OPEN HEAVY-FLAVOUR MEASUREMENTS WITH ALICE AT THE LHC

Fabio Colamaria, for the ALICE Collaboration

Istituto Nazionale di Fisica Nucleare

INFN

QCD@Work - Matera - 25/06/2018

HEAVY-FLAVOUR PRODUCTION

Open heavy flavour in Pb-Pb collisions

Heavy quarks experience the full evolution of the hot and dense medium produced in ultrarelativistic heavy-ion collisions \rightarrow Excellent probes of the Quark-Gluon Plasma (QGP)

In particular, heavy quarks are expected to:

- Lose less energy w.r.t light quarks and gluons due to different Casimir factor and dead-cone effect
 - Microscopic study of medium and characterisation of energy loss mechanisms

Provide information on medium transport properties

- At low p_{T} , possibly hadronise also via coalescence:
 - Modified momentum distribution of HF hadrons
 - > Enhanced v_2 of HF hadrons (light quark contribution)
 - > Modified hadrochemistry (D_s^+ , Λ_c^+ enhancement)

F. Colamaria – QCD@Work 2018

HEAVY-FLAVOUR PRODUCTION

Studies of heavy-flavour production important also in smaller systems

pp collisions

- Test and set constraints on pQCD calculations for charm and beauty quark production
- Probe parton distribution function (especially for gluons) at low values of Bjorken *x*
- Reference for studies in p-Pb and Pb-Pb collisions

p-Pb collisions

- Heavy-flavour production and kinematic properties can be modified by:
 - Cold nuclear matter effects, like shadowing, gluon saturation, Cronin effect, possible energy loss mechanisms
 - "Collective-like" effects (e.g. elliptic flow), resembling what observed in heavy-ion collisions, which is ascribed to the hydrodynamic expansion of the system

In all collision systems, **more differential measurements** (as HF correlations, jets) can provide further information than single-particle studies, and a closer access to the heavy parton properties

Matera, 25/06/2018

F. Colamaria – QCD@Work 2018

HEAVY-FLAVOUR RECONSTRUCTION WITH ALICE

V0: trigger + centrality/multiplicity estimation + event characterization **ZDC:** centrality estimation **ITS:** tracking + vertexing **TPC:** tracking + PID **TOF:** PID **EMCAL:** high- p_T trigger + electron ID **Forward muon spectrometer:** trigger + tracking

Open heavy flavour

Charmed hadrons (|y| < 0.5)

- $D^0 \rightarrow K^-\pi^+$
- $D^* \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D^+{}_s \rightarrow \phi \pi^+ \rightarrow K^- K^+ \pi^+$
- $\Lambda_c^{+} \rightarrow pK^-\pi^+$, $\Lambda c \rightarrow pK^0_{s'}K^0_s \rightarrow \pi^+\pi^-$
- $\Lambda_c^{\ +}
 ightarrow e^+ \Lambda \nu$, $\Lambda
 ightarrow p \pi^-$
- $(\Xi_b \rightarrow) \Xi_c^0 \rightarrow e^+ \Xi^- \nu e, \Xi^- \rightarrow \pi^- \Lambda$

HF decay leptons

- c,b hadrons \rightarrow eX (|y| < 0.9)
- c,b hadrons $\rightarrow \mu X$ (2.5 < y < 4)
- $b \rightarrow eX$ via impact parameter fit

Beauty-decay J/ ψ (|*y*| < 0.9)

• b hadrons $\rightarrow J/\psi X$, $J/\psi \rightarrow e^+e^-$

+ open heavy-flavour jets, correlations, production vs multiplicity/centrality, ESE...

