limits_0^1 d^n \alpha \, \delta \Big(1 - \sum_{i=1}^n \alpha_i \Big) \, \mathsf{F}(t\alpha_1, \dots, t\alpha_n) \, .$$

Infrared confinement

▶ We cut the upper integration over "t" at $1/\lambda^2$ and obtain

$$\Pi^{c} = \int\limits_{0}^{1/\lambda^{2}} dt t^{n-1} \int\limits_{0}^{1} d^{n} \alpha \, \delta \Big(1 - \sum\limits_{i=1}^{n} lpha_{i} \Big) \, F(t lpha_{1}, \ldots, t lpha_{n})$$

- By introducing the infrared cut-off one has removed all possible thresholds in the quark loop diagram.
- ▶ We take the cut-off parameter >> to be the same in all physical processes.

Infrared confinement

▶ We consider the case of a scalar one-loop two-point function:

$$\Pi_2(p^2) = \int \frac{d^4k_E}{\pi^2} \frac{e^{-s\,k_E^2}}{[m^2 + (k_E + \frac{1}{2}p_E)^2][m^2 + (k_E - \frac{1}{2}p_E)^2]}$$

where the numerator factor $e^{-s\,k_E^2}$ comes from the product of nonlocal vertex form factors of Gaussian form. $k_E,\,p_E$ are Euclidean momenta $(p_E^2=-p^2)$.

Doing the loop integration one obtains

$$\Pi_2(\mathbf{p}^2) = \int\limits_0^\infty \!\! \mathrm{d}t \frac{t}{(\mathbf{s}+\mathbf{t})^2} \int\limits_0^1 \!\! \mathrm{d}\alpha \, \exp\left\{-\mathbf{t} \left[\mathbf{m}^2 - \alpha(\mathbf{1}-\alpha)\mathbf{p}^2\right] + \frac{\mathbf{s}\mathbf{t}}{\mathbf{s}+\mathbf{t}} \left(\alpha - \frac{1}{2}\right)^2 \mathbf{p}^2\right\}$$

A branch point at $p^2 = 4m^2$

Infrared confinement

By introducing a cut-off in the t-integration one obtains

$$\Pi_2^c(\textbf{p}^2) = \int\limits_0^{1/\lambda^2}\!\!\!dt \frac{t}{(\textbf{s}+\textbf{t})^2} \int\limits_0^1\!\!\!d\alpha \, \exp\left\{-\,\textbf{t}\,[\textbf{m}^2 - \alpha(\textbf{1}-\alpha)\textbf{p}^2] + \frac{\textbf{st}}{\textbf{s}+\textbf{t}} \Big(\alpha - \frac{1}{2}\Big)^2\textbf{p}^2\right\}$$

where the one–loop two–point function $\Pi_2^c(p^2)$ no longer has a branch point at $p^2 = 4m^2$.

► The confinement scenario also allows to include all possible both two-quark and multi-quark resonance states in our calculations.

Model parameters

The values of quark masses m_{q_i} , the infrared cutoff parameter λ and the size parameters Λ_{H_i} have been defined by the fit to the well-known physical observables.

$m_{\rm u}$	ms	m _c	\mathbf{m}_{b}	λ	
0.241	0.428	1.672	5.046	0.181	${ m GeV}$

S. Dubnicka, A. Z. Dubnickova, M. A. Ivanov and J. G. Körner, Phys. Rev. D 81, 114007 (2010)

► An effective interaction Lagrangian

$$\mathcal{L}_{\mathrm{int}} = g_X \, \boldsymbol{X}_{q \, \mu}(x) \cdot \boldsymbol{J}^{\mu}_{\boldsymbol{X}_{q}}(x), \qquad (q = u, d).$$