F. Colamaria – QCD@Work 2018

CROSS SECTIONS IN pp COLLISIONS

- p_{T} -differential production cross section of prompt D mesons and heavy-flavour decay leptons measured for several energies ($\sqrt{s} = 2.76, 5.02, 7, 8, 13$ TeV)
- Excellent constraints for charm (+beauty) production cross section over a wide p_{T} interval
 - > D^0 cross section down to $p_T = 0$
- All measurements are consistent with pQCD calculations, data always on upper part of FONLL uncertainty band (much larger than data uncertainties)

F. Colamaria – QCD@Work 2018

CHARMED BARYONS IN pp AND p-Pb

- Λ_c^+/D^0 ratios in pp and p-Pb collisions are compatible within uncertainties
 - Same p_T trend as for light flavor baryon-to-meson ratio (see backup)
- First Ξ_c^0 production measurement at the LHC
- Both Λ_c^+/D^0 and Ξ_c^0/D^0 ratios are **higher than MC expectation** (tuned on e⁺e⁻, e⁻p data)
 - Enhanced color reconnection configuration of PYTHIA 8 is closer to data
 - > Theory bands on Ξ_c^0 due to the uncertainty on the branching ratio $\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

D-MESON A

- New preliminary results with better precision, due to reduction of uncertainties in the pp reference (2017 sample at 5 TeV)
- Non-strange D meson R_{pPb} is **compatible with unity** within uncertainties
 - > Described by models including cold nuclear-matter effects and, at low p_{T} , by those assuming QGP formation
- Hint for D-meson "central-to-peripheral" ratio (Q_{CP}) > 1 with 1.5 σ in 2 < p_T < 8 GeV/ c_T
 - Initial- or final-state effect? Need theory models for its interpretation

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

D-h CORRELATIONS IN pp AND p-Pb

- Azimuthal correlation distributions of D mesons (average of D⁰, D⁺, D^{*+} mesons) with charged particles in pp and p-Pb collisions
- Characterize charm production mechanisms and fragmentation into jets and study possible modifications due to cold-nuclearmatter or medium-like effects

- Near-side peak yield and width extracted with two Gaussian + baseline fit to the $\Delta \phi$ distributions
- Similar correlation pattern and nearside peak properties in pp and p-Pb

pp@7 TeV pp@13 TeV p-Pb@5.02 TeV

F. Colamaria – QCD@Work 2018

D-TAGGED JETS IN pp AND p-Pb COLLISIONS

- p_T -differential cross section of charged jets with a reconstructed D⁰ meson inside the jet cone in pp and p-Pb collisions
 - Allow a closer access to charm parton kinematics
- POWHEG+PYTHIA predictions (NLO pQCD) describe well the measured cross section
 - Theory uncertainties larger than data ones

F. Colamaria – QCD@Work 2018

HEAVY-FLAVOUR ELECTRON v₂ IN p-Pb arXiv:1805.04367 V_{2} baseline (rad⁻¹) 0.7 ALICE $(c,b) \rightarrow e$ - charged particle correlation ALICE 0.2 $(c,b) \rightarrow e, |\eta| < 0.8, |\Delta \eta| < 1.2$ p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $< 4 \text{ GeV}/c, -1.26 < y_{ome}^{e} < 0.34$ p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 2 < p^e 0.6 Charg. part., $|\eta| < 0.8$, $0.8 < |\Delta \eta| < 1.6$ $|\Delta \eta| < 1.2$ (0-20%) - (60-100%) $0.3 < p_{-}^{ch} < 2 \text{ GeV}/c$ μ , p-going -4 < η < -2.5, -5 < $|\Delta \eta|$ < -1.5 0.5 0.15 → μ , Pb-going -4 < η < -2.5, -5 < $|\Delta \eta|$ < -1.5 0-20% V0A class 0.4 -60-100% V0A class dN^{HFe-ch} 0.3 0.1 φΔb 0.2 0. 0.05 $\Delta \eta$ 0.0 Baseline stat. unc. 0-20% 3% Δφ-correlated syst. unc.

- Azimuthal correlations of heavy-flavour decay electrons with charged particles in HM (high multiplicity, 0-20%) and LM (low multiplicity, 60-100%) p-Pb collisions
- v_2 extracted from Fourier decomposition of HM LM correlation distribution

1% $\Delta \phi$ -corr. syst. unc. in $|\Delta \phi| < 1$

2

• **Positive** v_2 for heavy-flavour decay electrons (**5** σ effect for 1.5 < p_T^e < 4 GeV/*c*)

 $\Delta \phi$ (rad)

Strength of v_2 comparable with charged-particles measurement (but different p_T ranges of original partons) and with muons (but different rapidities)

ALI-PUB-160119

Initial-state effect or final-state, collective effect? Need model predictions!