▶ The nonlocal version of the four-quark interpolating current

$$\begin{split} J^{\mu}_{X_q}(x) &= \int\!\!dx_1\dots\int\!\!dx_4\,\delta(x-\textstyle\frac{4}{\sum_{i=1}^4}w_ix_i)\,\Phi_X\!\left(\textstyle\sum_{i< j}(x_i-x_j)^2\right)J^{\mu}_{4q}(x_1,\dots,x_4) \\ \\ J^{\mu}_{4q} &= \textstyle\frac{1}{\sqrt{2}}\,\varepsilon_{abc}\left[q_a(x_4)C\gamma^5c_b(x_1)\right]\varepsilon_{dec}\left[\bar{q}_d(x_3)\gamma^{\mu}C\bar{c}_e(x_2)\right]+(\gamma^5\leftrightarrow\gamma^{\mu}), \\ \\ w_1 &= w_2=\frac{m_c}{2(m_g+m_c)}\equiv\frac{w_c}{2}, \qquad w_3=w_4=\frac{m_q}{2(m_g+m_c)}\equiv\frac{w_q}{2}. \end{split}$$

Compositeness condition

The coupling constant $\mathbf{g}_{\boldsymbol{X}}$ is determined from the compositeness condition

$$\mathsf{Z}_\mathsf{X} = 1 - \mathsf{\Pi}_\mathsf{X}'(\mathsf{M}_\mathsf{X}^2) = 0$$

where $\Pi_X\big(p^2\big)$ is the scalar part of the vector-meson mass operator.

Strong off-shell decays

Since the X(3872) lies nearly the respective thresholds in both cases,

$$m_X - (m_{J/\psi} + m_\rho) = -0.90 \pm 0.41 \,\mathrm{MeV},$$

 $m_X - (m_{D^0} + m_{D^{*0}}) = -0.30 \pm 0.34 \,\mathrm{MeV}$

the intermediate $\rho(\omega)$ and D^* mesons should be taken off-shell.

The narrow width approximation

$$\begin{split} \frac{d\Gamma(X\to J/\psi+n\pi)}{dq^2} &= \frac{1}{8\,m_X^2\,\pi}\cdot\frac{1}{3}|M(X\to J/\psi+v^0)|^2\\ &\times \frac{\Gamma_{v^0}\,m_{v^0}}{\pi}\frac{p^*(q^2)}{(m_{v^0}^2-q^2)^2+\Gamma_{v^0}^2\,m_{v^0}^2}\mathrm{Br}(v^0\to n\pi),\\ \\ \frac{d\Gamma(X_u\to \bar{D}^0D^0\pi^0)}{dq^2} &= \frac{1}{2\,m_X^2\,\pi}\cdot\frac{1}{3}|M(X_u\to \bar{D}^0D^{*\,0})|^2\\ &\times \frac{\Gamma_{D^{*\,0}}\,m_{D^{*\,0}}}{\pi}\frac{p^*(q^2)\,\mathcal{B}(D^{*\,0}\to D^0\pi^0)}{(m_{D^0\,0}^2-q^2)^2+\Gamma_{D^{*\,0}}^2\,m_{D^{*\,0}}^2}, \end{split}$$

Strong decay widths

- ▶ Two new adjustable parameters: θ and Λ_X .
- ► The ratio

$$\frac{\Gamma(\text{X}_\text{u} \rightarrow \text{J/}\psi + 3\,\pi)}{\Gamma(\text{X}_\text{u} \rightarrow \text{J/}\psi + 2\,\pi)} \approx 0.25$$

is very stable under variation of Λ_X .

Using this result and the central value of the experimental data

$$\frac{\Gamma(\textbf{X}_{\text{l},\text{h}} \rightarrow \textbf{J}/\!\psi + 3\,\pi)}{\Gamma(\textbf{X}_{\text{l},\text{h}} \rightarrow \textbf{J}/\!\psi + 2\,\pi)} \,\approx\, 0.25 \cdot \Big(\frac{1 \pm \tan\theta}{1 \mp \tan\theta}\Big)^2 \approx 1$$

gives $\theta \approx \pm 18.4^{\circ}$ for X_{l} (" + ") and X_{h} (" - "), respectively.

► This is in agreement with the results obtained by both Maiani: $\theta \approx \pm 20^{\circ}$ and Nielsen: $\theta \approx \pm 23.5^{\circ}$.