F. Colamaria – QCD@Work 2018

Baseline stat. unc. 60-100%

ALI-PUB-160101

4

*p*_{_} (GeV/*c*)

- Large suppression at high p_T in Pb-Pb collisions (factor ≈ 4 around 10 GeV/c)
 - ➢ No deviations from unity observed in R_{pPb} → Final-state effect induced by inmedium energy loss of hard partons
- Suppression of heavy-flavour decay muons at forward rapidity is similar to that of heavyflavour decay electrons

F. Colamaria – QCD@Work 2018

BEAUTY R_{AA} MEASUREMENTS ev 2.5 م **ALICE** Preliminary ď ALICE Preliminary 0-10% Pb-Pb, $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ 0-10% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}, |y| < 0.8$ - b (\rightarrow c) \rightarrow e $b.c \rightarrow e$ $b (\rightarrow c) \rightarrow e$ → ITS+TPC+TOF eID, |y| < 0.8 → TPC+TOF eID, |y| < 0.8 -- MC@HQ+EPOS2 1.5 1.5 \rightarrow TPC+EMCal eID, |y| < 0.6-- PHSD ---- Diordjevic 0.5 0.5 2 10 *p*_{_} (GeV/*c*) p_{τ} (GeV/c) ALI-PREL-147777 ALI-PREL-147769

- Nuclear modification factor of beauty-decay electrons in 0-10% Pb-Pb collisions at 5.02 TeV
 - > Hint of a smaller suppression for b-origin electrons than for (c+b)-origin electrons at the same electron p_T
 - Large contribution to systematic uncertainties from the rescaled pp cross section, may be reduced with direct measurement of beauty-electron production in pp at 5.02 TeV

11

Matera, 25/06/2018

Models implementing mass-dependent energy loss mechanisms provide a good description of data within uncertainties

F. Colamaria – QCD@Work 2018

CHARM HADRONS R_{AA} AND v₂

- Possible hierarchy for R_{AA}(Λ_c⁺, 0-80%) > R_{AA}(D_s⁺, 0-10%) > R_{AA}(D⁰, D⁺, D^{*+}, 0-10%)
 - From hadronisation via coalescence?
- At low p_T, R_{AA}(non-strange D) > R_{AA}(π)
 - > To be interpreted with care: different fragmentation functions, initial parton p_T spectrum, radial flow contribution, N_{coll} scaling violation at low p_T for charged pions, ...
- Positive D-meson v_2 for $p_T > 2$ GeV/c, with hints of $v_2(D) < v_2(\pi^{\pm})$ for $p_T < 4$ GeV/c
 - > Supports the idea of charm thermalization and participation to collective motion

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

- A simultaneous description of complementary observables (R_{AA} and v_2) over a wide p_T range is a challenging task: measurements allow us to set strong constraints to models
 - > Models in which charm quarks pick up collective flow via **recombination** or **subsequent** elastic collisions in expanding medium better describe v_2 at low p_T . Adding radiative energy loss improves the R_{AA} description at high p_T but gives too low v_2 at low p_T .
 - Best v_2 description by models with diffusion coefficient $2\pi D_s(T)$ in the range **1.5-7** at T_c , with a corresponding thermalisation time $\tau_{charm} \sim 3-14 \text{ fm/}c$

D-TAGGED JETS IN Pb-Pb COLLISIONS

• Strong suppression of production cross section in 0-20% Pb-Pb collisions over full p_{T} (jet) range

• Comparison with inclusive jets difficult due to non-overlapping p_T ranges, but hint of lower R_{AA} for D jets in 5 < p_T (jet) < 20 GeV/c than inclusive jets with p_T > 50 GeV/c

> Can address different quark/gluon jet ratio and collisional/radiative energy loss fractions

• R_{AA} comparable with single D-meson measurement: jet R_{AA} dominated by leading particle energy loss? Or a coincidence? Yet not apple-to-apple comparison (jet vs. hadron p_T scale)

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

CONCLUSIONS

Large set of measurements of open heavy-flavour particles in pp (\sqrt{s} = 2.76, 5, 7, 8 and 13 TeV), p-Pb (\sqrt{s}_{NN} = 5.02 and 8.16 TeV) and Pb-Pb (\sqrt{s}_{NN} = 2.76 and 5.02 TeV) collisions.

pp and p-Pb collisions

- Precise *p*_T-differential cross section measurements of heavy-flavour particles set strong constraints for pQCD calculations.
- > R_{pPb} of non-strange D-mesons, D_s^+ meson and Λ_c^+ all **compatible with unity**. Other observables, as Q_{CP} of D mesons or HF-decay electron v_2 , point anyway to non-negligible nuclear effects.
- Measurements of **D-h correlations** and **D-tagged jets** are well described by model predictions within uncertainties.

Pb-Pb collisions

- Large suppression of open heavy-flavour particles in central collisions, due to heavy-quark energy loss in the QGP.
- Positive v₂ observed for open heavy-flavour hadrons and decay leptons: charm quarks undergo strong interaction with the QCD medium and participate to system collective motion.
- **Enhanced** Λ_{c}^{+} (and possibly D_{s}^{+}) production in Pb-Pb: coalescence in strangeness-rich environment.
- > Hints of smaller suppression for beauty-decay electrons from $p_T > 2 \text{ GeV}/c$.
- > First measurement of **D⁰-tagged jets** in Pb-Pb: large suppression observed in 0-20% collisions.

Higher precision on current observables and **more differential measurement** expected with 2018 Pb-Pb run and in the next runs after the ALICE upgrade

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

BACKUP SLIDES

HEAVY-FLAVOUR PRODUCTION

Open heavy flavour in Pb-Pb collisions

• Heavy quarks experience the full evolution of the hot and dense medium produced in ultra-relativistic heavy-ion collisions \rightarrow Excellent probes of the QGP

In particular, heavy quarks are expected to:

- Lose less energy w.r.t light quarks and gluons due to different Casimir factor and dead-cone effect
 - Microscopic study of medium and characterisation of energy loss mechanisms
- Participate to some extent to the collective motion inside the medium
 - Provide information on medium transport properties

- At low p_{T} , possibly hadronise also via coalescence:
 - Modified momentum distribution of HF hadrons (radial flow «bump»)
 - > Enhance v_2 of HF hadrons (light quark contribution)
 - > Modify hadrochemistry, enhancing D_{s^+} , Λ_{c^+} production

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

F. Grosa's contribution

HEAVY-FLAVOUR PRODUCTION

Studies of heavy-flavour production important also in smaller systems

pp collisions

- Test and set constraints on production mechanisms
 - Production cross section can be treated perturbatively due to the large Q² involved
 - pQCD-based calculations describe reasonably well open charm and beauty production at the LHC
- Probe parton distribution function (especially for gluons) at low values of Bjorken x
- Reference for studies in p-Pb and Pb-Pb collisions

p-Pb collisions

- Heavy-flavour production and kinematic properties can be modified by:
 - Cold nuclear matter effects, like shadowing, gluon saturation/color glass condensate, Cronin effect, possible energy loss mechanisms
 - "Collective-like" effects (e.g. elliptic flow), resembling what observed in heavy-ion collisions, which is ascribed to the hydrodynamic expansion of the system

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

HEAVY-FLAVOUR CORRELATIONS

HF correlations: allow to gain further insight w.r.t. single-particle observables, by relating heavy-flavour particles to:

- > The other tracks from the fragmentation of the same heavy quark
- The fragmentation particles from the other heavy quark in the event
- The underlying event (soft particle production)

pp collisions

- Investigate heavy-flavour quark fragmentation properties and characterize heavy-flavour jets
- Sensitivity to modeling of HQ production processes
- Reference for p-Pb and Pb-Pb results

p-Pb collisions

- Investigate possible modifications of angular correlation pattern from cold nuclear matter effects
- Search for long-range ridge-like structures (double ridge), observed in di-hadron correlations, also in the heavy-flavour sector, possibly due to initial- (e.g. CGC) or final-state effects (e.g. hydrodynamics)

HF quark

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

HEAVY-FLAVOUR CORRELATIONS

Pb-Pb collisions

 Probe the QGP effects on heavy quarks by studying how correlation distributions of heavy-flavour particles are modified w.r.t. vacuum

 Add sensitivity to study contribution of radiative and collisional parton energy loss in QGP medium?