Strong decay widths

$$rac{\Gamma(\mathsf{X}
ightarrow \mathsf{D}^0 ar{\mathsf{D}}^0 \pi^0)}{\Gamma(\mathsf{X}
ightarrow \mathsf{J}/\psi \pi^+ \pi^-)} = \left\{egin{array}{ll} 4.5 \,\pm \! 0.2 & ext{theor} \ 10.5 {\pm} 4.7 & ext{expt} \end{array}
ight.$$

Radiative X-decay

S. Dubnicka, A. Z. Dubnickova, M. A. Ivanov, J. G. Koerner, P. Santorelli and G. G. Saidullaeva,
Phys. Rev. D 84, 014006 (2011)

Radiative X-decay

If one takes $\Lambda_X \in (3,4)$ GeV with the central value $\Lambda_X = 3.5$ GeV then our prediction for the ratio of widths reads

$$\frac{\Gamma(X_{\text{I}} \rightarrow \gamma + \text{J/}\psi)}{\Gamma(X_{\text{I}} \rightarrow \text{J/}\psi + 2\pi)}\Big|_{\rm theor} = 0.15 \pm 0.03$$

which fits very well the experimental data from the Belle Collaboration

$$rac{\Gamma(\mathsf{X}
ightarrow \gamma + \mathsf{J}/\psi)}{\Gamma(\mathsf{X}
ightarrow \mathsf{J}/\psi \, 2\pi)} = \left\{ egin{array}{ll} 0.14 \pm 0.05 & \mathsf{Belle} \ 0.22 \pm 0.06 & \mathsf{BaBar} \end{array}
ight.$$

$Z_c(3900)$: Data from BESIII and Belle

Discovery mode (mass and width measured)

$$e^+e^- o \pi^+$$
 π^- **J**/ ψ BESIII, Belle

▶ DD̄* mode (mass and width measured)

- Angular distribution $\pi Z_c \Longrightarrow J^P = 1^+$
- ▶ Enhancement of $D\bar{D}^*$ mode compare with $\pi J/\psi$

$$\frac{\Gamma(Z_c(3885) o D\bar{D}^*)}{\Gamma(Z_c(3900) o \pi J/\psi)} = 6.2 \pm 1.1 \pm 2.7$$

F. Goerke, T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij and P. Santorelli,
Phys. Rev. D 94, no. 9, 094017 (2016)

► Assume that Z_c is a four-quark state with a tetraquark-type current:

$$\mathsf{J}^{\mu} = \frac{\mathsf{i}}{\sqrt{2}} \varepsilon_{abc} \varepsilon_{dec} \left[(\mathsf{u}_a^\mathsf{T} \mathsf{C} \gamma_5 \mathsf{c}_b) (\bar{\mathsf{d}}_d \gamma^{\mu} \mathsf{C} \bar{\mathsf{c}}_e^\mathsf{T}) - (\mathsf{u}_a^\mathsf{T} \mathsf{C} \gamma^{\mu} \mathsf{c}_b) (\bar{\mathsf{d}}_d \gamma_5 \mathsf{C} \bar{\mathsf{c}}_e^\mathsf{T}) \right]$$

▶ Matrix element of the decay $1^+(p,\mu) \rightarrow 1^-(q_1,\nu) + 0^-(q_2)$

$$\mathsf{M} = (\mathsf{A}\,\mathsf{g}^{\mu\nu} + \mathsf{B}\,\mathsf{q}_1^{\mu}\mathsf{q}_2^{\nu})\,\varepsilon_{\mu}\varepsilon_{\nu}^*$$

- ▶ We found that $A \equiv 0$ analytically in the case of the $D\bar{D}^*$ final state.
- ► This results in a significant suppression of the decay widths due to the D-wave suppression factor.
- Since this result contradict to the data, one has to conclude that the tetraquark-type current for Z_c(3900) is in discord with experiment.

► Assume that Z_c is a four-quark state with a molecular-type current

$$\mathsf{J}^{\mu} = \frac{1}{\sqrt{2}} \left[(\bar{\mathsf{d}} \gamma_5 \mathsf{c}) (\bar{\mathsf{c}} \gamma^{\mu} \mathsf{u}) + (\bar{\mathsf{d}} \gamma^{\mu} \mathsf{c}) (\bar{\mathsf{c}} \gamma_5 \mathsf{u}) \right]$$