Pb-Pb @ 2.76 TeV LO process only → Initial distribution: Δφ=π

F. Colamaria – QCD@Work 2018

For light flavour correlations:

Away-side suppression at high p_{T}

Path-length dependence of energy loss

Near-side peak enhancement: interplay of

- Modification to quark/gluon ratio
- Bias in partons p_T spectrum due to energy loss in medium
- Modified parton fragmentation

Note - Different fragmentation, energy loss in medium, kinematic bias between heavy and light quarks! *I*_{AA} not directly comparable!

HEAVY-FLAVOUR JETS

Complementary information w.r.t. correlations, seeing the parton fragments as a single object instead of as a particle ensemble

Tight connection with HF correlations also for some goals, with alternative approach:

 Spatial distribution of energy lost in the medium by heavy quarks → differences with respect to light flavour/gluon jets?

ATLAS, Phys. Rev. D85 (2012) 052005

- Jets tagged by HF hadron (D-jets, b-jets, ...): study of jet momentum fraction taken by the particle and its modification in a QGP medium
- Studies important also in pp and p-Pb (reference for Pb-Pb measurements, impact of cold-nuclear-matter effects)

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

HEAVY-FLAVOUR JETS

- Comparison of b-jet R_{AA} with inclusive jet to investigate mass effect on medium-induced ΔE
 - ✓ Mass effects relevant for p_T < 75 GeV/c, dead-cone effect not negligible
 - Measurements vs opening radius *R* to characterize energy dissipation and possibly separate collisional and radiative energy loss
 - ✓ Energy loss in gluon splitting cases (high p_T): b-pair seen by medium as massive gluon?
 - ✓ Addressing the jet momentum sharing (via "soft drop declustering" technique) could probe the QGP-induced modifications of the heavy-flavour 1→2 jet splitting function

HEAVY QUARK PRODUCTION

F. Colamaria – QCD@Work 2018

Models: low and high p_{T} regimes

Hard Froduction

In a oversimplified scheme we can identify two "regimes":

High p_{T} :

- region dominated by radiative energy loss
- Quantum interferences in multiple scattering important (LPM effect) $\langle k_T^2 \rangle$
- Relevant parameter: $\hat{q} = \frac{\langle k_{\rm T}^2 \rangle}{\lambda}$

pQCD-based models provide fair description

Low p_T:

- Region dominated by "collisional" energy loss
- Heavy quarks undergo many soft and incoherent elastic collisions c
 ~Brownian motion
- · Goal: study how and if HQ reach the equilibrium with the medium
- Relevant parameter: spatial diffusion coefficient, D_s

Injecting a particle at x=0 and t=0, the mean squared position at time t is:

$$\langle x^2(t) \rangle = 6D_s t$$

Strong coupling with the system \rightarrow small D_s

53

26

 $\omega = (1-x)E$

A. Rossi

F. Colamaria – QCD@Work 2018

FURTHER D-MESON R_{AA} RESULTS

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

D-MESON R_{AA} - **MODELS**

MC@sHQ+EPOS2: PR C89 (2014) 014905

Coll+Rad Eloss, recombination, EPOS-expansion PHSD: PR C92 (2015) 1, 014910, PR C93 (2016) 3, 034906 POWLANG HTL: EPJ C71 (2011) 1666; JP G38 (2011) 124144 Parton-Hadron-String Dynamics transport, coalescence Xu, Cao, Bass: PR C88 (2013) 044907 Langevin with Coll+Rad Eloss, recombination+hydro SCETM, G NLO: arXiv: 1610.02043 Soft Collinear Effective Theory, Bjorken expansion Djorkevic: PR C92 (2015) 024918

Coll+Rad Eloss, recombination, finite-size hydro

Langevin transport, Coll Eloss, recombination, hydrodynamics AdS/CFT: JHEP 1411 (2014) 017; PR D91 (2015) 8, 085019; Ads/CFT correspondence, Langevin Eloss + fluctuations, hydro BAMPS: JP G 38 (2011) 124152; PL B 717 (2012) 430 Boltzmann transport, Coll. Eloss, expansion TAMU: PL B735 (2014) 445-450