- Now the form factor A in the expansion of the amplitude is not equal to zero.
- ▶ If the Λ_{Z_c} is varied in the limits $\Lambda_{Z_c} = 3.3 \pm 1.1$ GeV then

$$\begin{split} &\Gamma(\mathsf{Z}_{\mathsf{c}}^{+}\to\mathsf{J}/\!\psi+\pi^{+}) &= (1.8\pm0.3)\,\mathsf{MeV}\,,\\ &\Gamma(\mathsf{Z}_{\mathsf{c}}^{+}\to\eta_{\mathsf{c}}+\rho^{+}) &= (3.2^{+0.5}_{-0.4})\,\mathsf{MeV}\,,\\ &\Gamma(\mathsf{Z}_{\mathsf{c}}^{+}\to\bar{\mathsf{D}}^{0}+\mathsf{D}^{*+}) &= (10.0^{+1.7}_{-1.4})\,\mathsf{MeV}\,,\\ &\Gamma(\mathsf{Z}_{\mathsf{c}}^{+}\to\bar{\mathsf{D}}^{*0}+\mathsf{D}^{+}) &= (9.0^{+1.6}_{-1.3})\,\mathsf{MeV}\,. \end{split}$$

► Thus a molecular-type current for the Z_c is in accordance with the experimental observation.

$$Z_c(3900)$$
: theoretical interpretation

Preliminary data from BESIII:

$$\mathsf{R}(\mathsf{Z}) = \frac{\mathcal{B}(\mathsf{Z}_\mathsf{c}(3900) \to \rho \eta_\mathsf{c})}{\mathcal{B}(\mathsf{Z}_\mathsf{c}(3900) \to \pi \mathsf{J}/\psi)} = 2.1 \pm 0.8.$$

Our result:

$$R(Z) = 1.8 \pm 0.4$$

$Z_b(10610)$ and $Z'_b(10610)$: experiment

Observation of two charged bottomoniumlike resonances:

Belle Coll. Phys. Rev. Lett. 108, 122001 (2012); Phys. Rev. D91, 072003 (2015)

$$\Upsilon(5S)
ightarrow \pi^+$$
 $\pi^-\Upsilon(nS)$ and $\Upsilon(5S)
ightarrow \pi^+$ $\pi^-h_b(mP)$ $Z_b^ (n=1,2,3)$ $(m=1,2)$

Masses and widths:

$$\begin{array}{lll} \mbox{M}_{Z_b} & = & (10607.2 \pm 2.0) \mbox{ MeV} \,, & & \Gamma_{Z_b} = (18.4 \pm 2.4) \mbox{ MeV} \,, \\ \mbox{M}_{Z_b'} & = & (10652.2 \pm 1.5) \mbox{ MeV} \,, & & \Gamma_{Z_b'} = (11.5 \pm 2.2) \mbox{ MeV} \,. \end{array}$$

• Quantum numbers are $I^{G}(J^{P}) = 1^{+}(1^{+})$.

$Z_b(10610)$ and $Z'_b(10610)$: experiment

▶ Observation in $B\bar{B}\pi$ channels:

Belle Coll. Phys. Rev. Lett. 116, no. 21, 212001 (2016)

- ► It was found that the B^(*)B̄*-decays dominate among the corresponding final states.
- Assuming that the Z_b -decays are saturated by $\Upsilon(nS)\pi$ (n = 1, 2, 3), $h_b(mP)\pi$ (m = 1, 2) and $B^{(*)}\bar{B}^*$ channels, the relative decay fractions were determined.

$Z_b(10610)$ and $Z'_b(10610)$: theory

► Since the masses of the Z_b⁺(10610) and Z_b'(10650) are very close to the respective B*B̄ (10604 MeV) and B*B̄* (10649 MeV) thresholds, it was suggested that they have molecular-type binding structures.

A.E. Bondar, A. Garmash, A.I. Milstein, R. Mizuk and M. B. Voloshin, Phys. Rev. D 84, 054010 (2011)

$$\begin{split} \mathsf{J}^{\mu}_{\mathsf{Z}^{+}_{b}} &= \frac{1}{\sqrt{2}} \left[(\bar{\mathsf{d}} \gamma_{5} \mathsf{b}) (\bar{\mathsf{b}} \gamma^{\mu} \mathsf{u}) + (\bar{\mathsf{d}} \gamma^{\mu} \mathsf{b}) (\bar{\mathsf{b}} \gamma_{5} \mathsf{u}) \right] \,, \\ \mathsf{J}^{\mu\nu}_{\mathsf{Z}^{+}_{b}} &= \varepsilon^{\mu\nu\alpha\beta} (\bar{\mathsf{d}} \gamma_{\alpha} \mathsf{b}) (\bar{\mathsf{b}} \gamma_{\beta} \mathsf{u}) \end{split}$$

- Such a choice guarantees that the Z_b-state can only decay to the [B*B + c.c.] pair whereas the Z'_b-state can decay only to a B*B* pair. Decays into the BB-channels are forbidden.
- ▶ The nonlocal generalization of the above 4-quark currents is straightforward. Then we are able to calculate the matrix elements and the widths of all relevant two-body decays.

 $Z_b(10610)$ and $Z'_b(10610)$: theory

The bottomonium states ${}^{2S+1}L_J$.

quantum number I ^G (J ^{PC})	name	quark current	mass (MeV)
$0^+(0^{-+}) (S = 0, L = 0)$	$^{1}S_{0}=\eta_{\mathrm{b}}(1S)$	$ar{f b}{\sf i}\gamma^5{\sf b}$	9399.00 ± 2.30
$0^-(1^{}) (S = 1, L = 0)$	3 S ₁ = Υ	$ar{f b}\gamma^\mu{f b}$	9460.30 ± 0.26
$0^+(0^{++})$ (S = 1, L = 1)	$^3P_0=\chi_{b0}$	Бb	9859.44 ± 0.52
$0^+(1^{++})$ (S = 1, L = 1)	$^{3}P_{1}=\chi_{\mathrm{b}1}$	$ar{f b}\gamma^\mu\gamma^5{f b}$	9892.72 ± 0.40
$0^-(1^{+-}) \; (S=0,L=1)$	$^{1}P_{1}=h_{b}(1P)$	$\bar{b}\stackrel{\leftrightarrow}{\partial}^{\mu}\gamma^{5}b$	9899.30 ± 0.80

▶ Due to **G**-parity conservation the following decays are forbidden:

$$\mathbf{Z}_{b} \rightarrow \Upsilon + \rho, \quad \mathbf{Z}_{b} \rightarrow \eta_{b} + \pi, \quad \mathbf{Z}_{b} \rightarrow \chi_{b1} + \pi, \quad \mathbf{Z}_{b} \rightarrow \mathbf{h}_{b} + \rho.$$

The decay $Z_b o \chi_{b1} + \rho$ is not allowed kinematically.

▶ There are therefore only the three allowed decays:

$$\mathbf{Z}_{b}^{+} \rightarrow \Upsilon + \pi^{+}, \qquad \mathbf{Z}_{b}^{+} \rightarrow \mathbf{h}_{b} + \pi^{+}, \qquad \mathbf{Z}_{b}^{+} \rightarrow \eta_{b} + \rho^{+}.$$

F. Goerke, T. Gutsche, M.A. Ivanov, J.G. Körner and V.E. Lyubovitskij, Phys. Rev. D 96, no. 5, 054028 (2017)

- All adjustable parameters of our model have been fixed in our previous studies by a global fit to a multitude of experimental data.
- The only two new parameters are the size parameters of the two exotic Z_b(Z'_b) states. As a guide to adjust them we take the experimental values of the largest branching fractions presented by Belle:

$$\begin{split} \mathcal{B}(Z_b^+ \to [B^+ \bar{B}^{*\,0} + \bar{B}^0 B^{*\,+}]) &=& 85.6^{+1.5+1.5}_{-2.0-2.1}\,\%\,, \\ \\ \mathcal{B}(Z_b^{\prime +} \to \bar{B}^{*\,+} B^{*\,0}) &=& 73.7^{+3.4+2.7}_{-4.4-3.5}\,\%\,. \end{split}$$

▶ By using the central values of these branching rates and total decay widths we find the central values of our size parameters $\Lambda_{Z_b} = 3.45$ GeV and $\Lambda_{Z_b'} = 3.00$ GeV. Allowing them to vary in the interval

$$\Lambda_{Z_b} = 3.45 \pm 0.05 \ \text{GeV} \qquad \Lambda_{Z_b'} = 3.00 \pm 0.05 \ \text{GeV} \, ,$$

we obtain the values of various decay widths.