Transport, Coll. Eloss, resonant scatt. and coalescence+hydro

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

PROSPECT OF MODELS (PREDICTING R_{AA} & V₂

,)	
-	ALICE

TRANSPORT MODELS	Collisional Energy loss	Radiative Energy <u>loss</u>	Coalescence	Hydro	nPDF
BAMPS + rad. J. Phys. G42 (2015) 115106	1	~	×	\checkmark	×
LBT arXiv:1703.00822	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PHSD PRC 93 (2016) 034906	\checkmark	\checkmark	1	\checkmark	\checkmark
POWLANG EPJC 75 (2015) 121	\checkmark	×	1	\checkmark	~
TAMU Phys. Lett. B735 (2014) 445	1	×	\checkmark	\checkmark	1
MC@sHQ+EPOS PRC 89 (2014) 014905	~	\checkmark	\checkmark	\checkmark	\checkmark
pQCD Eloss MODELS	Collisional Energy loss	Radiative Energy loss	Coalescence	Hydro	nPDF
CUJET3.0 JHEP 02 (2016) 169	\checkmark	\checkmark	×	×	×
Diordevic PRC 92 (2015) 024918	1	\checkmark	×	×	\checkmark
SCET JHEP 03 (2017) 146	1	\checkmark	×	×	\checkmark

29

F. Colamaria – QCD@Work 2018

CHARMED BARYONS – ADDITIONAL PLOTS

arXiv:1712.09581

F. Colamaria – Jets and Heavy Flavour Workshop

Santa Fe, 29/01/2018

CHARMED BARYONS IN pp AND p-Pb Λ_c/D^0 ratio **ALICE** Preliminary p−Pb, *s*_{NN} = 5.02 TeV $-0.96 < y_{\rm cms} < 0.04$ ALICE Preliminary pp, \s = 7 TeV |y| < 0.5Baryon-to-meson ratio Shao et al. ALICE, arXiv:1712.09581 with EPS09NLO nPDF p–Pb, **V** s_{NN} = 5.02 TeV -0.96 < y_{cms} < 0.04 |v| < 0.5PYTHIA8 (Monash) PYTHIA8 (CR Mode1) Λ⁺_c/D⁰, arXiv:1712.09581 Λ/K⁰_S, PRL 111 (2013) 222301 p/π, PLB 760 (2016) 720 PLB 760 (2016) 720 0.6 **DIPSY** (ropes) o/π, PLB 728 (2014) 25-38 HERWIG7 0.40.2 20 $p_{-}(GeV/c)$ p_{\perp} (GeV/c)

• Λ_c^+/D^0 ratios in pp and p-Pb collisions are compatible within uncertainties

20 p_ (GeV/c)

- p-Pb: decreasing values from $p_T > 4$ GeV/c, as for light flavor baryon-to-meson ratio
- First Ξ_c^0 production measurement at LHC

10

ALI-PREL-154742

15

• Both Λ_c^+/D^0 and Ξ_c^0/D^0 ratios are **higher than MC expectation** (tuned on e⁺e⁻, e⁻p data)

ALI-PREL-154735

- Enhanced color reconnection configuration of PYTHIA 8 is closer to data
- > Theory bands on Ξ_c^0 due to the uncertainty on the branching ratio $\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

CHARMED-HADRON RATIOS

- Hint of enhanced D_s⁺ production compared to nonstrange D mesons in Pb-Pb collisions
 - No evidence of centrality dependence within uncertainties
- In Pb-Pb collisions, Λ_c+/D⁰ ratio shows hint of enhancement w.r.t. pp and p-Pb
 - Underestimated by model predictions

Models	System energy	$\Lambda_{\rm c}^+/{ m D}^0$
Oh et al.	Au-Au (central) 200 GeV	~0.35 (p _T = 6 GeV/ <i>c</i>)
Ghosh et al.	RHIC and LHC	0.15-0.2 (p _T = 9 GeV/c)
Das et al.	Pb-Pb (0-20%) 5.5 TeV	~0.2 (p _T = 9 GeV/ <i>c</i>)
Plumari et al.	Pb-Pb (0-20%) 2.76 TeV	0.1-0.2 (p _T = 8 GeV/c)