$Z_b(10610)$ and $Z'_b(10610)$: numerical results

Channel	Widths, MeV		
	$Z_b(10610)$	$Z_{\rm b}'(10650)$	
Υ(1S)π ⁺	$\textbf{5.9} \pm \textbf{0.4}$	$9.5^{+0.7}_{-0.6}$	
$h_{b}(1P)\pi^+$	$(0.14 \pm 0.01) \cdot 10^{-1}$	$0.74^{+0.05}_{-0.04} \cdot 10^{-3}$	
$\eta_{ m b} ho^+$	$\textbf{4.4} \pm \textbf{0.3}$	$7.5_{-0.5}^{+0.6}$	
$B^{+}\bar{B}^{*0} + \bar{B}^{0}B^{*+}$	$20.7_{-1.5}^{+1.6}$	_	
B*+B*0	_	$17.1^{+1.5}_{-1.4}$	

Total widths, MeV

	Theory	Belle Expt.
Z _b (10610)	$30.9^{+2.3}_{-2.1}$	$\textbf{25} \pm \textbf{7}$
$Z_{b}^{\prime}(10650)$	$34.1^{+2.8}_{-2.5}$	$\textbf{23} \pm \textbf{8}$

$Z_b(10610)$ and $Z'_b(10610)$: numerical results

- The Belle observations indicate that the decays involving bottomonium states are significantly suppressed compared with the B-meson modes.
- In our calculation we find that the modes with $\Upsilon(1S)\pi^+$ and $\eta_b\rho^+$ are suppressed but not as much as in the data.

$$\begin{split} \frac{\Gamma\left(Z_b \to \Upsilon(1S)\pi\right)}{\Gamma\left(Z_b \to B\bar{B}^* + c.c.\right)} &\approx & 0.29\,, \qquad \frac{\Gamma\left(Z_b \to \eta_b \rho\right)}{\Gamma\left(Z_b \to B\bar{B}^* + c.c.\right)} \approx 0.21\,, \\ \frac{\Gamma\left(Z_b' \to \Upsilon(1S)\pi\right)}{\Gamma\left(Z_b' \to B^*\bar{B}^*\right)} &\approx & 0.56\,, \qquad \frac{\Gamma\left(Z_b' \to \eta_b \rho\right)}{\Gamma\left(Z_b' \to B^*\bar{B}^*\right)} \approx 0.44\,. \end{split}$$

► The decays into the $h_b(1P)\pi^+$ mode are suppressed by the p-wave suppression factor.

- ▶ We have studied the properties of the X(3872) as a tetraquark.
- ▶ We have calculated the strong decays $X \to J/\psi + \rho(\to 2\pi)$, $X \to J/\psi + \omega(\to 3\pi)$, $X \to D + \bar{D}^*(\to D\pi)$ and electromagnetic decay $X \to \gamma + J/\psi$.
- ► The comparison with available experimental data allows one to conclude that the X(3872) can be a tetraquark state.

- We have critically checked two possible four-quark configurations for Z_c(3900): tetraquark and molecular.
- ▶ We have calculated the partial widths of the decays $Z_c^+(3900) \rightarrow J/\psi \pi^+$, $\eta_c \rho^+$ and $\bar{D}^0 D^{*+}$, $\bar{D}^{*0} D^+$.
- ▶ It turned out the decays $Z_c(3900) \rightarrow \bar{D}D^*$ are significantly suppressed on the case of a tetraquark configuration.
- ▶ Alternatively, in the case of a molecular configuration the partial widths of those decays are close to ~ 15 MeV and exceeded the partial widths for the decays $\mathbf{Z_c(3900)} \to \mathbf{J/\psi\pi}$, $\eta_c\rho$ by a factor of 6-7 in accordance with BESIII-experiment.

- ▶ By using molecular-type four-quark currents for the recently observed resonances $Z_b(10610)$ and $Z_b(10650)$, we have calculated their two-body decay rates into a bottomonium state plus a light meson as well as into B-meson pairs.
- We have fixed the model size parameters by adjusting the theoretical values of the largest branching fractions of the modes with the B-mesons in the final states to their experimental values.
- ▶ We found that the modes with $\Upsilon(1S)\pi^+$ and $\eta_b\rho^+$ in the final states are suppressed but not as much as the Belle Collaboration reported.