Matera, 25/06/2018

F. Colamaria – QCD@Work 2018

CHARM HADRON RATIOS

- Hint of enhanced D_s⁺ production compared to nonstrange D mesons in Pb-Pb collisions
 - No evidence of centrality dependence within uncertainties
- In Pb-Pb collisions, Λ_c+/D⁰ ratio shows hint of enhancement w.r.t. pp and p-Pb
 - Underestimated by model predictions

Models	System energy	$\Lambda_{\rm c}^+/{ m D}^0$	
Oh et al.	Au-Au (central) 200 GeV	~0.35 (p _T = 6 GeV/ <i>c</i>)	
Ghosh et al.	RHIC and LHC	0.15-0.2 ($p_{\rm T} = 9 {\rm GeV}/c$)	
Das et al.	Pb-Pb (0-20%) 5.5 TeV	~0.2 (p _T = 9 GeV/ <i>c</i>)	
Plumari et al.	Pb-Pb (0-20%) 2.76 TeV	$0.1-0.2 (p_{ m T}=8~{ m GeV/c})$	13

Matera, 25/06/2018

F. Colamaria – QCD@Work 2018

F. Colamaria – QCD@Work 2018

HF LEPTONS IN Xe-Xe

- Similar R_{AA} is observed in Xe-Xe and Pb-Pb for similar $< dN/d\eta >$
- Comparison of Pb-Pb and Xe-Xe collisions at different N_{part} or may add sensitivity to probe the path-length dependence of energy loss

A similar suppression is observed for HF decay electrons at mid-rapidity and HF decay muons from at forward rapidity

-PREL-148099

F. Colamaria – QCD@Work 2018

D-h CORRELATIONS: pp VS MODELS

Comparison of near-side peak yield and width from data and Monte Carlo predictions

*p***_T(D) ranges** 3-5, 5-8, 8-16 GeV/*c*

*p***_T(assoc) ranges** >0.3, 0.3-1, >1 GeV/*c*

- New results at 13 TeV confirm good description of data features by PYTHIA6,8, POWHEG predictions
 - Good observable to study the charm jet fragmentation modification in the QGP
- Analysis of the away-side ongoing with a x4 larger data sample

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

D-h CORRELATIONS: p-Pb VS MODELS

Comparison of near-side and away-side peak yields and widths to Monte Carlo predictions

Near-side

• Best description of away-side yields given by POWHEG. Some tension with the other models at high $p_T(D)$. POWHEG seems anyway to overpredict the peak widths.

<u>Away-side</u>

Reversed hierarchy for predictions of yield and width w.r.t near-side peak.
 Observables sensitive to modelling production processes

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

D-h CORRELATIONS: p-Pb VS CENTRALITY

- Charm jet fragmentation doesn't show modifications as a function of centrality above the current uncertainties
 - Possible flow in central p-Pb events taken into account as systematic uncertainty
- No sensitivity to extract v_2 via HM LM subtraction with available statistics

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

HF ELECTRON CORRELATIONS IN Pb-Pb

- Near-side yields from integration of correlation distribution in $|\Delta \phi| < 1$
- At low p_T^{assoc} , **hints of a hierarchy appear** between central Pb-Pb, peripheral Pb-Pb and p-Pb, despite large uncertainties
- Similar feature observed in h-h (see backup), interesting to have predictions from models

D-JETS: ANALYSIS STRATEGY

- Charged jets tagged by the presence of a reconstructed D-meson candidate inside the cone
 - Jet finder algorithm (Fastjet, anti-k_T) run for each D-meson candidate, after substituting the daughter tracks with the D-meson particle

- Invariant mass study to extract D-jet raw yield
 - Background spectrum from the sidebands
 - Spectrum corrected for D-jet efficiency and for beauty feed-down, exploiting folded POWHEG+PYTHIA predictions
- Corrected D-jet spectrum unfolded for detector effects and background fluctuations (in p-Pb and Pb-Pb)

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018

- Charged-jet momentum fraction carried by D⁰ meson compared to PYTHIA+POWHEG predictions, for two p_T(jet) ranges in pp collisions
- Overall, good description of data. Hint of softer fragmentation at high p_T in data w.r.t. prediction? Uncertainties are anyway still too large to conclude

F. Colamaria – QCD@Work 2018

Matera, 25/06/2018